CN1014587B - 二氧化碳在沸石上的选择性吸附 - Google Patents

二氧化碳在沸石上的选择性吸附

Info

Publication number
CN1014587B
CN1014587B CN88108824A CN88108824A CN1014587B CN 1014587 B CN1014587 B CN 1014587B CN 88108824 A CN88108824 A CN 88108824A CN 88108824 A CN88108824 A CN 88108824A CN 1014587 B CN1014587 B CN 1014587B
Authority
CN
China
Prior art keywords
technology
mixture
gas
zeolite
acid gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88108824A
Other languages
English (en)
Other versions
CN1036338A (zh
Inventor
亨利·拉斯泰利
德什·拉治·加格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of CN1036338A publication Critical patent/CN1036338A/zh
Publication of CN1014587B publication Critical patent/CN1014587B/zh
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0466Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/902Molecular sieve

Abstract

在一个固定吸附床上采用压力变化吸附工艺使二氧化碳选择性吸附,从而与如氮、氢和甲烷这样的非酸性气体分离,该吸附床含有一种八面沸石型的铝硅酸盐沸石,该沸石含有至少20当量百分数的选自锌、稀土、氢和铵中的至少一种阳离子,并含有不大于80当量百分数的碱金属或碱土金属阳离子。

Description

本发明总的来说是涉及从非酸性气体,如氮和甲烷中排除大部分二氧化碳,而特别是涉及使用特定的阳离子型的、有八面沸石型结晶结构的沸石作为选择性吸附剂,以在一个循环工艺中吸附二氧化碳。在该工艺中,解吸是通过降低床压完成的。
迄今为止,已提出了一些从气体混合物中回收或排除二氧化碳的方法,并在工业规模上应用。这些方法差别很大,但一般包括某些形式:溶剂吸收、吸附在多孔吸附剂上或通过半透膜渗滤。这种膜技术主要应用于增强油的回收。在这一方法中,需要将二氧化碳再次注入产油构成物中以从甲烷中就地分离二氧化碳。在这种情况下,低的基建投资和设备费用弥补了较低的CO2纯度和回收率。溶剂吸收方法既可使用化学溶剂,也可使用物理溶剂,并且可有选择性地、有效地排除大量CO2,虽然能耗是一个越来越需要考虑的原因。对于提纯过程,可用钙离子交换型的沸石A从含有CO2的气体混合物中将之有效地排除。但是,由于吸附剂和吸附质之间有很强的亲和力,为有效地解吸CO2就需要热能。为从气体混合物中分离出大部分CO2,最近已提出使用碱金属和/或碱土金属阳离子型的、八面沸石型的沸石,即沸石X和沸石Y。这种工艺被揭示于1986年3月5日出版的欧州专利申请说明书No.0173501中,并且该工艺既可利用压力变化解吸,也可利用不易吸附的清洗气体型再生吸附剂。
现已发现,对于将CO2从其与非酸性气体,如甲烷、氢和氮的混合物中大量分离,锌、稀土、氢或铵阳离子型的、具有八面沸石结构的沸石优于前面提到的碱金属和碱土金属型的沸石。在所说的气体混合物中,CO2含量至少是0.5摩尔百分数,而更可取的是至少5摩尔百分数。这一优势归于在固定床上的变压吸附循环中提高了的CO2产率;并且,尽管前面提到的沸石类型显示出更大的对二氧化碳的选择性,这一优势仍存在。八面沸石型的,具有SiO2/Al2O3摩尔比为2-100,最好是2-20的,并且含有至少为20,而最好至少是40当量百分数的上述阳离子类物质中的一种或一种由两种或多种上述阳离子组成的混合物,及不大于80,最好是不大于40当量百分数的碱金属或碱土 金属阳离子的沸石可被用于吸附温度约-50℃至100℃,吸附压力约0.2至约1000磅/英寸2的固定床过程。低于该吸附压力,并在0.1至500磅/英寸2范围内的压力对吸附剂的解吸是合适的。
