CN101470296A - 图像显示装置和终端装置 - Google Patents

图像显示装置和终端装置 Download PDF

Info

Publication number
CN101470296A
CN101470296A CNA200810190238XA CN200810190238A CN101470296A CN 101470296 A CN101470296 A CN 101470296A CN A200810190238X A CNA200810190238X A CN A200810190238XA CN 200810190238 A CN200810190238 A CN 200810190238A CN 101470296 A CN101470296 A CN 101470296A
Authority
CN
China
Prior art keywords
pixel
image
display element
display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810190238XA
Other languages
English (en)
Other versions
CN101470296B (zh
Inventor
新冈真也
重村幸治
上原伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NEC LCD Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC LCD Technologies Ltd filed Critical NEC LCD Technologies Ltd
Priority to CN201210473035.8A priority Critical patent/CN103018947B/zh
Publication of CN101470296A publication Critical patent/CN101470296A/zh
Application granted granted Critical
Publication of CN101470296B publication Critical patent/CN101470296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Abstract

提供具有良好显示质量的图像显示装置,在反射显示中亮度没有降低,以及提供使用该图像显示装置的便携式终端装置。提供了一种显示装置,包括:多个被布置的显示元件,每个显示元件包括至少用于显示第一视点图像的像素和用于显示第二视点图像的像素,每个像素具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;光学器件,用于将从每个像素发射的光分配到彼此不同的方向上,其中每个显示元件的反射显示区域相对于与图像分配方向垂直的轴非对称地被布置。

Description

图像显示装置和终端装置
相关申请的交叉引用
本申请基于并要求在2007年11月26日提交的日本专利申请No.2007-335351的优先权,其内容通过引用全部结合于此。
技术领域
本发明涉及一种能够为多个视点显示不同图像的图像显示装置,以及涉及一种具有其上装载有该图像显示装置的终端装置。更具体地,本发明涉及一种能够显示优质立体图像的图像显示装置和终端装置。
背景技术
已经对能够为多个视点显示不同图像的图像显示装置进行了研究。例如,有这样一种立体液晶显示装置,该立体液晶显示装置可以通过使用能够分离图像的光学元件来为多个视点提供不同显示。
为了实现这种功能,已经对大量立体图像显示系统进行了研究。这种类型的立体图像显示系统可以被大致分成两种类型,即,一种是使用眼镜的类型,而另一种是不使用眼镜的类型。使用眼镜的类型包括利用偏振的偏振眼镜类型和利用色彩差别的立体影片系统(anaglyphsystem)。
同时,上述系统中的每一个都不能避免佩戴眼镜的麻烦。因此,最近已经对不需要任何眼镜的无眼镜系统进行了积极研究。作为这种无眼镜系统,有视差栅栏型、柱镜光栅(lenticular lens)型等。通过这些类型,带有视差的图像分别呈现给左眼和右眼,以便实现立体图像显示装置。
这种无眼镜系统中的柱镜光栅型,例如在“Three-dimensionaldisplay”(增田千寻(Chihiro MASUDA),工业图书株式会社(SangyoTosho Publishing Co.,Ltd.))(非专利文献1)中所描述的,由艾夫斯(Ives)等人于1910年前后提出。图28示出了这种柱镜光栅121的例子。如在图28中所示,柱镜光栅121在其一个面上具有平面,而在另外一个面上以其纵向方向彼此平行的方式形成沿着一个方向延伸的多个半圆柱状的凸部(柱状透镜)122。
此外,图30是示出关于使用柱镜光栅121时的立体图像显示方法的光学模型图。如在图30中所示,柱镜光栅121、显示面板106、以及光源108自观看者依次被设置,并且显示面板106的像素位于柱镜光栅121的焦平面上。
参考上面提到的图30,用于显示用于右眼141的图像的像素123和用于显示用于左眼142的图像的像素124交替布置在显示面板106上。在这种情形下,该组彼此相邻的像素123和124对应于柱镜光栅121的每个凸部122。由此,自光源108发射的并且透过像素123和124的每个的光由柱镜光栅121的凸部122分配到朝向左眼和右眼的方向上。这使得左眼和右眼可以看到不同的图像,由此,使观看者可以看到立体图像。
同时,视差栅栏型由伯塞尔(Berthier)在1896年构思出,并且艾夫斯(Ives)在1903年实现了它。上面提到的图29是示出了使用视差栅栏的立体图像显示方法的光学模型图。如在图29中所示,视差栅栏105是其上形成了大量细条纹状开口(即,缝105a)的栅栏(遮蔽板)。显示面板106被设置在视差栅栏105的一个表面的附近。
在这个显示面板106中,右眼像素123和左眼像素124被布置在与缝105a的纵向方向正交的方向上。此外,光源108被设置在视差栅栏105的另外一个表面的附近,即,在显示面板106的相对侧。
在自光源108发射的光中,穿过视差栅栏105的开口部分(缝105a)的并且然后透过右眼像素123的光成为光通量181,如在图29中所示。相似地,在自光源108发射的光中,穿过缝105a的并且然后透过左眼像素124的光成为光通量182。这里,根据视差栅栏105和像素之间的位置关系来确定可以看到立体图像的观看者的位置。即,观看者的右眼141必须在对应于多个右眼像素123的所有光通量181的通过区域内,而对于观看者的左眼142,必须在所有光通量182的通过区域内。
如在图29中所示,这是下面这样的情形,即,其中右眼141和左眼142的中点143位于四边形的立体可视区域107内。在立体可视区域107内的经过对角线交点107a的线段是在立体可视区域107内的沿着右眼像素123和左眼像素124的布置方向延伸的线段之中最长的线段。因此,当中点143到达交叉点107a时,对于观看者的位置在左右方向上偏移的容限最大。因此,这是作为观看位置最优选的位置。
因此,在这种立体图像显示方法中,交点107a和显示面板106之间的距离被定义为最佳观看距离OD(=S),并且推荐观看者以这个距离S观看图像。注意的是,在立体可视区域107内的虚平面被认为是最佳观看平面107b,该虚平面距离显示面板106之间的距离被最佳观看距离S。由此,来自右眼像素123和左眼像素124的光将分别到达观看者的右眼141和左眼142。因此,观看者可以将显示在显示面板106上的图像视为立体图像。
在视差栅栏系统最初被构思的时候,因为视差栅栏被放置在像素和眼睛之间,所以存在具有目障和可见度低的问题。然而,由于近来实现的液晶显示装置而使得可见度已经被改善,因为它可以将视差栅栏105放置在显示面板106的背侧,如在图29中所示。因此,已经对视差栅栏型立体图像显示装置进行了积极研究。
这里注意的是,上述的视差栅栏型是通过栅栏“隐蔽(conceal)”不必要的光线的类型,而上述的柱镜光栅型是改变光的传播方向的类型。因此,后一类型,即,柱镜光栅型具有理论上显示屏的亮度没有减低的优点。由于这个优点,已经考虑了将柱镜光栅型应用到重视高亮度显示和低功耗性能的便携式装置中。使用柱镜光栅的传统的立体图像显示装置将透射型液晶显示装置用作其显示面板。
此外,除了上述的立体图像显示装置,同时显示多个图像的多图像同时显示装置也被作为使用柱镜光栅的图像显示装置来开发(例如,参见日本专利申请特开平06-332354号公报(专利文献1))。多图像同时显示装置是下面这样的装置,即,所述多图像同时显示装置通过利用柱镜光栅的图像分配功能,在相同的条件下,同时为各个不同观看方向显示不同的图像。
这使单个的多图像同时显示装置能够同时将彼此不同的图像提供给相对于该显示装置位于彼此不同的方向的多个观看者。专利文献1描述了多图像同时显示装置的使用,与其中必须为同时显示的多个图像准备多个通常的单图像显示装置的情形相比,该多图像同时显示装置可减少安装空间和电力成本。
此外,已经开始研究将具有反射板的反射型图像显示装置作为显示面板来使用。该反射型图像显示装置通过位于显示装置内的反射板反射从外部入射的光并且将反射光用作显示光源。因此,作为光源的背光或侧光是不必要的。
同时,透射型图像显示装置需要背光、侧光等。因此,当反射型图像显示装置被用于显示面板时,可以实现比使用透射型图像显示装置的情形更低的功耗。因此,反射型图像显示装置目前已经被积极地应用到便携式装置等中。
然而,在使用反射型图像显示装置的情形中,当反射板具有平坦表面形状时,外部光被反射,正如它被镜面反射一样。因此,存在这样一种问题,诸如荧光灯的光源的轮廓被反射,从而显示质量降低。此外,只有相对于观看者从特定角度入射的光有助于显示,从而外部光的使用效率被降低。
为了改善这种问题,日本专利申请特开平8-184846号公报(专利文献2)提出了一种其中在反射板上提供不平坦形状的技术。图31示出了具有不平坦形状的反射板的结构例子。根据专利文献2,有机膜被设置在反射板41的下层,并且不平坦被设置在有机膜的表面以在反射板41的表面形成不平坦形状41a。通过该不平坦形状,从特定方向入射的外部光朝向各个方向漫反射。此外,从各个方向入射的外部光也被反射到观看者的方向。结果,光源的轮廓的反射可以得以避免,从而使得可将各个角度的外部光用于显示。
此外,日本专利申请特开2004-280079号公报(专利文献3)提出了一种具有反射功能的立体图像显示装置。图33示意性示出了在专利文献3中描述的反射型立体图像显示装置。此外,如在图32中所示的,多个显示单元在显示面板2内被布置成矩阵,其中每个显示单元具有用于显示右眼图像的像素和用于显示左眼图像的像素。
柱镜光栅3被设置在显示面板2的前方,并且它在表面上具有重复形成的凸出形状,从而具有将从每个像素发射的光向着左右方向分配的功能,在每个显示单元中,所述左右方向连接用于显示左眼图像的像素与用于显示右眼图像的像素(参见图32和图33)。反射板4将外部光朝向显示板反射,并且上述的不平坦形状41形成在反射板4的表面上。透镜的焦距不同于反射板4和透镜顶点之间的距离HR。
在图33中所示的反射型立体图像显示装置中,由柱镜光栅3会聚的光在反射板4的表面上具有特定的尺寸。因此,以多种倾斜角度反射,例如在不平坦形状的倾斜部分、平坦部分等处反射,从而反射的光朝向各种角度的方向行进。这使得可避免由不平坦形状引起的亮度的降低。即,这是下面这样的方法,将透镜焦点的位置从反射板的位置分离以偏移放大区域的焦点,从而模糊所分配的图像。这种技术在本申请的下文中被称为“散焦效应”。
如上所述,上述使用柱镜光栅3的反射型面板显示装置和立体图像显示装置的理论内容是公知的,并且目前在各种相关领域中,应用这些理论的反射型/透反射型立体图像显示装置的技术研究已经被积极地进行。
本发明的发明人已经急切地进行了研究,以便通过结合上述的立体图像显示装置和反射型/透反射型面板显示装置来实现能够利用反射显示来进行立体图像显示的显示装置,并实现低功耗。结果,如下的问题已经变得明显。
首先,反射/透射型显示面板中的像素内的反射显示区域被设置在每个像素内的恒定位置处,用于保持反射显示的一致。因此,在其中像素被布置成矩阵的显示面板中,反射显示区域根据像素矩阵的周期而被周期性地布置。特别地,在许多情形下,数据线、扫描线等被设置在相邻像素之间的边界区域中,从而这些区域变成非反射显示区域。此外,当存在晶体管(TFT)时,光被黑色矩阵遮蔽,从而形成非反射显示区域。
因此,如在图34中所示,例如,当通过对应于显示面板的两个像素(左眼像素51、右眼像素52)而设置诸如透镜的图像分配器件时,如果像素内的非反射显示区域70被扩大,则可能存在下面这样的观看区域,从这些观看区域不能看到反射显示。这导致反射显示的可见度降低。
此外,当像素内的反射板根据像素布局被规则地布置时,即使反射显示区域部分地处于透镜焦点位置处,穿过像素的光也被分离到图像分配方向。因此,由反射板引起的显示不均衡只在特定的观看位置处被看到。另外,像素通过透镜的效应被放大显示,从而显示不均衡也会被放大显示。
即是说,在原来应该具有一致的亮度的立体可视区域内,根据观看位置,会产生具有降低的亮度的区域。在这种情况下,当观看位置改变时,显示在亮度降低的位置处变暗,并且在一些情况下可能观察到暗线图案。此外,由于亮度的不均衡,立体图像的质量被降低。
为了减少显示不均衡,考虑了下面这种方法,即,通过使放大区域的焦点偏移来模糊所分配的图像(专利文献3)。然而,即使当在专利文献3中描述的技术被应用时,仍然存在下面其他问题。即是说,即使亮度的降低通过散焦效应被减少了,但是因为焦点被改变,所以图像变得模糊。因此,在模糊图像的同时图像分离性能退化,从而立体图像的显示质量降低。
此外,当在平坦的显示面板上安装图像分配光学器件时产生了偏移时,显示元件上的焦点位置从设计的布局偏移。因此,散焦效应被大大地减少了。此外,当图像分配光学器件中产生了偏转和热收缩时,在面板上不可能获得一致的散焦效应。因此,散焦图像被显示为不均衡,这大大地降低了立体图像的显示质量。
发明内容
本发明的示例性目的是提供一种图像显示装置,该图像显示装置能够通过有效地抑制特别是在用于显示图像的显示元件区域中的非反射显示区域的扩展以扩展可观看区域以及通过抑制反射可见度的降低而改善立体图像的显示质量,本发明还提供一种使用该图像显示装置的终端装置。
为了实现前述的示例性目的,根据本发明的示例性方面的图像显示装置包括:多个被布置的显示元件,每个都至少包括用于显示第一视点图像的像素和用于显示第二视点图像的像素,所述像素中的每一个都具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;光学器件,用于将从所述像素中的每一个发射的光分配到彼此不同的一个方向或者另外的方向上,其中所述显示元件中的每一个的所述反射显示区域相对于如下所述的任意设定的线段非对称地布置,所述任意设定的线段位于各个所述像素的面上并且经过各个所述显示元件,所述显示元件被布置在与所述光学器件的发射光分配方向正交的方向上。
为了实现前述的示例性目的,根据本发明的另一个示例性方面的图像显示装置包括:多个被布置的显示元件,每个都至少包括用于显示第一视点图像的像素和用于显示第二视点图像的像素,所述像素中的每一个都具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;用于将显示数据供给到所述像素中的每一个的数据线;用于将显示数据信号从所述数据线传输到所述像素中的每一个的像素切换器件;用于控制所述像素切换器件的栅极线;以及光学器件,用于将从所述像素中的每一个发射的光分配到沿着所述栅极线的延伸方向的彼此不同的方向上,其中,通过把所述栅极线夹在中间而布置的像素对的动作通过设置在所述像素之间的所述栅极线来控制;构成所述像素对的像素中的每一个连接到不同的数据线;在所述栅极线的延伸方向上彼此相邻的所述像素对连接到不同的栅极线;以及将所述像素中的每一个的反射显示区域设置成覆盖所述像素切换器件的设定位置。
此外,为了实现前述的示例性目的,根据本发明的另一个示例性方面的终端装置包括被安装用于显示的上述图像显示装置。
附图说明
图1是示出根据本发明的第一示例性实施方式的立体图像显示装置的一部分的示意性透视图;
图2是示出包括图1中示出的立体图像显示装置的液晶部分的截面结构的一部分的说明图;
图3是用于示出图1中示出的立体图像显示装置的原理的概念图;
图4是示出图1中示出的立体图像显示装置的像素部分和分配透镜部分之间的位置关系的俯视平面图;
图5是示出通过对应图4的像素部分而设置的像素晶体管的布局的模型图;
图6是示出图5中示出的每个像素部分的例子的放大说明图;
图7是示出根据第一示例性实施方式的修改实施例1的显示元件部分的结构内容的布局的模型图;
图8是示出根据第一示例性实施方式的修改实施例2的显示元件部分的结构内容的布局的模型图;
图9是示出根据第一示例性实施方式的修改实施例3的显示元件部分的TFT的布局情形的模型图;
图10是示出根据本发明的第二示例性实施方式的立体图像显示装置的一部分的俯视平面图,其是示出显示元件部分的结构内容的布局的模型图;
图11是示出通过对应图10的像素部分而设置的像素晶体管的布局的模型图;
图12是示出代替柱镜光栅而使用的蝇眼透镜的透视图;
图13是示出根据本发明的第三示例性实施方式的立体图像显示装置的一部分的俯视平面图,其是示出显示元件部分的结构内容的布局的模型图;
图14是示出根据第三示例性实施方式的修改实施例1的显示元件部分的结构内容的布局的模型图;
图15是示出根据第三示例性实施方式的修改实施例2的显示元件部分的结构内容的布局的模型图;
图16是示出根据第三示例性实施方式的修改实施例3的显示元件部分的结构内容的布局的模型图;
图17是示出根据本发明的第四示例性实施方式的立体图像显示装置的一部分的俯视平面图,其是示出显示元件部分的结构内容的布局的模型图;
图18是示出根据第四示例性实施方式的修改实施例1的显示元件部分的结构内容的布局的模型图;
图19是示出根据第四示例性实施方式的修改实施例2的显示元件部分的结构内容的布局的模型图;
图20是示出根据本发明的第五示例性实施方式的立体图像显示装置的一部分的俯视平面图,其是示出显示元件部分的结构内容的布局的模型图;
图21是示出根据第五示例性实施方式的修改实施例1的显示元件部分的结构内容的布局的模型图;
图22是示出通过对应图21的像素部分而设置的像素晶体管的布局的具体例子的放大的说明图;
图23是示出通过对应图21的像素部分而设置的像素晶体管的布局的模型图;
图24是示出根据第五示例性实施方式的修改实施例2的显示元件部分的结构内容的布局的模型图;
图25是示出根据第五示例性实施方式的修改实施例3的显示元件部分的结构内容的布局的模型图;
图26是示出根据本发明的第六示例性实施方式的立体图像显示装置的一部分的俯视平面图,其是示出显示元件部分的结构内容的布局的模型图;
图27是示出根据本发明的第七示例性实施方式的便携式终端装置的透视图;
图28是示出柱镜光栅3的形状的说明图;
图29是示出下面这样的光学模型的说明图,该光学模型示出使用根据相关技术的视差栅栏的图像显示方法;
图30是示出下面这样的光学模型的说明图,该光学模型示出使用根据相关技术的柱镜光栅的图像显示方法;
图31是示出根据相关技术的具有不平坦形状的反射板的概念图;
图32是示出采用根据相关技术的柱镜光栅和显示元件的立体图像显示装置的例子的透视图;
图33是示出采用根据相关技术的柱镜光栅和透反射型显示元件的透反射型立体图像显示装置的截面图;
图34是示出采用根据相关技术的柱镜光栅和透反射型显示元件的透反射型立体图像显示装置的俯视平面图;以及
图35是示出采用柱镜光栅的立体图像显示装置的每个部分的大小的光学模型图。
具体实施方式
下文将参照图1到图6描述本发明的第一示例性实施方式。
图1是示出根据本发明的第一示例性实施方式的立体图像显示装置的显示元件部分的示意性透视图。图2是示出包括图1中所示的显示元件部分的立体图像显示装置的总体构造的示意性截面图。图3是用于示出根据包括图2的第一示例性实施方式的立体图像显示装置的原理的概念图。图4是第一示例性实施方式的包括图2的立体图像显示装置的一部分的俯视平面图。图5是示出下面这样的晶体管的布局例子的模型图,所述晶体管用于驱动根据包括图4的第一示例性实施方式的立体图像显示装置的像素。图6是示出第一示例性实施方式的像素部分的例子的俯视平面图,其是图5的一部分。