洼地垃圾气(Landfill gas)是被覆盖的洼地垃圾中有机物分解的天然产物。该气体主要含有CO2、CH4、H2S、水、氮和氧,并以类似于从天然地质构造中获得天然气的方式在洼地垃圾中掘井而回收。所回收的气体大部分是甲烷和二氧化碳,除去水、硫化氢、氮和其它杂质后,该气体由大致等体积的CO2和甲烷组成。用变压式固定床吸附工艺,完成甲烷与二氧化碳的分离。在本发明之前最广泛使用的吸附剂是钠阳离子型的沸石X,即工业上已知的人工合成的13X。一种典型工艺是在室温下,将原料气体加压到450磅/英寸2用于吸附-提纯阶段。二氧化碳被吸附剂优先吸附,而流出的产物是甲烷。当CO2开始穿透过吸附剂时,通过使床减压至约60磅/英寸2而完成再生。
在含氢气流,如纯氢或含氮混合物(氨合成气)的生产中,一般是用含碳原料与蒸气和/或氧反应,首先生成一氧化碳和氢,接着通过一个催化转变反应,将大部分一氧化碳转化成二氧化碳并产生附加氢,从而得到含氢原料气流。在这些情况下,空气或富氧空气用作氧源,即一种辅助的或不完全的氧化阶段的氧源,该原料气流中含有氮和其它惰性气体,如氩。氨合成气的制造通常使用这样一种将氮引入原料气体的辅助变换阶段。在蒸汽重整过程中的含碳原料气是天然气时,产品气体混合物的约1-5%是氮。在从这种原料气体中除去二氧化碳时,有人建议使用活性炭。有人提出了使用钙离子交换型的沸石A和沸石X来排除氮。G·Reiss(美国专利US4,477,267)发现,沸石X远优于沸石A。
现已发现,可用变压型的分离工艺将CO2从如洼地垃圾气这样的气体混合物或从其它非酸性气体混合物中与甲烷大部分地分离出来,其结果较好。如果温度保持在-50℃至+100℃,最好是20至50℃的范围内;吸附压力为2-1000磅/英寸2,解吸压力低于吸附压力,在0.1-500磅/英寸2的范围内;所用的沸石吸附剂具有八面沸石型的结构,其SiO2/Al2O3摩尔比为2-100,并且含有至少20当量百分数的一种选自锌、稀土、氢和铵的阳离子或一种由两种或多种这些阳离子组成的混合物,而且还含不超过80当量百分数的碱金属或碱土金属阳离子。
所用的八面沸石型的沸石既可是X型的,又可是Y型的。X型沸石及其制备方法已在美国专利US2,882,244(1959,4,14授权于R.M.Milton)中进行了描述。沸石X的SiO2/Al2O3摩尔比是约从2最大到3。在如人工合成的型式中,沸石Y的SiO2/Al2O3摩尔比为大于3最大到6。美国专利US3,130,007(1964,4,21授利于D.W.Breck)详细公布了合成沸石Y的方法。BiO2/Al2O3摩尔比大于6的Y型沸石可用几种本技术领域熟知的脱铝酸盐的方法制备。如P.K.Maher等在“分子筛沸石”(Advan.Chem.Ser.101,American Chemical Socie-ty,Washington,D.C.,1971,P.266)中曾报导过用高温蒸汽处理脱铝酸盐的方法。最近报导,一种对提高沸石Y的SiO2/Al2O3特别适用的方法,包括脱铝酸盐及用硅取代其晶格位置。这工艺公布于美国专利US4,503,023(1985,3,5授权于Skeels等)中。这里所用的术语“八面沸石型结构”指的是其框架结构,不管其化学组成、不同T-原子的分布、晶胞尺寸及对称性。这在“沸石结构类型图谱”(W.M.Meier and D.H.Olsen.Structure Commission of the Interna-tional Zeolite Association出版,1978)中称为“FAU”。