(结构)
首先,将会描述第一示例性实施方式的基本结构。图1中的立体图像显示装置1具有设置在观看者一侧的柱镜光栅3。该柱镜光栅3被堆叠在显示面板200上。显示面板200是透反射型液晶显示面板,并且基本配置有TFT基板2a、通过相对于TFT基板2a而设置的对向基板2b以及设置在基板2a与基板2b之间的液晶层5,如在图2中所示。
此外,作为图像显示装置的上述立体图像显示装置1包括多个显示元件,每个显示元件包括布置在同一平面上的用于显示第一视点图像的像素52和用于显示第二视点图像的像素51。像素51和52的每个具有各自的用于透射光的透射显示区域511、521以及各自的用于反射外部光的反射显示区域512、522。此外,作为光学器件(发射光分配器件)的柱镜光栅3通过对应如上所述的每个显示元件13而被设置,其中该光学器件通过对应每个视点位置而将从像素51和52的每个发射光分配到彼此不同的一个方向和其他方向。
此外,如图4中所示,每个显示元件13的上述反射显示区域512和522相对于下面这样的任意设定的线段非对称地布置,所述线段在每个像素的面上并且穿过每个显示元件13,显示元件13被布置在与发射光分配方向正交的方向上,该光的分配由柱镜光栅(光学器件)3实现,所述线段例如为连接每个显示元件13的中点59(可以是质心)的线段YG 57。此外,平行于线段YG 57的线段YL 55是穿过每个像素51的中点的公共中心线,而平行于线段YG 57的线段YR 56是穿过每个像素52的中点的公共中心线。
第一示例性实施方式采用在像素51和52内非对称地布置反射显示区域512和522的方法。结果,非反射显示区域(透射显示区域)可以被设置得更宽(即,可以有效地利用非反射显示区域),这使得可以同时扩展观看区域并且改善立体图像的显示质量。
作为通过对应上述柱镜光栅(光学器件)3而布置的多个显示元件13,至少反射显示区域512和522具有不同的布局的至少两种或更多种显示元件13被用于第一示例性实施方式。在反射显示区域512或522的布局不同的显示元件13中,具有相同图案的反射显示区域(例如,512)的显示元件沿着图像分配方向14(参见图4)周期性地布置。此外,反射显示区域512和522具有不同布局的显示元件13沿着与图像分配方向14正交的方向彼此相邻地布置。
此外,当至少两个或更多个显示元件13相互堆叠并被看穿时,在利用沿着中心线YG 57彼此相邻的像素来补偿没有反射显示区域的部分的同时,在沿着上述公共中心线YG 57的方向上彼此相邻的显示元件的每个被布置成使得每个显示元件13的反射显示区域512和522能够彼此增加反射区域对于发射光分配方向的尺寸。由此,反射区域可以几乎连续地朝向发射光分配方向反射光。
此外,在像素51和52的每个的区划区域中,用于控制像素51和52的每个的显示动作的驱动电路被设置。像素51和52的每个的反射显示区域512、522被设置在驱动电路的上面。像素51和52的每个的驱动电路配置有具有图6中示出的晶体管4TFT作为主要部件的切换电路(像素切换器件)。因此,图5中所示的每个像素P11、P12、P13、……的透射显示区域511和521被设定为更宽,从而更清晰的图像信息可以被发送到观看区域。因此,上面提到的本发明的示例性目的可以有效地得以实现。
这将在下文中更具体地描述。
如上所述,柱镜光栅3被设置在显示面板200上。柱镜光栅3具有大量的弯曲表面(柱面),凸部31以恒定的间距出现在其上。该柱面被设置成凸部31对应于配置有左眼像素51和右眼像素52的显示元件。因此,显示面板200具有显示元件,每个显示元件配置有左眼像素51和右眼像素52,并且显示元件13如图5中所示被布置成矩阵。
此外,如在图2中所示,像素电极4PIX和反射像素电极4RPIX被设置在TFT基板2a在液晶层一侧的表面上,并且公共电极4COM形成在对向基板2b在液晶层一侧的表面上。像素电极4PIX和公共电极4COM被提供给像素51、52,通过扫描线选择相应的像素电极4PIX和公共电极4COM,并且通过像素电极4PIX和公共电极4COM之间施加的电压来控制液晶的取向以便显示图像。当利用透射图案实现显示时,放置在显示面板2的背面侧的背光(BL:未示出)发光,并且将来自该背光的透射光用于显示图像。
在第一示例性实施方式中,反射板41被设置在TFT基板2a的液晶层一侧,如上所述。例如,反射板41具有与在图31中所示的不平坦形状4a相似的不平坦形状41a。不平坦形状41a的大小与传统反射型液晶显示装置的反射板的不平坦形状的大小相同。作为例子,采用2μm的高度和10μm的间距。此外,因为通过不平坦形状的高度可以调整反射区域的间隙,所以可以最优化透射区域和反射区域之间的间隙。反射板41被设置在稍后将描述的用于右眼和左眼的反射显示区域512和522中。此外,用于反射区域的像素电极4RPIX被设置在反射板41的上层,使得可以驱动反射区域的液晶分子。
在左眼像素51和右眼像素52的每个的区域内,作为用于反射从显示装置外部入射的光的区域的右眼反射显示区域512和左眼反射显示区域522被设置。此外,右眼透射区域511和左眼透射区域521被设置作为用于透射光的区域。在第一示例性实施方式中,右眼反射显示区域512和左眼反射显示区域522的尺寸被设定为相同,使得入射到左眼和右眼的反射光的光量相同。相似地,右眼透射区域511和左眼透射区域521的尺寸相同,使得利用透射模式显示的图像变得对于左眼和右眼相同。
如上所述,通过第一示例性实施方式,单个显示元件13配置有单个左眼像素51和单个右眼像素52。在每个显示元件13中,从左眼像素51发射的光和从右眼像素52发射的光通过构成柱镜光栅3的单个柱状透镜3a而朝向左眼和右眼分配。
在这种情形下,外部光透过柱镜光栅3、透明基板(对向基板)2b以及液晶层5,然后在位于液晶层5的下面的反射板41处被反射。光再次透过液晶层5,透明基板2b以及柱镜光栅3。在这个时候,从特定方向入射到反射板41的外部光由在反射板41上的不平坦形状41a朝向各种方向漫反射,并且也朝向观看者的方向反射。这使得可以避免光源的轮廓的反射以及将各种角度的外部光用于显示。
在图1和图2的每个图中,为了方便起见,如下设定XYZ笛卡尔坐标系(3维笛卡尔坐标系)。即,在左眼像素51和右眼像素52被重复布置的方向上,从左眼像素51到右眼像素52的方向被定义为+X方向,并且其相反方向被定义为-X方向。+X方向和-X方向被总称为X轴方向。此外,柱状透镜的纵向方向被定义为Y轴方向。
此外,与X轴方向和Y轴方向都正交的方向被定义为Z轴方向。关于Z轴方向,从左眼像素51或右眼像素52被设置的面到柱镜光栅3的方向被定义为+Z方向,并且其相反方向被定义为-Z方向。+Z方向是正面方向,即,朝向用户的方向,并且用户看到显示面板200的+Z侧的面。+Y方向是应用右手坐标系的方向。即,当人右手的拇指指向+X方向并且食指指向+Y方向时,中指将指向+Z方向。
当如上所述XYZ笛卡尔坐标系被设定到图1和图2时,单个柱状透镜3a的排列方向是X轴方向,使得用于左眼的图像和用于右眼的图像将沿着X轴方向被分离。此外,每个都配置有左眼像素51和右眼像素52的显示元件13沿着Y轴方向被排列成一列。像素对在X轴方向上的排列周期基本上与柱状透镜的排列周期相同。一列沿着Y轴方向排列的显示元件13通过对应于单个柱状透镜3a而被布置。
图4是示出立体图像显示装置1的俯视平面图。在第一示例性实施方式中,柱状透镜3a的排列方向是沿着X轴的方向,从而X轴方向是图像分配方向14。此外,关于左眼像素51、右眼像素52以及显示元件13,平行于Y轴而沿着Y轴设置的每个构件(例如,每个像素的反射显示区域)的中心线分别被定义为左眼像素中心轴线YL 55、右眼像素中心轴线YR 56以及显示元件中心轴线YG 57。每个柱状透镜3a的形状都是沿着一个方向延伸的柱状,使得焦点位于显示元件13的中心线YG 57上。为了简化,当使用立体图像显示装置的俯视平面图时,假设它为2维空间(2维面)来进行说明。
显示面板200是具有薄膜晶体管(TFT)的有源矩阵型液晶显示面板。薄膜晶体管用作开关,用于将显示信号传输给每个像素。开关由在连接到每个开关的栅极的栅极线内流动的栅极信号操作。在第一示例性实施方式中,在行方向(即,X轴方向)延伸的栅极线G1到G5被设置在TFT基板2a(参见图2)的内侧的面(即,+Z方向一侧的面)。栅极线G1到G5也总称为栅极线G。
此外,在列方向上延伸的数据线D1到D7被设置在TFT基板2a的同一面上。数据线D1到D7也总称为数据线D。数据线起到将显示数据信号供给到薄膜晶体管的作用。在第一示例性实施方式中,栅极线G沿着X轴方向延伸,而多条栅极线沿着Y轴方向被设置。
此外,有多条数据线D沿着X轴方向排列。此外,像素(左眼像素51或右眼像素52)被设置在栅极线和数据线之间的交叉点的附近。特别地,在图5中,例如,连接到栅极线G3和数据线D2的像素被标记为P32,以便清楚地表示像素相对于栅极线和数据线的连接关系。即,“P”之后的数字是栅极线的应用在“G”之后的数字,而这之后的数字是数据线的应用在“D”之后的关于数字。
这里,关于栅极线、数据线与每个像素的连接关系将会被总结概括。在图5中,连接到栅极线G1的像素将会被考虑。根据上述规则,像素P11连接到数据线D1,而像素P12连接到数据线D2。按照这种方式,连接到栅极线G1的每个像素被连接到在-X方向上与像素本身相邻的数据线。这对于诸如栅极线G3和G5的奇数编号的栅极线也是成立的。
接着,连接到栅极线G2的像素将会被考虑。像素P22连接到数据线D2,而像素P23连接到数据线D3。按照这种方式,连接到栅极线G2的每个像素被连接到在+X方向上与像素本身相邻的数据线。这对于诸如栅极线G4的偶数编号的栅极线也是成立的。
通过上述结构,根据该示例性实施方式的图像显示装置1包括:数据线,用于将显示数据供给到每个像素;像素切换器件,用于将显示数据信号从数据线传输到像素;以及栅极线,用于控制像素切换器件。同时,像素切换器件被设置在栅极线和数据线之间的交叉点的附近,像素被布置成矩阵,形成一行像素的每个像素被连接到公共栅极线,并且形成一列像素的每个像素被连接到不同的数据线。
在该示例性实施方式中,特别地,偶数编号的行中的每个像素连接到设置在该像素左侧的数据线,而奇数编号的行中的每个像素连接到设置在该像素右侧的数据线。
图6是图5中示出的像素P11、P12、P13、……之中的像素P11的放大视图。像素薄膜晶体管4TFT是MOS型薄膜晶体管,源极电极和漏极电极中的一个经接触孔4CONT连接到数据线D,而另一个接到像素电极4PIX。此外,反射板41(未示出)被设置成覆盖像素薄膜晶体管4TFT,并且反射显示区域像素电极4RPIX被设置在反射板41上。
即,在像素P11、P12、P13、……的每个的区划区域内,在位于各个像素的背面侧的TFT基板2a的液晶层一侧,用于可变地控制相应像素P11、P12、P13、……的显示动作的驱动电路如上所述被设置。同时,各个像素P11、P12、P13、……的反射显示区域被设置在相应驱动电路的上面,并且反射板41被设置在反射区域内。作为驱动电路(像素切换器件),上述的晶体管作为主要部件被安装。因此,如在图6中所示,在像素P11、P12、P13、……的每个中反射板和TFT区域被彼此重叠地有效率地放置,并且透射显示区域511、521可以被设定为更宽。因此,可以向观看区域发送更清晰和明亮的图像信息。上述在每个像素内的反射显示区域像素电极4RPIX与像素电极4PIX在电极端部处电连接。
在第一示例性实施方式中,定义的是,将与像素电极4PIX或反射显示区域像素电极4RPIX连接的电极称为源极电极,并且将连接到信号线(数据线)D的电极称为漏极电极。此外,像素薄膜晶体管4TFT的栅极电极与栅极线G连接。在这个示例性实施方式中,栅极电极和栅极线G在同一层上,从而可以整体地形成这些。此外,存储电容线4CS与像素电极4PIX和数据线D形成存储电容(保持电容)。存储电容(保持电容)是用于使施加到液晶分子的数据电势保持一特定时间的电容。此外,公共电极4COM形成在对向基板2b的内侧,并且像素电容4CLC形成在像素电极4PIX和公共电极4COM之间。
此外,虽然未示出,但是可以在对向基板2b的内侧形成用于覆盖除了像素的开口部分以外的其他部分的遮光层。虽然表述“遮光部分”用于第一示例性实施方式,但是该表述不是用来将其特地限制为遮光层,而是用来表示不透射光的部分。
在图1到图6中,每个结构元件的大小和缩小比例被适当地改变,用于确保图的可见度(清晰)。此外,像素结构对于左眼像素51和右眼像素52是通用的。此外,在图5中,为了清楚地说明每个像素相对于栅极线G1、G2、……以及数据线D1、D2、……的连接关系,省略了图6中所示的反射板、像素电极和薄膜晶体管。使用多晶硅作为半导体的多晶硅薄膜晶体管被用作像素薄膜晶体管4TFT。多晶硅的例子是含有微量硼的P型半导体。即,像素薄膜晶体管4TFT是所谓的PMOS型薄膜晶体管,当其源极电极或漏极电极的电势与栅极电极的电势相比变为低电平时,源极电极和漏极电极变得导通。
这里,将描述形成多晶硅薄膜晶体管的程序的例子。首先,在形成氧化硅层(参见图2)之后在TFT基板2a上形成非晶硅层,从而通过执行非晶硅层的多晶化而形成多晶硅薄膜。电极材料可以被用于多晶硅薄膜。与像素电极电连接的多晶硅薄膜层可以形成在存储电容线的下层以提供存储电容(保持电容)。
作为执行多晶化的方法,使用热退火或激光退火。特别地,使用诸如受激准分子激光器的激光器的激光退火通过加热能够只在硅层上执行多晶化,同时保持玻璃基板的温度增加为最小值。因此,可以使用具有低熔点的无碱玻璃等。这使得可以降低成本,从而其经常以低温多晶硅的名义而被使用。通过省略该步骤,也可以实现非晶硅薄膜晶体管。
接着,作为栅极绝缘层的氧化硅层形成在硅层上,并且执行所需的构图。在这个过程中,期望的是,在除了用作硅薄膜的半导体层的部分以外的区域内掺杂离子,从而使该区域导通。作为构图的方法,使用光致抗蚀剂的光学构图方法可以被应用。例如,在旋涂光致抗蚀剂之后,通过诸如步进机的曝光机器,光被部分地照射。在经历了显影步骤之后,光致抗蚀剂只留在要保留图案的部分中。在那之后,没有留下光致抗蚀剂的区域内的硅层通过干蚀刻等被除去,并且最后光致抗蚀剂膜被剥落。
在那之后,将要成为栅极电极的非晶硅层和硅化钨层被沉积以形成栅极电极等。在这个时候,与栅极电极连接的栅极线和存储电容线也可以被形成。然后,形成氧化硅层和氮化硅层,并且执行所需的构图。在那之后,铝层和钛层被沉积以形成源极电极和漏极电极。在这个时候,数据线也可以被同时形成。
然后,氮化硅膜被沉积,并且执行所需的构图。在那之后,诸如ITO的透明电极被沉积,并且被构图以形成像素电极。因此,具有薄膜晶体管的像素结构可以被形成。通过使用该薄膜晶体管,用于驱动栅极线、数据线以及存储电容线的电路被同时形成。
图6示出了如上所述的图5中示出的第一示例性实施方式的单个像素部分。在第一示例性实施方式中,栅极线G和存储电容线CS与薄膜晶体管4TFT的栅极电极形成在同一层。
此外,如在图4中所示,关于这个示例性实施例的像素,左眼反射显示区域512相对于左眼像素51的中心轴线YL 55被非对称地布置。同时,右眼反射显示区域522相对于右眼像素52的中心轴线YR 56被非对称地布置。此外,左眼反射显示区域512和右眼反射显示区域522相对于显示元件13的中心轴线YG 57被非对称地布置。这里的“非对称”指的是没有线对称轴(镜像平面)。
此外,在上述的图4中,通过将两个显示元件作为一个周期,在+Y方向上彼此相邻的显示元件13被重复地布置。+Y方向上彼此相邻的显示元件13的反射显示区域通过相对于中心轴线YG 57彼此反转而被布置。换句话说,左眼像素51的中心轴线YL 55、右眼像素52的中心轴线YR 56以及显示元件13的中心轴线YG 57中的每个都是反射显示区域的滑移面(glide plane)(g)。
滑移面(g)是空间群(space group)中的对称要素中的一个。在执行某一单位胞(uint cell)的关于一平面(镜像平面)的镜像操作后,平行于该镜像平面连续地执行单位胞的长度的1/2或1/4的平移操作。如果在该操作之后单位胞与初始单位胞相同,这个平面就被称为滑移面(g)。滑移面(g)是垂直于纸表面的平面。这个不仅应用于3维空间群而且还应用于2维空间群。本申请中的像素矩阵的俯视平面图被假设属于2维空间群。本示例性实施方式的像素内的反射显示区域至少表现出在国际符号中表述为“pg”的对称性。
如在图2中所示,通过与像素的端部隔离,第一示例性实施方式中的反射显示区域的左侧和右侧两端被布置。数据线和TFT(薄膜晶体管)设置于在+X方向上彼此相邻的反射显示区域之间,并且利用黑色矩阵遮蔽它们。即,在第一示例性实施方式中,反射板在+X方向上的间隙是与上述的传统情形(图34)的非反射显示区域70相同的非反射显示区域。
(操作)
接着,将介绍第一示例性实施方式的操作等。
首先,如在图1中所示,作为构成柱镜光栅3的单元的柱状透镜3a被布置成对应显示面板200的两个像素(左眼像素51、右眼像素52)。如在图3中所示,来自显示元件13的左眼像素51或右眼像素52的光被柱镜光栅3反射并且被发射到每个EL或ER。
因此,当观看者将左眼61置于区域EL并且将右眼62置于区域ER时,用于左眼的图像被输入到左眼61,而用于右眼的图像被输入到右眼62。由此,观看者可以看到立体图像。
接着,将使用如图35中所示的光学模型来描述使用柱镜光栅3的立体图像显示装置1的每个部分的大小。还定义的是,柱镜光栅3的表面上的凸部31的中心和显示像素51(52)之间的距离为H,柱镜光栅3的折射率为n。柱镜光栅3的表面上的凸部31的中心的意思是柱镜光栅3的顶点。还假设的是,柱镜光栅3的一个面是平面,并且大量的凸型柱状透镜(即,沿着一个方向延伸的柱状的凸部31)被布置在另外一个面上。
柱镜光栅3的焦距被定义为f,并且透镜间距被定义为L。对于显示元件13的像素,左眼像素51和右眼像素52的各一个被配置为一对。每个像素之间的间距被定义为P。由两种像素(即,左眼像素51和右眼像素52)各一个组成的一对像素对应于单个凸部31。此外,柱镜光栅3和观看者之间的距离被定义为OD(=S),并且像素在距离S处的放大投射宽度,即左眼像素51和右眼像素52的在平行于透镜并且离柱镜光栅3距离S的虚平面上的投射图像的宽度被定义为e。
此外,从位于柱镜光栅3的中央的凸部31的中心到位于柱镜光栅3的边缘的凸部的中心的距离被定义为WL,并且从位于显示元件13的中心的左眼像素51和右眼像素52的对的中心到位于显示元件13的边缘部分的像素对的中心的距离被定义为WP。此外,光相对于位于柱镜光栅3的中央的凸部31的入射角和出射角被分别定义为α和β,并且光相对于位于柱镜光栅3的边缘部分的凸部31的入射角和出射角被分别定义为和γ和δ。距离WL和WP之间的差被定义为C,并且包括在距离WP的区域内的像素的数量被定义为2m。
通常,柱镜光栅3依照显示元件13而被安装,从而像素的布置间距P取为常数。此外,根据用于柱镜光栅3的材料的选择来确定折射率n。同时,对于透镜和观看者之间的距离S以及在观看距离S处的像素放大投射图像的宽度e,设定期望值。利用这些值来确定透镜和像素之间的距离以及透镜间距L。根据斯涅耳定律和几何关系,下面的表达式1到6成立。此外,下面的表达式7到9的每一个也都成立。
[表达式1]
n·sin α=sin β
[表达式2]
S·tan β=e
[表达式3]
H·tan α=P
[表达式4]
n·sin γ=sin δ
[表达式5]
H·tan γ=C
[表达式6]
S·tan δ=WL
[表达式7]
WP-WL=C
[表达式8]
WP=2mP
[表达式9]
WL=mL
基于上述的表达式2、1和3,下面的表达式10、11和12中的每一个都成立。
[表达式10]
β=arc tan(e/S)
[表达式11]
α=arc sin[(1/n)·sinβ]
[表达式12]
H=P/tan α
此外,基于上述的表达式6和表达式9,下面的表达式13成立。此外,基于上述的表达式7到表达式9,下面的表达式14成立,并且基于表达式5,下面的表达式15成立。
[表达式13]
α=arc tan(mL/S)
[表达式14]
C=2mP-mL
[表达式15]
γ=arc tan(C/H)
如在下面的表达式16中所示,通常,在柱镜光栅的表面上的凸部中心与像素之间的距离H被设置成等于焦距f,从而通过表达式17可以得到透镜的曲率半径。
[表达式16]
f=H
[表达式17]
r=H·(n-1)/n
(第一示例性实施方式的效果)
通过上述的传统情形,当如在图34中所示通过对应显示元件的两个像素(左眼像素、右眼像素)而设置诸如透镜这样的图像分配器件时,产生下面这样的观看区域,在该观看区域中,当像素51和52的每个内的非反射显示区域(透射显示区域)被放大时反射显示不能被看到。这个导致了反射显示的可见度的降低。同时,如在图4中所示,关于第一示例性实施方式的反射显示区域的布局,在与图像分配方向14垂直的方向上彼此相邻的两个显示元件的反射显示区域在+X方向上相互偏移。因此,可以补偿在+Y方向上彼此相邻的反射显示区域。即,通过第一示例性实施方式,通过补偿左眼反射显示区域512和右眼反射显示区域522,在与图像分配方向14垂直的方向上彼此相邻的两个显示元件13可以分别具有左反射显示区域和右反射显示区域。在下文中,这个效应被称作“相邻像素补偿效应”。
因此,可以避免非反射显示区域(透射显示区域)被透镜放大。此外,可以设置高质量的反射显示,不管观看位置如何,其没有表现出亮度的部分降低。此外,因为由于存在很大的设计通用性而使得反射显示区域可以高效率地布置,所以可以提供高反射率和良好可见度的图像显示装置。
通过第一示例性实施方式,由于上述的相邻像素补偿效应,可以将散焦量设定比传统情形小,因此使得可以改善图像分离性能。此外,焦点位置被至少分散到两种类型的反射显示区域。因此,由于安装柱镜光栅3时产生的偏移而引起的反射显示不均衡可能被减少,由此提高成品率。
显示元件13可以在+Y方向上以红(R)、绿(G)和蓝(B)色彩被布置。当以RGB布置时,以RGB布置的三个显示元件被考虑为一个单元,并且该单元被称为“显示像素”。在第一示例性实施方式中,显示装置具有横向的条纹RGB。这使得可以提供高质量的色彩显示。
此外,对于第一示例性实施方式的显示像素,RGB被依次布置。在这种情形下,三个显示元件是“显示像素”的单元。即,关于左眼和右眼像素,六个像素是“显示像素”的单元。仅通过单个“显示像素”,RGB反射显示区域以偏离的方式反射光,从而反射分量的色彩不能被完全地补偿。然而,通过利用用于补偿的两个相邻“显示像素”,通过相邻像素补偿效应可以补偿色彩。因此,可以提供高质量的彩色立体图像显示装置,其具有在反射显示中产生的小的色彩变化。
即,相邻像素补偿效应不仅能补偿彼此相邻的像素,还能补偿彼此邻近的像素。在+Y方向上彼此补偿的像素可以每两个像素或三个像素被布置,只要这些像素通过对应于色彩显示像素而被布置即可。
此外,非反射显示区域可以在不提供数据配线、TFT和黑色矩阵的情况下保留为开口部分。透射率通过确保更大的开口区域而被增加。借此,来自背光的光量可以被减少,这使得可以降低功耗。
通过以上述方式构造的第一示例性实施方式的立体图像显示装置,透射显示区域可以透射来自背光光源的光,并且反射显示区域能够反射自然光和诸如室内照明光的外部光。因此,透射显示和反射显示都可以被实现了。结果,不管周围的明亮程度如何,都可以实现清晰的显示。
如上所述,第一示例性实施方式采用下面所述的作为基本构造。即,它是下面这样的图像显示装置,其包括:多个显示元件13,每个都包括用于显示第一视点图像的像素和用于显示第二视点图像的像素;像素51和52,分别具有用于透射光的透射显示区域511、512以及用于反射外部光的反射显示区域512、522;光学器件(柱镜光栅3),其将从像素51和52发射的光分配到彼此不同的方向,其中显示单元内的反射显示区域512和522相对于垂直于图像分配方向的轴非对称地布置。
因此,通过第一示例性实施方式,反射板和图像分配器件(光学器件)被如此构造,从而减小在透镜布置方向上的反射板间断的影响。反射板被布置成在每个像素51和52内相对于Y轴非对称,而在每个显示单元内相对于Y轴对称。由此,在显示单元内的反射板41可以被布置成关于布置在Y轴方向上的每个显示单元是分散的,从而可以减少反射板间断的影响。即使有间断,也可以通过偏移透镜的焦点来改善这种情形。
此外,第一示例性实施方式的特征是显示装置配置有至少两种显示元件13,所述两种显示元件13具有不同的反射显示区域的布局,并且每个显示元件13沿着垂直于图像分配方向14的方向被周期性地布置。由此,显示单元内的反射板41可以关于沿着Y轴方向布置的每个显示单元以分散的方式被设置。
(其他)
第一示例性实施方式已经参照透反射型显示元件的情形被描述。然而,本发明还可以应用于使用微透射型显示元件的情形、使用微反射型显示元件的情形等。
此外,尽管已经参照使用透反射型液晶显示元件的情形描述第一示例性实施方式,但是本发明不限于这种情况。还可以使用反射型显示面板。通过反射型显示面板,反射显示装置可以被设置得更大(更宽),从而可以提高反射率。此外,配线和电路可以被提供给用于透射显示区域的部分,这可以改善面板的性能。具体地,可以通过在立体显示装置的观看者一侧提供光而由正面光来实现反射显示。由此,即使在外部光量小的情形下也可以获得高质量的图像。即使在采用反射型显示面板的情形下,相邻像素也可以彼此补偿。这使得可以提供有效反射率高的高质量立体图像。
此外,柱镜光栅3可以是可容易移除的薄透镜片。由此,当显示立体图像中不需要显示的图像时柱镜光栅3可以被移除。当透镜被移除时,图像可以以双倍密度的清晰度被显示。由此,显示装置可以用作高清晰度、高质量显示面板。此外,已经参照将柱镜光栅用作光学器件(发射光分配器件)的情形描述第一示例性实施方式,其中,所述光学器件将从每个像素发射出的光通过对应于每个视点而分配到彼此不同的方向(一个方向和另一个方向)上。然而,可以使用蝇眼透镜代替。
此外,因为第一示例性实施方式的图像显示装置1使用柱镜光栅3,所以当使用视差栅栏时,在图像显示装置中没有由于视差而引起的黑条纹图案。因此,光损耗小。
上述说明已经通过参照提供用于观看图像的两个视点的情形而被描述。然而,本发明并不限于这种情形。即使图像显示装置被形成为具有三个视点或更多个视点,也可以实现相同的效果。
第一示例性实施方式的显示元件13可以在像素电极内具有反射板41,该反射板具有不平坦形状。即,尽管第一示例性实施方式已经参照使用透反射型液晶显示元件的情形被描述,但是本发明不只限于这种情形。例如,可以使用利用电泳现象的显示元件。此外,关于不平坦形状,总体形状可以是诸如点状、棒状、凹坑状的任何形状。此外,关于像素电极的驱动方法,诸如TFT方法或TFD方法的有源矩阵方法可以被使用。诸如STN方法的无源矩阵方法也可以被应用。
关于反射区域像素电极4RPIX,反射板41可以被用作电极。在这种情形下,工序数目可以被减少。
本发明采用下面这样的一种方法,即,相对于任意设置的通过每个显示元件的线段而非对称地设置反射显示区域。由此,本发明可以提供能够同时实现透射显示区域的有效利用、扩展可观看区域以及改善立体图像的显示质量的终端装置和良好的图像显示装置,这对于传统技术而言是不可能的。
(修改实施例1)
接着,上述第一示例性实施方式的修改实施例1将参照图7被描述。图7是示出第一示例性实施方式的显示元件13的修改实施例的模型图。
在图7中,显示元件13的左反射板和右反射板被布置成相对于在像素51、52内的左眼中心轴线YL 55、右眼中心轴线YR 56以及显示元件13的中心轴线YG 57非对称,如在图4中的情形。左像素51和右像素52的反射区域的至少一部分与显示元件13的中心轴线YG 57相接触。当反射显示区域由相邻像素彼此补偿时,反射显示区域在+X方向上连续分布而在显示元件的中心轴57上没有间断。即,在该修改实施例中,当至少两个或更多个显示元件13相互堆叠并且被看穿时,在沿着上述公共中心线YG 57的方向上彼此相邻的每个显示元件13以如此的方式被布置,使得每个显示元件13的反射显示区域512和522连续分布而在发射光分配方向上没有间断。此外,在柱镜光栅3的远离中心轴线YG 57的槽部72中反射区域没有产生间断,从而反射区域在+X方向上连续。
在第一示例性实施方式的修改实施例1中,扫描线平行于图像分配方向14而被设置,并且数据线被设置在柱镜光栅的纵向方向上。此外,数据线、扫描线和TFT(晶体管)被设置在反射显示区域下。因此,反射板被堆叠在数据线的至少一部分上。其他结构与上述的第一示例性实施方式相同。
通过在图7中所示的修改实施例1,当在+Y方向上相邻的两个显示元件13相互堆叠时,在反射区域中没有间断产生,从而沿着+X方向没有是非反射显示区域的部分。因此,反射显示可以被提供更一致的亮度分布。此外,因为由于一致的亮度分布而可以设置更小的散焦量,所以可以提高立体图像分离性能。这使得可以提供高质量立体图像。其他结构和操作效果与上述的第一示例性实施方式相同。
(修改实施例2)
接着,将参照图8和图9描述上述的第一示例性实施方式的修改实施例2。
图8是示出根据第一示例性实施方式的显示元件13的修改实施例的模型图。此外,图9是示出根据修改实施例2的立体图像显示装置1的TFT的布局的俯视平面图。在图9中,附图标记4G指示用于栅极信号的栅极线,附图标记4D指示数据线。
如在上面提到的图8中所示,在+Y方向上相邻的两个显示元件13的反射显示区域512和522被布置成相对于在像素51的中心轴线YR55上的交叉点72点对称。即,当反射显示区域512相对于中点72旋转180度时它是等同的。这对于像素52的反射显示区域522是相同的。
在本申请的下文中,当显示区域围绕其旋转180度时变得等同的点被称作“二重旋转对称轴”。因此,修改实施例2的反射显示区域512和522通过具有二重旋转对称轴而被布置。可以表述为表现出至少根据2维空间组的国际符号的“p2”的对称性。
在每个像素51和52中的反射显示区域的尺寸是相同的,并且+Y方向上相邻的显示元件13的反射区域具有彼此接触的部分。其他结构与上述的修改实施1(参见图7)相同。
通过第一示例性实施方式的修改实施例2,如在图9中所示,数据线和扫描线被设置在反射显示区域下。这使得可以遮蔽从配线的间隙泄漏出来的透射光。此外,TFT(薄膜晶体管)可以被设置在反射区域下。通过在晶体管上形成反射显示区域,从面板外部入射的光可以被遮蔽。这使得可以减少光泄漏以及改善可靠性。
同时,如在图8和图9中所示,相邻的显示元件13的反射显示区域512和522彼此接触,因此使得可以确保反射显示区域的大尺寸。因此,可以通过以集中方式在反射显示区域下有效率地布置TFT、扫描线和数据线而具有大开口率。
此外,由于具有二重旋转对称性的反射显示区域512的布局,所以即使当显示装置在显示平面内旋转180度时,也可以提供与原始状态相同的一致反射显示。因此,该结构优选地应用于其显示屏可以旋转180度或更多的便携式装置、旋转便携式电话以及其监视屏能够被旋转的摄像机。
其他结构和操作效果与上述的第一示例性实施方式相同。
第二示例性实施方式
(结构)
接着,将参照图10到图12描述本发明的第二示例性实施方式。
图10是示出根据第二示例性实施方式的立体图像显示装置的俯视平面图,图11是示出像素晶体管的布局的模型图。此外,图12是示出代替柱镜光栅而使用的蝇眼透镜的透视图。
首先,在图10中,利用相对于+Y方向在一侧或另一侧上偏离而被布置的反射板来形成设置在左右彼此相邻的显示元件内的反射显示区域512和522,所述反射显示区域512和522以分散的方式布置在显示元件13的顶侧和底侧。左眼像素51的中心轴线YL55、右眼像素52的中心轴线YR56以及显示元件13的中心轴线YG57是关于反射板的滑移面(g)。
此外,在第二示例性实施方式中,存在平行于+X方向的滑移面(g)。此外,与上述二重旋转对称轴相同的二重旋转对称轴59是关于每个反射板的点对称的中心,从而当显示装置在X-Y平面上旋转180度时反射板的布局是等同的。因此,关于第二示例性实施方式的反射板布局,有二重旋转对称轴和两个独立的滑移面(g)。它可以表述为表现出至少根据2维空间组的国际符号的“p2gg”的对称性。
当在+Y方向上彼此相邻的两个显示元件13相互堆叠时,反射显示区域512和522在没有彼此重叠的情形下被布置。反射显示区域512和522在垂直于图像分配方向14的方向上延伸到像素的顶端和底端,并且在+X方向上彼此相邻的像素的反射显示区域512和522彼此接触。同时,如在图11中所示,晶体管区域被反射显示区域512和522覆盖。
这里,将总结概括栅极线G、数据线D与每个像素的连接关系。
参照图11,首先考虑像素P31和像素P32。这两个像素被连接到栅极线G3。即,这两个像素将栅极线G3作为公共栅极线。在Y轴方向彼此相邻布置的而且共用栅极线的两个像素被称为相邻像素对,并且为了方便,成对的这两个像素被表示为(P31,P32)。组成相邻像素对(P31,P32)的每个像素连接到不同的数据线。即,像素P31连接到数据线D1,而像素P32连接到数据线D2。
相邻像素对(P22,P23)和相邻像素对(P43,P42)作为相邻像素对(P31,P32)在+X方向上的相邻像素对被设置。相邻像素对(P22,P23)将栅极线G2作为公共栅极线。这里注意的是,表述“相邻像素对将栅极线G2作为公共栅极线”的意思是,组成相邻像素对的每个像素连接到栅极线G2,即设置在这些像素之间的栅极线,并且通过栅极线G2来控制。相邻像素对(P31,P32)将栅极线G3作为公共栅极线,从而相邻像素对(P31,P32)和相邻像素对(P22,P23)将不同的栅极线作为公共栅极线。这些像素对的公共栅极线彼此相邻。相邻像素对(P42,P43)也被设置为在+X方向上与相邻像素对(P31,P32)相邻。这些相邻像素对也将不同的栅极线作为公共栅极线。
此外,对于相邻像素对(P22,P23)或相邻像素对(P42,P43),在+X方向上布置相邻像素对(P33,P34)。与相邻像素对(P31,P32)的情形相同,相邻像素对(P33,P34)将栅极线G3作为公共栅极线。即,通过每隔一像素列,设置将同一栅极线作为公共栅极线的相邻像素对。换句话说,连接到组成右眼像素的相邻像素对的栅极线不连接到组成左眼像素的相邻像素对。
通过上述构造,该示例性实施方式的显示装置包括:数据线,用于将显示数据供给到每个像素;像素切换器件,用于将显示数据信号从数据线传输到像素;以及栅极线,用于控制像素切换器件,其中:通过把栅极线夹在中间而布置的相邻像素对通过设置在像素之间的栅极线而被控制;组成相邻像素对的像素连接到不同的数据线;并且沿着栅极线的延伸方向上彼此相邻的相邻像素对连接到不同的栅极线。通过如此的布局,像素薄膜晶体管可以利用该示例性实施方式而有效率地布置在反射板的背面侧。