在将CO2大部分地与CH4分离时,选择性和产率是两个重要的判断标准。选择性是吸附剂从两种或多种组分的混合物中优先地吸附一种组分的程度,用分离系数α来定量表示。在一个二组分气体混合物中分离系数可由二元平衡吸附值得出。如果吸附相的组成与气相组成相同,则该吸附剂对每个组分都没有选择性,其由下式定义的分离系数为1。
α=(Ma×Mg)/(Mg×Na)
其中Na和Ma是吸附相中两种吸附质N和M的摩尔分数,Ng和Mg是气相中N和M的摩尔分数。当α值大于1时,Ma代表优先吸附组分,α值越大则吸附剂对M组分的选择性就越大。产率可用优先吸附组分在吸附阶段结 束时和解吸阶段结束时吸附量之差,即在吸附剂上选择性吸附组分在一个吸附-解吸压力变化循环过程中,在其最高分压和最低分压时吸附量的差来确定。
本技术领域熟知,目前不可能从气体混合物纯组分的等温吸附线预测气体混合物的吸附特征。按Langmuir方程式假设的理想状态(即吸附剂表面在能量上是均匀的)计算的结果,由于实际状态与理想状态之间的差异是不能应用的。按照Langmuir方程式,分离系数必然是与气体的压力和浓度无关的,但已充分证明,吸附相的组成会随压力的变化而发生很大的变化,如氮和氧的混合物在沸石吸附剂上吸附时。因此,有必要通过实验手段为任何一个具体的分离过程寻找良好的吸附剂。
在本发明的实验过程中,实验是在模拟目前实际应用的把CO2从气体混合物中与CH4分离这一变压吸附循环中的吸附剂的性能下进行的,这种气体混合物既对经初步提纯后的从洼地垃圾场得到的气体混合物是典型的,又对经与本发明过程一致的适当处理所得其它气体混合物是有代表性的。所用的设备由一个不锈钢圆柱形试样管构成,该管约长1.5英寸,直径0.375英寸,可容纳1-2克试验用吸附剂,在管的每一端有关闭装置以便在实验过程需要的时候隔绝管内物料。在管的每一端还有与导管相连的装置,以便在试样活化和吸附过程中将气流引入管内,并导出由管内流出的气体进入收集和分析装置。有一个适于密封该管并控制试验吸附剂温度的加热室,以及一个采用硅胶柱的气相色谱仪。在试验过程中,试样管中装入20至50目的粒状试验吸附剂,并接入试验装置系统,以便温度为350℃的氦气流通过该管除去水以及原始试样中存在的其它吸附质(使用硅胶试样时,活化温度为200℃)。这种清洗活化过程持续大约16小时,在此期间,试样管冷却到室温。通过测量管中氦气压由50磅/英寸2下降到15磅/英寸2期间自试样管流出的氦气的体积来确定试样管中的空隙体积。此后,通过调节加热室的温度将试样管及其内部物料的温度调到实验所需要的温度,并将二氧化碳和甲烷的原料混合物在约300磅/英寸2的压力下,在约30分钟内通过该管。通过比较试样管流出物组成与原料组成可确定达到吸附平衡的时间。当达到平衡时,通过将试样管加热到300℃并使氦清洗气流通过该管,然后将流出物收集在一个2000cc的由Hamilton Syringe公司制造的Syringe收集器中,从而试样管空隙中的物料以及试样吸附剂的吸附相得以收集。然后使收集器中的物料穿过气相色谱仪的硅胶柱以确定吸附质的组成。然后在约30磅/英寸2压力下重复这一侧量过程。最后用带物料的试样管重量与空试样管重量之差来确定活化的试样吸附剂的重量。
按前述工艺测试的吸附剂组成如下:
试样A:钠沸石X,SiO2/Al2O3摩尔比为2.6,用约20%(重量)的粘土粘接成直径约为1/16英寸的圆柱状;
试样B:Davison    Chemical公司制造和销售的商品硅胶,用常规方法在200℃活化;
试样C:锌交换钠沸石,Zn+2阳离子含量为77当量百分数,SiO2/Al2O3摩尔比为2.4;
试样D:稀土交换型的沸石X,R.E.+3阳离子含量为91当量百分数;
试样E:氧化铝粘结的沸石Y,活化前80%铵离子交换的沸石Y含量为80%(重量),SiO2/Al2O3摩尔比为4.9,用20%(重量)的氧化铝粘结;
试样F:锌交换型的沸石Y,Zn+2阳离子含量为67当量百分数,SiO2/Al2O3摩尔比为5.2;
试样G:一种市场上可得到的氧化铝粘结的稀土交换的沸石Y。其沸石Y含有约50当量百分数的R.E.+3阳离子,氧化铝粘结组分约占全部组成重量的20%。样品颗粒为直径1.16英寸的挤出的小丸。
试样H:锌交换沸石×,Zn+2阳离子含量为84当量百分数,SiO2/Al2O3摩尔比为3.0,试样在真空中于350℃活化。
钠沸石X试样对目前处理洼地垃圾气流应用最普通的以沸石X为基础的吸附剂是有代表性的。对于市场上可得到的与CH4相比对CO2有优先吸附的非沸石型吸附剂,硅胶试样也是有代表性的。所得试验结果列于表A中。
从表A的数据可看出一些有意义的事实。钠沸石X吸附剂(试样A)有大的选择系数(30磅/英寸2时α=98,300磅/英寸2时α=46),但CO2的δ吸附量较低(4.03%,重量)。钠沸石X吸附剂在目前处理洼地垃圾气的压力变化吸附装置 中是最常选用的。CO2在30磅/英寸2和300磅/英寸2时有高的吸附量表示吸附剂具有直角形的等温线。硅胶试样(试样B)在200℃活化,CO2δ吸附量较好,但CH4吸附量高。与其它的所有被测试的吸附剂相比,CH4的δ吸附量(0.40%,重量)是相当高的,这在本工艺的应用中可能是一个很大的缺点。然而,就本发明的吸附剂而言,可很容易地看出,至少在一个方面它们都优于硅胶和钠沸石X的混合物,并且大部分在不止一个方面上是优越的。ZnX(试样C)的CO2δ吸附量明显地高于NaX,且具有较低的CH4吸附量。ZnX(试样H,经真空活化)具有极低的CH4δ吸附量,其CO2δ吸附量而言,虽然试样D的REX混合物优于NaX,但是其CO2δ吸附量比试样B的硅胶低。REX的CH4δ吸附量仅约为硅胶吸附量的1/3。REX的CO2绝对吸附量优于硅胶,很容易看出,就CO2的δ吸附量而言,铵-氢阳离子型的沸石Y(试样E)大大地优于所有其它被测试的吸附剂,锌交换型沸石Y(试样F)优于除试样E之外的所有其它被测试的沸石试样,而且其CH4的δ吸附量比硅胶的一半还低。试样G的REY混合物具有非常低的CH4δ吸附量及远优于钠沸石X的CO2δ吸附量。
由于上述原因,八面沸石型的SiO2/Al2O3摩尔比大于3的沸石对本工艺而言是较好的,而铵一氢阳离子型的这类沸石则特别好。
表A
压力 α 吸附的CO2吸附的CH4CO2+CH4的 δ吸附量(%重量)
试样 (磅/英寸2) (CO2/CH4) (克/100克(克/100克 总吸附量
吸附剂) 吸附剂) CH4CO2
A    30    98.07    17.22    0.06    17.28
0.11    4.03
A.    300    46.03    21.25    0.17    21.42
B    30    10.36    4.93    0.17    5.10    0.40    10.77
B    300    9.92    15.70    0.58    16.28
C    30.1    21.14    11.13    0.19    11.32    0.04    6.92
C    300    28.83    18.04    0.23    18.27
D    30    15.90    8.37    0.19    8.56    0.14    7.95
D    300    17.90    16.32    0.33    16.65
E    30.3    12.50    11.00    0.32    11.32    0.16    12.02
E    300    17.27    23.02    0.48    23.50
F    30.1    21.43    11.79    0.20    11.99    0.16    10.06
F    300    21.96    21.85    0.36    22.21
G    30    10.34    8.05    0.28    8.83    0.04    8.60
G    300    19.14    16.65    0.32    16.97
H    30.1    21.88    12.07    0.20    12.27    0.0    5.88
H    300    32.77    17.95    0.20    18.15