在上述的说明中,已经描述了反射板被设置成覆盖像素薄膜晶体管。然而,反射板可以被设置成仅覆盖像素薄膜晶体管的一部分。此外,反射板可以被设置在存储电容中。即,通过将不用于透射显示的部分用于反射显示,像素可以被有效率地用于显示。这使得可以改善显示性能。
此外,如在图11中所示,当组成相邻像素对的每个像素通过把公共栅极线夹在中间而竖直设置时,可以设置下面这样的相邻像素对,即,其上侧像素连接到左侧数据线的相邻像素对和其上侧像素连接到右侧数据线的相邻像素对。由此,当通过反转极性来驱动像素时,能使每个像素的极性分布一致,从而可以改善显示质量。此外,组成相邻像素对的像素中的一个的连接到数据线的那一部分可以比栅极线更靠近另外一个像素侧。这使得可以更有效率地布置像素的透射显示区域和反射显示区域,从而可以改善显示性能。
此外,通过透反射型显示装置,透过透射显示区域511和512的光通过滤色器一次,而光在反射显示区域内通过滤色器两次,因此,通过将带有通孔等的白色区域设置在色层上来修正色彩。在该示例性实施方式的反射显示区域512和522中,通孔被设置在相邻像素51和52之上滤色器(CF)内。其他结构与上述的第一示例性实施方式相同。
(操作/效果)
如在第一示例性实施方式中所述,通过第二示例性实施方式,可以在反射显示期间,利用在+Y方向上彼此相邻的像素51来补偿反射分量。因为反射显示区域512和522按照棋盘图案以分散的方式布置在显示平面内,所以从外部入射的反射光可以被容易地散射。这提供了使反射光更加一致的效果。
此外,存在平行于+X方向的滑移面(g),从而+X方向的相邻像素51的反射分量可以被补偿。由此,可以改善反射显示的质量。此外,该示例性实施方式的反射板表现出二重旋转对称性,从而,即使当从其中立体图像显示装置在显示平面内旋转180度的位置观看图像时,也可以保持与原始状态相同的显示质量。因此,本发明可以优选地应用于其屏可以旋转180度的移动装置和其监视器可以被旋转的摄像机。
此外,如在第一示例性实施方式中所述,通过第二示例性实施方式,不仅可以利用在+X方向上彼此相邻的像素来补偿反射分量,而且还可以利用在+Y方向上彼此相邻的像素来补偿反射分量。尽管上面的说明已经通过参照使用柱镜光栅的情形被描述,但是不必说,本发明也可以应用于使用蝇眼透镜的情形。图12是示出蝇眼透镜10的透视图。
如在图28中所示,柱镜光栅3具有下面这样的形状,其中在一个方向上延伸的柱状透镜3a彼此平行地布置。凸面被重复地设置在连接一个显示单元的左眼像素51与右眼像素52的方向上,即,在横向方向上,并且在柱镜光栅的在与横向方向正交的纵向方向上的表面上没有变化。即,在横向方向上延伸的截面的形状在朝向柱镜光栅3的纵向方向上没有变化。
同时,蝇眼透镜10具有重复设置在连接左眼像素51与右眼像素52的方向上以及在与该连接方向正交的方向上的凸面。即,与柱镜光栅3的情形相同,其中,对于某个方向(横向方向)上的一对左眼像素和右眼像素,布置单个凸面,一个显示单元的左眼像素51和右眼像素52沿着所述方向彼此相对。然而,在蝇眼透镜10中,在与横向方向正交的方向上每两个像素(两个左眼像素或者两个右眼像素)布置一个凸面。
在使用蝇眼透镜10的情形中,当立体图像显示装置被设定并且观看者观看装置时,除了通过为左眼和右眼专门显示图像而提供立体图像外,还通过在竖直方向上分配图像以增大观看角度,观看者可以观看图像的顶侧面和底侧面。如所述的,即使当蝇眼透镜10被用于透镜时,也可以实现与上述第一示例性实施方式相同的效果。特别地,第二示例性实施方式的反射板沿着+Y方向以分散的方式布置,从而可以提供高质量的反射显示,其中蝇眼透镜10优选地被应用于该高质量的反射显示。其他结构和操作效果与上述的第一示例性实施方式相同。此外,通过在两个相邻像素之上在反射区域内设置通孔,可以确保通孔具有比一个像素需要的尺寸更大的尺寸。因此,在不介意微机械加工的限制的情况下,通孔可以被形成,使得可以对应于小的高清晰度像素。
第三示例性实施方式
接着,将参照图13到图16描述本发明的第三示例性实施方式。
图13是示出根据第三示例性实施方式的立体图像显示装置的一部分的俯视平面图。图14是示出根据第三示例性实施方式的修改实施例1的立体图像显示装置的俯视平面图,图15是示出根据第三示例性实施方式的修改实施例2的立体图像显示装置的俯视平面图,以及图16是示出根据第三示例性实施方式的修改实施例3的立体图像显示装置的俯视平面图。
(结构)
首先,将描述本发明的第三示例性实施方式,并且之后将描述修改施例1到3。
首先,如在图13中所示,利用相对于+Y方向倾斜的反射板41,形成布置在左右彼此相邻的显示元件13内的反射显示区域512和522,其以分散的方式布置在显示元件13的顶侧或底侧。左眼像素51的中心轴线YL55、右眼像素52的中心轴线YR56以及显示元件13的中心轴线YG57是关于反射板的滑移面(g)。因此,具有至少根据2维空间组的国际符号的“pg”的对称性。其他结构与上述的第一示例性实施方式相同。
(操作/效果)
如在第一示例性实施方式中所述的,通过第三示例性实施方式,可以在反射显示期间,通过在+Y方向上彼此相邻的像素51或像素52来补偿反射分量。因为反射显示区域512和522按照棋盘图案以分散的方式布置在显示平面内,所以从外部入射的反射光可以被容易地散射。这提供了使反射光更加一致的效果。特别地,因为反射板是倾斜的,所以可以减少由于像素布局周期和透镜结构周期而引起的干涉条纹。
(修改实施例1)
接着,将参照图14描述第三示例性实施方式的修改实施例1。
在修改实施例1中,如在图14中所示,利用相对于+Y轴方向倾斜的反射板41,形成布置在左右彼此相邻的显示元件13内的反射显示区域,其以分散的方式布置在显示元件13的顶侧或底侧。此外,二重旋转对称轴59是关于每个反射板41的点对称的中心,使得当反射板41旋转180度时反射板41的布局是等同的。因此,在修改实施例1的反射板41的布局中具有二重旋转对称轴,并且能够表述为具有至少根据2维空间组的国际符号的“p2”的对称性。其他结构与上述的第三示例性实施方式相同。
如在第一示例性实施方式中所述(参见图4),通过第三示例性实施方式的修改实施例1,可以在反射显示期间,通过在+Y方向上彼此相邻的像素补偿反射分量。因为反射显示区域按照棋盘图案以分散的方式布置在显示平面内,所以从外部入射的反射光可以被容易地分散。这提供了使反射光更加一致的效果。此外,存在平行于+X方向的滑移面(g),从而当蝇眼被使用时,+X方向的相邻像素51的反射分量可以被补偿。由此,可以改善反射显示的质量。
此外,该第三示例性实施方式的修改实施例1的反射板以具有二重旋转对称的布局被布置,从而,即使当从其中立体图像显示装置在显示平面内旋转180度的位置观看图像时,也可以保持与原始状态相同的显示质量,。因此,本发明可以优选地应用于其屏可以旋转180度的移动装置和其监视器可以被旋转的摄像机。
(修改实施例2)
接着,将参照图15描述第三示例性实施方式的修改实施例2。
布置在左右彼此相邻的显示元件13内的反射显示区域以分散的方式设置在显示元件13的顶侧或底侧。当在+X方向(+Y方向)上彼此相邻的两个显示元件13相互堆叠时,反射显示区域可以在没有间断的情形下被连续地形成。
二重旋转对称轴59是关于每个反射板41的点对称的中心,使得当反射板41旋转180度时反射板41的布局是等同的。根据修改实施例2的反射板41的显示装置具有二重旋转对称轴,并且能够表述为具有至少根据2维空间群的国际符号的“p2”的对称性。其他结构与上述的第三示例性实施方式相同。
因此,特别是在使用蝇眼透镜的情形中,通过第三示例性实施方式的修改实施例2,如上所述,在+Y方向和+X方向,在显示区域内没有间断的情形下可以进行连续的相邻补偿。这使得可以提供具有更小的反射显示不均衡的高质量反射显示。其他结构和处理效果与上述的第三示例性实施方式相同。
(修改实施例3)
接着,将参照图16描述第三示例性实施方式的修改实施例3。
如在图16中所示,布置在左右彼此相邻的显示元件13内的反射显示区域512和522以分散的方式设置在显示元件13的顶侧或底侧。当在+X方向(+Y方向)上彼此相邻的两个显示元件13相互堆叠时,反射显示区域可以在没有间断的情形下被连续地形成。
此外,二重旋转对称轴59是关于每个反射板41的点对称的中心,使得当反射板41旋转180度时反射板41的布局是等同的。显示元件13的中心轴线YG57是反射板的镜像平面(m),并且在+X方向上具有滑移面(g)58。因此,根据修改实施例3的显示装置具有二重旋转对称轴、滑移面(g)以及镜像平面(m)。可以表述为具有至少根据2维空间群的国际符号的“p2mg”的对称性。其他结构与上述的第三示例性实施方式相同。
因此,特别是在使用蝇眼透镜的情形中,通过第三示例性实施方式的修改实施例3,如上所述,在+Y方向和+X方向,在显示区域内没有间断的情形下可以进行连续的相邻补偿。因此,可以提供具有更小的反射显示不均衡的高质量反射显示。此外,当相同的信息被显示在左眼像素51和右眼像素52以示出2维图像时,因为反射板相对于显示元件的中心轴线YG 57线对称(镜射对称),所以可以提供具有在左右方向上的良好对称性的高质量显示装置。
此外,反射显示区域的布局具有二重旋转对称性,从而即使当显示装置在显示平面内旋转180度时,也可以提供与原始状态相同的一致反射显示。因此,本发明可以优选地应用于其屏可以旋转180度的移动装置或其监视器屏可以被旋转的摄像机。其他结构和处理效果与上述的第三示例性实施方式相同。
第四示例性实施方式
接着,将参照图17到图19描述本发明的第四示例性实施方式。
图17是示出根据第四示例性实施方式的立体图像显示装置的俯视平面图。此外,图18是示出根据第四示例性实施方式的修改实施例1的立体图像显示装置的俯视平面图,以及图19是示出根据第四示例性实施方式的修改实施例2的立体图像显示装置的俯视平面图。
(结构)
如在图17中所示,在第四示例性实施方式中,在左眼像素51内的反射区域512以分散的方式被设置在两个位置,相对于左眼像素中心轴线YL 55非对称地分布。以相同的方式,在右眼像素52内的反射区域522以分散的方式被设置在两个位置,相对于右眼像素中心轴线YR 56非对称地分布。此外,反射区域相对于显示元件13的中心轴线YG 57非对称地布置。在显示元件13内,有两种类型的反射板布局图案,并且这些图案在+Y方向上彼此相邻地布置。相邻的两种类型的显示元件图案相对于各自的中心轴线YG 57线对称地反转。两种类型的显示元件13在+Y方向上周期性地布置。左眼像素51的中心轴线YL55、右眼像素52的中心轴线YR 56以及显示元件13的中心轴线YG 57是关于反射板的滑移面(g)。可以表述为具有至少根据2维空间群的国际符号的“pg”的对称性。其他结构与上述的第三示例性实施方式相同。
(操作/效果)
因此,通过第四示例性实施方式,在单个像素51和单个像素52内具有多个反射显示区域。由此,从外部入射的光可以被漫反射。这使得可以提供高质量反射显示,不管观看位置如何都没有表现出亮度方面的部分降低。特别地,通过第四示例性实施方式,布置反射显示区域的周期可以设定得更小,从而由于反射显示区域而产生的干涉条纹可以被减少。此外,因为有多个反射板,所以由于在安装柱镜光栅时产生的偏移而引起的反射显示不均衡可以被减少。这导致成品率下降的减小。
此外,通过第四示例性实施方式,如在图17中所示,可以在+Y方向上以分散的方式布置多个反射区域。由此,本发明可以优选地应用于能够横向地和纵向地分配图像的显示元件或蝇眼透镜。此外,一个像素内的反射显示区域可以以分散的方式布置在三个或更多个位置,这使得可以提供更加一致的反射显示,在亮度方面没有表现出部分的降低。
(修改实施例1)
接着,将参照图18描述第四示例性实施方式的修改实施例1。
在图18中所示的修改实施例1中,在左眼像素51内的反射区域512以分散的方式设置在两个位置,相对于左眼像素51的中心轴线YL55非对称地分布。以相同的方式,在右眼像素52内的反射区域522以分散的方式被设置在两个位置,相对于右眼像素52的中心轴线YR 56非对称地分布。显示元件13的中心轴线YG 57是关于反射板41的镜射轴(线对称轴),其是在反射板位置处的镜像平面(m)。
此外,反射板相对于点G被反转对称地布置,从而具有二重对称性。因此,根据修改实施例1的反射板的布局具有二重对称轴和单独的镜像平面(m),并且可以表述为具有至少根据2维空间群的国际符号的“p2mg”的对称性。其他结构与上述的第四示例性实施方式相同。
因为第四示例性实施方式的修改实施例1具有平行于+X方向的镜像平面(m),所以当采用蝇眼透镜时可以使用在+X方向上彼此相邻的像素来执行补偿。这使得可以提供高质量的反射显示,其不管观看位置如何,都没有表现出亮度方面的部分降低。
(修改实施例2)
接着,将参照图19描述第四示例性实施方式的修改实施例2。
在第四示例性实施方式的修改实施例2中,如图19中所示,第一显示元件13配置有左眼像素51和右眼像素52,并且在每个像素内反射显示区域以分散的方式被布置在两个位置。此外,在+Y方向上与第一显示元件13相邻的第二显示元件13配置有左眼像素51和右眼像素52,并且在每个像素内的反射板配置有单个区域。
左眼像素51的中心轴线YL 55、右眼像素52的中心轴线YR 56以及显示元件13的中心轴线YG 57是在每个像素内的反射板的线对称轴(镜射对称轴),其作为镜像平面(m)起作用。此外,反射板的布局具有二重旋转对称性,从而当相对于二重旋转对称轴59旋转180度时所述布局与原始状态是等同的。因此,具有至少根据2维空间群的国际符号的“c2mm”的对称性。其他结构与上述的第四示例性实施方式相同。
因此,通过第四示例性实施方式的修改实施例2,设置在每个像素51、52内的反射板41相对于每个像素51、52的中心轴线线对称地布置。这使得可以通过反射显示提供高质量的图像,该图像在左侧和右侧是一致的。
第五示例性实施方式
接着,将参照图20到图25描述本发明的第五示例性实施方式。
图20是示出根据第五示例性实施方式的立体图像显示装置的俯视平面图。图21是示出根据第五示例性实施方式的修改实施例1的立体图像显示装置的像素的俯视平面图。图22是示出在图21的像素部分的一部分中的像素晶体管的布局的放大说明图。图23是示出通过对应图21的像素部分而设置的像素晶体管的布局的模型图。图24是示出根据第五示例性实施方式的修改实施例2的立体图像显示装置的俯视平面图。图25是示出根据第五示例性实施方式的修改实施例3的立体图像显示装置的俯视平面图。
(结构)
在根据第五示例性实施方式的立体图像显示装置中,如在图20中所示,左眼像素51和右眼像素52的外形是梯形,并且在+X方向上相邻的每个像素之间的边界相对于与图像分配方向14正交的方向是倾斜的。此外,特别是对于没有反射区域511、521的像素的外形,在+Y方向上彼此相邻的像素相对于X轴方向线对称地被布置,并且在+X方向上彼此相邻的像素相对于X轴方向线对称地反转布置。因此,在+Y方向上彼此相邻的两个像素形成六边形,并且整体地以矩阵设置。
此外,如在图1中的情形,显示元件13的左反射板和右反射板相对于左眼像素中心轴线YL55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57非对称地布置。在+Y方向上彼此相邻的显示元件13具有彼此不同的反射显示区域布局,并且显示元件13在+Y方向上周期性地设置。关于仅在反射板布局方面的对称性,左眼像素中心轴线YL 55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57中的每个都作为关于反射板的滑移面(g)起作用。其他结构与上述的第四示例性实施方式相同。
(操作/效果)
在根据第五示例性实施方式的立体图像显示装置中,如在图20中所示,存在在平行于+Y方向的的滑移面(g)。因此,反射图像可以在+Y方向上相邻的像素之间被补偿。这使得可以提供高质量的反射显示,不管观看位置如何,该反射显示都没有表现出在亮度方面的部分降低。此外,数据配线可以在不干扰反射区域的情况下倾斜地引出以被有效率地布置,使得像素开口率可以被设置得更大一些。此外,左像素和右像素的开口部(aperture part)被交替地设置在透镜焦点位置处,使得在左右方向上的透射光可以被散射。这使得可以提供更加一致的显示图像。
此外,如在图22中所示,数据配线通过相对于Y轴方向倾斜而被布置,并且布置柱镜光栅3的凸部的周期的方向和布置数据线的周期的方向彼此分散。因此,由于柱镜光栅3的凸部的间距和数据线4D的布置间距引起的莫尔条纹可以被减少,这导致改善显示质量。
此外,左眼像素51和右眼像素52可以被形成为多边形,只要每个像素具有相同的尺寸即可。此外,这些像素中的每个都可以被形成为下面这样的多边形,即,所述多边形由诸如三角形、长斜方形或梯形的简单图形的组合而构成,只要它是可以在没有间隙的情况下整体地设置在平面内的形状即可。通过相对于Y轴方向倾斜地配线,可以获得与上述效果相同的效果。
(修改实施例1)
接着,将参照图21到图23描述第五示例性实施方式的修改实施例1。
(结构)
在根据第五示例性实施方式的修改实施例1的立体图像显示装置中,如图21中所示,左眼像素51和右眼像素52的外形是梯形。此外,对于在图21的线段55上的基准点59,布局具有二重旋转对称轴,从而当旋转180度时,反射板41的布局是等同的。如在图1的情形中,显示元件13的左反射板和右反射板相对于左眼像素中心轴线YL55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57非对称地布置。此外,基准点59可以是在与图像分配方向14正交的方向上彼此相邻的像素之间的质心。
关于仅在反射板布局方面的对称性,左眼像素中心轴线YL 55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57中的每个都不作为关于反射板的滑移面(g)起作用。反射板以每两个像素平移的方式被布置。即,在+Y方向上彼此相邻的显示元件13的反射显示区域处于彼此不同的布局并且显示元件13在+Y方向上周期性地被设置。其他结构与上述的第五示例性实施方式相同。
图23是示出通过对应图21的像素部分而设置的像素晶体管的布局的模型图。在第五示例性实施方式中,如在图23中所示,在行方向(即,X轴方向)上延伸的栅极线G1到G5被设置在TFT衬底2a(参见图2)的内侧的面(即,+Z方向一侧的面)上。栅极线G1到G5还被总称为栅极线G。
此外,在列方向(即,Y轴方向)上延伸的数据线D1到D7被设置在TFT衬底2a的同一面上。数据线D1到D7还被总称为数据线D。数据线将显示数据信号供给到薄膜晶体管。
在第五示例性实施方式中,栅极线G沿着X轴方向延伸,并且多条栅极线沿着Y轴方向布置。此外,像素(左眼像素51或右眼像素52)被设置在栅极线和数据线之间的交叉点的附近。具体地,为了清楚地说明像素相对于栅极线和数据线的连接关系,例如,在图23中,与栅极线G3和数据线D2连接的像素被标记为P32。即,在“P”之后的数字是应用在栅极线的“G”之后的数字,而那之后的数字是在数据线的“D”之后的数字。图22示出在图23中所示的像素P11、P23、P13、……之中的像素P11、P23、P32和P22的每一个的具体例子。
在图22中,像素电极4PIX、像素薄膜晶体管4TFT以及存储电容线4CS被设置在像素P11中。像素薄膜晶体管4TFT是MOS型薄膜晶体管,源极电极和漏极电极中的一个经接触孔4CONT连接到数据线D,而另外一个连接到像素电极4PIX。此外,如在图22中所示,数据线被布置成从+Y方向倾斜。
这里,关于栅极线、数据线与每个像素的连接关系将会被总结概括。
在图23中,首先考虑像素P31和像素P32。这两个像素连接到栅极线G3。即,这两个像素将栅极线G3作为公共栅极线。在Y轴方向上彼此相邻而布置并且共用栅极线的像素被称为相邻像素对,并且为了方便,这些成对的像素被表示为(P31,P32)。组成相邻像素对(P31,P32)的每个像素连接到不同的数据线。即,像素P31连接到数据线D1,而像素P32连接到数据线D2。
相邻像素对(P22,P23)和相邻像素对(P43,P42)作为相邻像素对(P31,P32)在+X方向上的相邻像素对而被设置。相邻像素对(P22,P23)将栅极线G2作为公共栅极线。这里注意的是,表述“相邻像素对将栅极线G2作为公共栅极线”的意思是,组成相邻像素对的每个像素连接到栅极线G2,即设置在那些像素之间的栅极线并且通过栅极线G2来控制。相邻像素对(P31,P32)将栅极线G3作为公共栅极线,从而相邻像素对(P31,P32)和相邻像素对(P22,P23)将不同的栅极线作为公共栅极线。这些像素对的公共栅极线彼此相邻。
相邻像素对(P42,P43)也被设置成在+X方向上与相邻像素对(P31,P32)相邻。这些相邻像素对也将不同的栅极线作为公共栅极线。此外,对于相邻像素对(P22,P23)或相邻像素对(P42,P43),在+X方向上布置相邻像素对(P33,P34)。与相邻像素对(P31,P32)的情形相同,相邻像素对(P33,P34)将栅极线G3作为公共栅极线。即,通过每隔一像素列,设置将同一栅极线作为公共栅极线的相邻像素对。换句话说,连接到组成右眼像素的相邻像素对的栅极线不连接到组成左眼像素的相邻像素对。
此外,如在第五示例性实施方式的情形中,反射板41被设置成覆盖像素薄膜晶体管4TFT,并且反射区域像素电极4RPIX被设置在反射板41上。即,在像素P11、P32、……的每个的区划区域内,在各个像素的背面侧,用于可变地控制相应像素P11、P32、……的每个的显示动作的驱动电路被设置,像素P11、P32、……的每个的反射显示区域被设置在驱动电路的上面,并且上述反射板41被设置在反射显示区域内。用于可变地控制每个像素的显示动作的驱动电路是所谓的像素切换器件,并且它通常配置有薄膜晶体管。
通过上述构造,根据第五示例性实施方式的修改实施例1的显示装置包括:数据线,用于将显示数据供给到每个像素;像素切换器件,用于将显示数据信号从数据线传输到像素;以及栅极线,用于控制像素切换器件,其中通过把栅极线夹在中间而布置的相邻像素对通过设置在像素之间的栅极线来控制;组成相邻像素对的像素连接到不同的数据线;并且沿着栅极线的延伸方向上彼此相邻的相邻像素对连接到不同的栅极线。通过如此的布局,通过第五示例性实施方式的修改实施例1像素薄膜晶体管可以有效率地布置在反射板的背面侧。
在上述的说明中,已经描述了反射板被设置成覆盖像素薄膜晶体管。然而,反射板可以被设置成覆盖像素薄膜晶体管的一部分。此外,反射板可以被设置在存储电容中。即,通过将不用于透射显示的部分用于反射显示,像素可以被有效率地用于显示。这使得可以改善显示性能。
此外,用于形成保持电容的存储电容线4CS可以被设置在每个像素中,并且存储电容线4CS可以连接于在栅极线的延伸方向上彼此相邻的像素之间。此外,在存储电容线4CS和数据线4D之间的交叉点可以沿着数据线4D被设置。通过如此的结构,像素的显示区域可以更加有效率地布置,从而可以改善显示性能。
在第五示例性实施方式的修改实施例1的每个像素P11、P12、P13、……的透射显示区域511和521中,更清晰的图像信息可以被发送到观看区域。因此,本发明的示例性目的能以高效率有效地实现。透射显示区域511、521的上述像素电极4PIX电连接到反射显示区域的像素电极4RPIX。
定义的是,将与像素电极4PIX或像素电极4RPIX连接的电极称为源极电极,并且将连接到信号线(数据线)D的电极称为漏极电极。此外,像素薄膜晶体管4TFT的栅极电极与栅极线G连接。存储电容线CS与存储电容线4CS的另外一个电极连接。此外,公共电极4COM形成在对向基板2b的内侧,并且像素电容4CLC形成在像素电极4PIX和反射区域像素电极4RPIX之间。
(效果)
因为反射显示区域512和522按照棋盘图案以分散的方式布置在显示平面内,所以从外部入射的反射光可以被容易地散射。这提供了使反射光更加一致的效果。此外,修改实施例1的反射板具有二重旋转对称的布局,从而,即使当从其中立体图像显示装置在显示平面内旋转180度的位置观看图像时,也可以保持与原始状态相同的显示质量。因此,本发明可以优选地应用于其屏可以旋转180度的移动装置和其监视器可以被旋转的摄像机。具体地,当如图23中所示每隔一条线以正/负极性显示数据线的视频信号时,可以为左眼像素51和右眼像素52设置相同的电势。这使得可以减少由于在左侧和右侧之间的电势差而引起的向错,从而可以使在左像素和右像素上的显示一致。
如上所述,如在图1的情形中,根据修改实施例1的显示元件13的左反射板和右反射板相对于左眼像素中心轴线YL55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57非对称地布置。在+Y方向上彼此相邻的显示元件13具有彼此不同的反射显示区域布局,并且显示元件13在+Y方向上周期性地被设置。关于在反射板41方面的对称性,左眼像素中心轴线YL 55、右眼像素中心轴线YR 56以及显示元件13的中心轴线YG 57作为关于反射板的滑移面(g)起作用。
此外,也存在平行于+X方向的滑移面(g)。反射板的布局具有二重旋转对称性,从而当反射板相对于二重旋转对称轴59旋转180度时反射板的布局是等同的。因此,存在二重旋转对称轴和两个独立的滑移面(g)。它可以表述为具有至少根据2维空间群的国际符号的“p2gg”的对称性。其他结构与上述的在图20中所示的第五示例性实施方式相同。
通过第五示例性实施方式的修改实施例1,存在平行于+Y方向的滑移面(g)。因此,反射的图像可以在+Y方向上相邻的像素之间被补偿。这使得可以提供高质量反射显示,不管观看位置如何都没有表现出亮度方面的部分降低。此外,因为反射显示区域512和522按照棋盘图案以分散的方式布置在显示平面内,所以从外部入射的反射光可以被容易地散射。这提供了使反射光更加一致的效果。
此外,当使用蝇眼透镜时,由于在平行于+X方向的方向上的滑移面(g),+X方向上的相邻像素的反射分量可以被补偿。由此,可以改善反射显示的质量。此外,修改实施例1的反射板被布置成具有二重对称性的布局,从而即使当从其中立体图像显示装置旋转180度的位置观看图像时,与原始状态相同的显示质量可以被保持。因此,本发明可以优选地应用于其屏可以旋转180度的移动装置和其监视器可以被旋转的摄影机。
(修改实施例2)
接着,将参照图24描述第五示例性实施方式的修改实施例2。
如在图24中所示,根据修改实施例2的立体图像显示装置的左眼像素51和右眼像素52的外形是梯形,并且反射板的布局与第二示例性实施方式(图11)的情形相同。因此,修改实施例2的反射区域通过不平行于+Y方向地倾斜的线段而被分离成左像素和右像素区域。
关于如在图24中所示的修改实施例2的反射显示区域的对称性,在像素51、52的每个内的左反射板和右反射板相对于左眼像素中心轴线YL 55和右眼像素中心轴线YR 56非对称地布置。左眼像素中心轴线YL 55和右眼像素中心轴线YR 56是关于反射显示区域的滑移面(g)。此外,反射显示区域相对于显示元件13的中心轴线YG 57线对称地(镜射对称地)被布置,从而形成镜像平面(m)。此外,反射板的布局具有二重旋转对称性,并且即使当反射板围绕二重旋转对称轴59旋转180度时它与原始状态也是等同的。其他结构与上述的第五示例性实施方式(图20)相同。
通过图24中所示的修改实施例2,修改实施例2的反射区域通过不平行于+Y方向地倾斜的线段而被分离成左像素和右像素区域。因此,可以以小尺寸获得相邻像素补偿效果。因此,可以改善反射显示的性能。此外,因为可以利用小空间形成反射区域,所以透射区域可以被设置得更大些。其他结构和操作效果与上述的第五示例性实施方式(图20)相同。
(修改实施例2)
接着,将参照图25描述第五示例性实施方式的修改实施例3。
如在图25中所示,在根据修改实施例3的立体图像显示装置中,反射显示区域沿着梯形的对角线被设置,并且这些区域相对于中心点G是点对称的。此外,反射显示区域在+Y方向上延伸到像素的顶端和底端。当在+Y方向上彼此相邻的两个显示元件的反射区域沿着+Y方向被切断时,被切断的区域的长度的总值在任何位置处都是相同的。其他结构与上述的第五示例性实施方式(图20)相同。
通过第五示例性实施方式(图25)的修改实施例3,在+Y方向上反射显示区域的尺寸的总值是一致的。因此,可以使反射显示比上述每个示例性实施方式的情形更加一致。这使得可以提供高质量反射显示,不管观看位置如何都没有表现出亮度方面的部分降低。
第六示例性实施方式
接着,将参照图26描述本发明的第六示例性实施方式。
如在图26中所示,在根据第六示例性实施方式的立体图像显示装置中,作为显示区域的四边形透射区域511、521形成在左眼像素51和右眼像素52内。彼此相对延伸的边是平行的,并且相对于+Y方向倾斜。即,开口部5在平面图中基本处于平行四边形中。
此外,左眼像素51和右眼像素52的外形是四边形,并且这些像素以平移的方式设置在+X方向上。此外,通过相对于平行于+X方向的轴线对称地反转而在+Y方向上设置像素,从而形成矩阵。
不存在线对称的中心轴线。因此,当旋转像素51、52的四边形180度时的对称轴(即,二重旋转对称轴)被作为中心点,穿过该中心点的并且垂直于图像分配方向的线段被作为左眼像素中心轴线YL 55(右眼像素中心轴线YR56)。相似地,对于显示元件单元,穿过旋转中心的并且垂直于图像分配方向的线段被作为显示元件的中心轴线YG 57。
左眼像素反射显示区域512相对于左眼像素中心轴线YL 55非对称地被设置,右眼像素反射显示区域522相对于右眼像素中心轴线YR56非对称地被设置。此外,左眼像素反射显示区域512和右眼像素反射显示区域522相对于显示元件13的中心轴线YG 57非对称地被设置。在+X方向上彼此相邻的左像素和右像素的反射区域被布置在不同的位置上,当旋转180度时彼此一致。
根据第六示例性实施方式的在显示平面上的反射板布局具有二重旋转对称轴,并且具有至少根据2维空间群的国际符号的“p2”的对称性。其他结构与上述的第一示例性实施方式(图1到图6)相同。
在第六示例性实施方式(图26)中,外形是平行四边形。因此,具有这样的优点,即,在+Y方向彼此相邻的显示元件13的反射显示区域可以容易地交替布置,由此使得可以获得大的开口率。此外,尽管已经参照大致的平行四边形像素的情形描述第六示例性实施方式,但是像素可以具有二重旋转或更多重的旋转对称性。通过将穿过旋转中心的并且与图像分配方向垂直的线段作为显示元件的中心轴线YG而布置反射区域,可以获得相同的效果。
第七示例性实施方式
接着,将参照图27描述本发明的第七示例性实施方式。
图27是示出根据第七示例性实施方式的便携式终端装置的透视图。如在图27中所示,通过第七示例性实施方式,图像显示装置90被安装到作为便携式终端装置的便携式电话9上。构成柱镜光栅3的柱状透镜的图像分配方向14被设定成图像显示装置90的横向方向。
此外,多个像素对在图像显示装置90的显示面板92上布置成矩阵,所述多个像素对每个都配置有左眼像素和右眼像素。在单个像素对中的左眼像素和右眼像素的排列方向是柱状透镜的排列方向,即,屏的横向方向(水平方向)。除上述的那些以外,该示例性实施方式的结构与上述的第一示例性实施方式的情形相同。
接着,将描述根据该示例性实施方式的图像显示装置的动作。透反射型显示面板2的左眼像素51为左眼显示图像,而右眼像素52为右眼显示图像。用于左眼的图像和用于右眼的图像是彼此之间具有视差的立体图像。此外,两种图像可以是彼此独立的图像或示出彼此相关的信息的图像。
第七示例性实施方式的除了上述的那些以外的效果与上述的第一示例性实施方式相同。第七示例性实施方式还可以与上述的第二到第六示例性实施方式中的一个结合。
第一示例性实施方式到第七示例性实施方式中每一个已经参照下面这样的情形进行描述,即,显示装置被装载到便携式电话等,用于通过给单个观看者的左眼和右眼供给彼此之间具有视差的图像而显示立体图像,或者参照下面这样的情形进行描述,即,图像显示装置同时将多种图像供给到单个观看者。然而,根据本发明的图像显示装置不限于如此情形。图像显示装置可以是设置有大型显示面板的装置,其将多个不同的图像供给到多个观看者。
根据上述实施方式的每个的立体图像显示装置可以优选地应用到诸如便携式电话等的便携式装置,并且可以显示良好的立体图像。此外,当根据示例性实施方式的每个的立体图像显示装置被应用到便携式装置时,与将立体图像显示装置应用到大型显示装置的情形不同,观看者可以随意调整自己的眼睛和显示屏之间的位置关系。因此,最佳可观看范围可以快速地被找到。此外,根据示例性实施方式的每个的立体图像显示装置不仅可以应用到便携式电话,而且还可以应用到诸如便携式终端、PDA、游戏机、数码相机以及数码摄像机等的便携式终端装置。
此外,尽管上面提供的说明的内容考虑的是其中透镜的凸部被布置在观看者一侧的情形,但是即使是其中透镜的凸部被布置在显示装置一侧的情形,也可以获得相同的效果。此外,根据上述实施方式的每个的立体图像显示装置可以优选地应用到诸如便携式电话等的便携式装置,并且可以显示良好的立体图像。此外,当根据示例性实施方式的每个的立体图像显示装置被应用到便携式装置时,与将立体图像显示装置应用到大型显示装置的情形不同,观看者可以随意调整自己的眼睛和显示屏之间的位置关系。因此,最佳可观看范围可以快速地被找到。如上所述,作为通用结构,上述实施方式和修改实施例中的每一个都具有下面的特征。即:多个显示元件被布置,所述多个显示元件每个都至少包括用于显示第一视点图像的像素和用于显示第二视点图像的像素;每个像素都具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;设置用于将显示数据提供到每个像素的数据线、用于将显示数据信号从数据线传输到每个像素的像素切换器件以及用于控制像素切换器件的栅极线;通过把栅极线夹在中间而设置的相邻像素对的动作通过设置在像素之间的栅极线来控制;组成相邻像素对的每个像素连接到彼此不同的数据线;在栅极线的延伸方向上彼此相邻的相邻像素对连接到不同的栅极线;设置光学器件,所述光学器件用于将从每个像素发射的光分配到沿着栅极线的延伸方向的彼此不同的方向上;将每个像素的反射显示区域设置成覆盖像素切换器件的设定位置;以及在反射显示区域中设置用于反射外部光的反射板。因此,如上所述,本发明的示例性目的可以有效地实现。
尽管本发明已经参照其示例性实施方式被具体地说明和描述,但是本发明不限于这些实施方式。本领域技术人员将理解的是,在不脱离本发明的权利要求所定义的精神和范围的情况下,在形式和内容方面可以做出各种改变。
工业适用性
根据本发明的图像显示装置作为图像显示面板不仅可以有效地应用于便携式电话,还可以应用于诸如便携式终端、PDA、游戏机、数码相机以及数码摄像机等的便携式终端装置。因此,其用途是多方面的。