Claims (9)

1、通过对CO2的选择性吸附,从含有非酸性气体的混合物中选择性地分离CO2的循环工艺,它包括下面几步:
(a)提供一个含有八面沸石型的沸石分子筛的固定吸附床,其分子筛的SiO2/Al2O3摩尔比为2-6,并含有至少20当量百分数的选自锌、稀土、氢和铵阳离子中的一种离子,
(b)让上述的气体混合物进入上述的床,温度为-50℃-100℃,压力为0.2-1000磅/英寸2,这样CO2选择性地吸附在上述的混石上,并得到消耗了CO2的气体混合物,
(c)在CO2从出口端穿透之前,让上述的气流停止进入上述的床,
(d)让上述的床内的压力降到低于步骤(b)的吸附压力,并降到0.1-500磅/英寸2的范围内而使CO2解吸,使该吸附床再生,及
(e)重复(a)到(d)的步骤。
2、根据权利要求1的工艺,其中CO2和非酸性气体的混合物含CO2和CH4
3、根据权利要求1的工艺,其中CO2和非酸性气体的混合物含CO2和H2
4、根据权利要求1的工艺,其中CO2和非酸性气体的混合物含CO2和N2
5、根据权利要求1的工艺,其中被处理的气体混合物中CO2含量至少为5摩尔百分数,沸石分子筛框架中SiO2/Al2O3比值为2-6,而该沸石分子筛至少含20当量百分数的选自锌、稀土、氢和铵阳离子中的一种离子。
6、根据权利要求5的工艺,其中沸石分子筛至少含40当量百分数的选自锌、稀土、氢和铵阳离子中的一种离子,及小于40当量百分数的碱金属或碱土金属阳离子。
7、根据权利要求6的工艺,其中CO2和非酸性气体的混合物含CO2和CH4
8、根据权利要求6的工艺,其中CO2和非酸性气体的混合物含CO2和H2
9、根据权利要求6的工艺,其中CO2和非酸性气体的混合物含CO2和N2
CN88108824A 1987-11-05 1988-11-04 二氧化碳在沸石上的选择性吸附 Expired CN1014587B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US117,688 1987-11-05
US07/117,688 US4775396A (en) 1987-11-05 1987-11-05 Selective adsorption of CO2 on zeolites

Publications (2)

Publication Number Publication Date
CN1036338A CN1036338A (zh) 1989-10-18
CN1014587B true CN1014587B (zh) 1991-11-06

Family

ID=22374274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88108824A Expired CN1014587B (zh) 1987-11-05 1988-11-04 二氧化碳在沸石上的选择性吸附

Country Status (18)

Country Link
US (1) US4775396A (zh)
EP (1) EP0316665B1 (zh)
JP (1) JPH0688768B2 (zh)
KR (1) KR930006400B1 (zh)
CN (1) CN1014587B (zh)
AR (1) AR241892A1 (zh)
AT (1) ATE71553T1 (zh)
AU (1) AU607017B2 (zh)
BR (1) BR8805757A (zh)
CA (1) CA1312829C (zh)
DE (1) DE3867806D1 (zh)
EG (1) EG18731A (zh)
GR (1) GR3004057T3 (zh)
IN (1) IN172068B (zh)
MY (1) MY104108A (zh)
NO (1) NO171351C (zh)
NZ (1) NZ226842A (zh)
ZA (1) ZA888292B (zh)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641542B1 (fr) * 1988-11-15 1994-06-24 Elf Aquitaine Procede de decarbonatation et de degazolinage simultanes d'un melange gazeux constitue principalement d'hydrocarbures consistant en methane et hydrocarbures en c2 et plus et renfermant egalement co2
US4957514A (en) * 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
US4964888A