Claims (14)

1.一种图像显示装置,包括:多个被布置的显示元件,每个都至少包括用于显示第一视点图像的像素和用于显示第二视点图像的像素,所述像素中的每一个都具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;以及光学器件,用于将从所述像素中的每一个发射的光分配到彼此不同的方向,其中
所述显示元件中的每一个的所述反射显示区域相对于如下所述的任意设定的线段非对称地布置,所述任意设定的线段位于各个所述像素的面上并且经过各个所述显示元件,所述显示元件被布置在与所述光学器件的发射光分配方向正交的方向上。
2.根据权利要求1所述的图像显示装置,其中穿过各个所述显示元件的所述任意设定的线段被定义为连接所述显示元件中的每一个的中心点的线段。
3.根据权利要求1所述的图像显示装置,其中:
作为对应于所述光学器件而布置的所述多个显示元件中的每一个,使用具有不同反射显示区域布局的至少两种显示元件;以及
对于具有不同反射显示区域布局的所述显示元件中的每一个,具有相同图案的所述反射显示区域的显示装置沿着所述光学器件的所述发射光分配方向周期地重复布置在所述像素中的每一个的面上。
4.根据权利要求1所述的图像显示装置,其中:当显示元件中的至少两个相互堆叠并且被看穿时,设置在位于每个所述像素的面上且位于沿着所述光学器件的所述发射光分配方向布置的每个显示元件的公共中心线上的彼此邻近的显示元件中的每一个中的所述反射显示区域在所述发射光分配方向上没有间断地连续设置。
5.根据权利要求1所述的图像显示装置,其中构成所述显示元件的每个像素的形状被设定为多边形形状。
6.根据权利要求1所述的图像显示装置,其中:
构成所述显示元件中的每一个的每个像素都由多边形的像素构成,所述多边形的像素在所述像素中的每一个的面上具有线对称轴,其平行于布置在与所述光学器件的所述发射光分配方向正交的方向上的所述像素中的每一个的公共中心线;以及
所述像素中的每一个中的所述反射显示区域相对于所述线对称轴非对称地布置。
7.根据权利要求1所述的图像显示装置,其中,在所述像素中的每一个内,所述反射显示区域被分离地设置在至少两个位置。
8.根据权利要求1所述的图像显示装置,其中,用于将从所述像素中的每一个发射的光分配到彼此不同的方向的所述光学器件是柱镜光栅或蝇眼透镜。
9.根据权利要求1所述的图像显示装置,其中,所述显示元件的所述反射显示区域被相对于与图像分配方向垂直的线段非对称地倾斜的线段划分成用于显示用于所述第一视点的所述图像的像素和用于显示用于所述第二视点的所述图像的像素。
10.根据权利要求1所述的图像显示装置,其中,当将所述显示元件堆叠在围绕所述显示元件的中心点旋转180度的所述显示元件之上并且被堆叠的显示元件被看穿时,所述反射显示区域彼此一致。
11.根据权利要求1所述的图像显示装置,其中:
用于控制所述像素中的每一个的显示转换动作的像素切换器件设置在相应像素的区划区域内,并且反射板被设置成覆盖所述像素切换器件的设定位置。
12.根据权利要求1所述的图像显示装置,包括:数据线,用于将显示数据供给到所述像素中的每一个;像素切换器件,用于将显示数据信号从所述数据线传输到所述像素中的每一个;栅极线,用于控制所述像素切换器件;以及光学器件,用于将从所述像素中的每一个发射的光分配到沿着所述栅极线的延伸方向的彼此不同的方向上,其中:
通过把所述栅极线夹在中间而布置的像素对的动作通过设置在所述像素之间的所述栅极线来控制;构成所述像素对的像素中的每一个连接到不同的数据线;在所述栅极线的延伸方向上彼此相邻的所述像素对连接到不同的栅极线;以及所述反射板被设置成覆盖所述像素切换器件的设定位置。
13.一种终端装置,包括被安装用于显示的根据权利要求1所述的图像显示装置。
14.一种图像显示装置,包括:多个被布置的显示元件,每个都至少包括用于显示第一视点图像的像素和用于显示第二视点图像的像素,所述像素中的每一个都具有用于透射光的透射显示区域和用于反射外部光的反射显示区域;光学装置,用于将从所述像素中的每一个发射的光分配到彼此不同的方向,其中
所述显示元件中的每一个的所述反射显示区域相对于如下所述的任意设定的线段非对称地布置,所述任意设定的线段位于各个所述像素的面上并且经过各个所述显示元件,所述显示元件被布置在与所述光学装置的发射光分配方向正交的方向上。
CN200810190238XA 2007-12-26 2008-12-26 图像显示装置和终端装置 Active CN101470296B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210473035.8A CN103018947B (zh) 2007-12-26 2008-12-26 图像显示装置和终端装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-335351 2007-12-26
JP2007335351A JP5152718B2 (ja) 2007-12-26 2007-12-26 画像表示装置および端末装置
JP2007335351 2007-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210473035.8A Division CN103018947B (zh) 2007-12-26 2008-12-26 图像显示装置和终端装置

Publications (2)

Publication Number Publication Date
CN101470296A true CN101470296A (zh) 2009-07-01
CN101470296B CN101470296B (zh) 2013-01-02

Family

ID=40797727

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210473035.8A Active CN103018947B (zh) 2007-12-26 2008-12-26 图像显示装置和终端装置
CN200810190238XA Active CN101470296B (zh) 2007-12-26 2008-12-26 图像显示装置和终端装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201210473035.8A Active CN103018947B (zh) 2007-12-26 2008-12-26 图像显示装置和终端装置

Country Status (3)

Country Link
US (1) US8773517B2 (zh)
JP (1) JP5152718B2 (zh)
CN (2) CN103018947B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722030A (zh) * 2011-03-28 2012-10-10 Nlt科技股份有限公司 图像显示设备、图像显示设备的驱动方法和终端设备
CN102970558A (zh) * 2011-08-29 2013-03-13 株式会社东芝 三维影像显示装置
CN103091855A (zh) * 2011-11-02 2013-05-08 奇美电子股份有限公司 立体显示装置的像素结构
CN103197424A (zh) * 2013-03-08 2013-07-10 深圳奥比中光科技有限公司 基于正交视觉的数字图像相关装置
CN103926698A (zh) * 2013-12-10 2014-07-16 上海天马微电子有限公司 一种阵列基板、3d显示面板和3d显示装置
CN104010185A (zh) * 2013-02-27 2014-08-27 Nlt科技股份有限公司 立体图像显示设备
CN104219514A (zh) * 2013-06-04 2014-12-17 德尔福技术有限公司 具有单个相机以及透反射设备的多视图成像系统
CN104639928A (zh) * 2013-11-13 2015-05-20 三星显示有限公司 三维图像显示设备
CN105929614A (zh) * 2016-06-13 2016-09-07 擎中科技(上海)有限公司 一种显示器件及3d显示设备
CN110058422A (zh) * 2019-06-01 2019-07-26 朱晨乐 一种减少裸眼立体显示屏莫尔条纹的结构及方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797231B2 (en) 2009-04-15 2014-08-05 Nlt Technologies, Ltd. Display controller, display device, image processing method, and image processing program for a multiple viewpoint display
JP5321393B2 (ja) * 2009-09-30 2013-10-23 ソニー株式会社 画像表示装置、画像表示観察システム及び画像表示方法
TWI422862B (zh) * 2009-12-22 2014-01-11 Au Optronics Corp 立體顯示器
US9106925B2 (en) * 2010-01-11 2015-08-11 Ubiquity Holdings, Inc. WEAV video compression system
JP5607430B2 (ja) * 2010-06-10 2014-10-15 株式会社ジャパンディスプレイ 立体映像表示装置及び電子機器
JP5796761B2 (ja) 2010-09-15 2015-10-21 Nltテクノロジー株式会社 画像表示装置及び表示パネル
JP5728895B2 (ja) * 2010-11-09 2015-06-03 セイコーエプソン株式会社 電気光学装置および電子機器
EP2461238B1 (en) 2010-12-02 2017-06-28 LG Electronics Inc. Image display apparatus including an input device
JP2012194274A (ja) * 2011-03-15 2012-10-11 Japan Display West Co Ltd 表示装置
JP5935238B2 (ja) * 2011-04-20 2016-06-15 Nltテクノロジー株式会社 画像表示装置並びにこれを備える端末装置
KR20120130397A (ko) * 2011-05-23 2012-12-03 삼성디스플레이 주식회사 렌즈 모듈 및 이를 갖는 표시 장치
US9363504B2 (en) * 2011-06-23 2016-06-07 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
JP6147197B2 (ja) * 2012-05-23 2017-06-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 映像表示装置
JP6010375B2 (ja) * 2012-07-24 2016-10-19 株式会社ジャパンディスプレイ 表示装置
US9052518B2 (en) * 2012-11-30 2015-06-09 Lumenco, Llc Slant lens interlacing with linearly arranged sets of lenses
KR20140096661A (ko) * 2013-01-28 2014-08-06 삼성전자주식회사 무안경식 반사형 3차원 칼라 디스플레이
JP6171425B2 (ja) * 2013-03-12 2017-08-02 セイコーエプソン株式会社 虚像表示装置
US9082361B2 (en) * 2013-10-12 2015-07-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Polarized three-dimensional display panel and pixel cell thereof
CN103578367A (zh) * 2013-11-13 2014-02-12 广东威创视讯科技股份有限公司 一种led显示装置
JP6340807B2 (ja) * 2014-02-05 2018-06-13 株式会社リコー 画像表示装置及び移動体
KR101565482B1 (ko) * 2014-07-21 2015-11-05 한국과학기술연구원 반투과 광학소자를 이용한 영상표시장치
TWI576626B (zh) * 2014-12-19 2017-04-01 財團法人工業技術研究院 顯示裝置
JP6359990B2 (ja) * 2015-02-24 2018-07-18 株式会社ジャパンディスプレイ 表示装置および表示方法
CN108139591B (zh) * 2016-09-20 2020-08-14 京东方科技集团股份有限公司 三维显示面板、包括其的三维显示设备、及其制造方法
CN106371221B (zh) * 2016-11-22 2019-05-21 北京小米移动软件有限公司 显示设备、透镜膜及显示方法
CN109254409B (zh) 2017-07-13 2022-03-22 天马微电子股份有限公司 显示装置、电子设备及显示方法
CN111882998B (zh) * 2020-07-28 2021-06-04 惠科股份有限公司 显示面板及其控制方法
CN114779464A (zh) * 2022-05-24 2022-07-22 北京有竹居网络技术有限公司 光学信号调制器、控制方法及投影设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332354A (ja) 1993-05-20 1994-12-02 Toppan Printing Co Ltd 複数画像同時表示ディスプレイ
JP2912176B2 (ja) 1994-12-28 1999-06-28 日本電気株式会社 反射型液晶表示装置
US5973727A (en) * 1997-05-13 1999-10-26 New Light Industries, Ltd. Video image viewing device and method
GB9713658D0 (en) * 1997-06-28 1997-09-03 Travis Adrian R L View-sequential holographic display
JP3840041B2 (ja) * 2000-06-27 2006-11-01 株式会社東芝 電気機械的に可動されるフィルム型反射表示装置及びその製造方法並びにフィルム型反射表示装置の為の表示用のカンチレバーを製造する方法
JP4400242B2 (ja) * 2003-02-27 2010-01-20 日本電気株式会社 画像表示装置、携帯端末装置及び表示パネル
US7663570B2 (en) * 2003-02-27 2010-02-16 Nec Corporation Image display device, portable terminal device and display panel
US7301587B2 (en) * 2003-02-28 2007-11-27 Nec Corporation Image display device and portable terminal device using the same
JP3925500B2 (ja) * 2003-02-28 2007-06-06 日本電気株式会社 画像表示装置及びそれを使用した携帯端末装置
JP2005252228A (ja) 2004-02-05 2005-09-15 Sharp Corp 表示装置及びその製造方法
JP4778261B2 (ja) * 2005-04-26 2011-09-21 日本電気株式会社 表示装置及び端末装置
JP4394609B2 (ja) * 2005-06-06 2010-01-06 Necディスプレイソリューションズ株式会社 投写型表示装置の光学ユニットおよび投写型表示装置
JP2007093767A (ja) * 2005-09-27 2007-04-12 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2007322541A (ja) * 2006-05-30 2007-12-13 Nec Lcd Technologies Ltd 照明装置及び液晶表示装置
JP4714115B2 (ja) * 2006-09-07 2011-06-29 株式会社東芝 立体映像表示装置および立体映像表示方法
US7995166B2 (en) * 2007-05-07 2011-08-09 Nec Lcd Technologies, Ltd. Display panel, display device, and terminal device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722030A (zh) * 2011-03-28 2012-10-10 Nlt科技股份有限公司 图像显示设备、图像显示设备的驱动方法和终端设备
CN102722030B (zh) * 2011-03-28 2016-06-15 Nlt科技股份有限公司 图像显示设备、图像显示设备的驱动方法和终端设备
CN102970558A (zh) * 2011-08-29 2013-03-13 株式会社东芝 三维影像显示装置
CN102970558B (zh) * 2011-08-29 2015-03-18 株式会社东芝 三维影像显示装置
CN103091855B (zh) * 2011-11-02 2015-08-12 群创光电股份有限公司 立体显示装置的像素结构
CN103091855A (zh) * 2011-11-02 2013-05-08 奇美电子股份有限公司 立体显示装置的像素结构
CN104010185B (zh) * 2013-02-27 2017-03-08 Nlt科技股份有限公司 立体图像显示设备
CN104010185A (zh) * 2013-02-27 2014-08-27 Nlt科技股份有限公司 立体图像显示设备
CN103197424A (zh) * 2013-03-08 2013-07-10 深圳奥比中光科技有限公司 基于正交视觉的数字图像相关装置
CN104219514A (zh) * 2013-06-04 2014-12-17 德尔福技术有限公司 具有单个相机以及透反射设备的多视图成像系统
CN104639928A (zh) * 2013-11-13 2015-05-20 三星显示有限公司 三维图像显示设备
CN103926698B (zh) * 2013-12-10 2016-09-07 上海天马微电子有限公司 一种阵列基板、3d显示面板和3d显示装置
CN103926698A (zh) * 2013-12-10 2014-07-16 上海天马微电子有限公司 一种阵列基板、3d显示面板和3d显示装置
CN105929614A (zh) * 2016-06-13 2016-09-07 擎中科技(上海)有限公司 一种显示器件及3d显示设备
CN110058422A (zh) * 2019-06-01 2019-07-26 朱晨乐 一种减少裸眼立体显示屏莫尔条纹的结构及方法

Also Published As

Publication number Publication date
JP5152718B2 (ja) 2013-02-27
CN101470296B (zh) 2013-01-02
CN103018947A (zh) 2013-04-03
US8773517B2 (en) 2014-07-08
US20090167846A1 (en) 2009-07-02
JP2009157116A (ja) 2009-07-16
CN103018947B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN101470296B (zh) 图像显示装置和终端装置
CN101424850B (zh) 显示装置,其驱动方法,终端装置和显示面板
US8866980B2 (en) Display device having a barrier section including a spacer arrangement
CN103698929B (zh) 液晶显示元件、图像显示装置、驱动图像显示装置的方法和便携式设备
US7301587B2 (en) Image display device and portable terminal device using the same
CN101331776B (zh) 显示设备
TWI537602B (zh) 影像顯示裝置、顯示面板及終端裝置
EP2824508B1 (en) Glasses-free 3d liquid crystal display device and manufacturing method therefor
CN102722030B (zh) 图像显示设备、图像显示设备的驱动方法和终端设备
US20160269718A1 (en) Stereopsis display device
JP5472840B2 (ja) 画像表示装置および端末装置
JP6418465B2 (ja) 表示装置及び端末装置
CN102449539A (zh) 具有聚焦布置的液晶显示设备
JP5927280B2 (ja) 表示パネル及びこれを有する表示装置
KR20120120017A (ko) 표시 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant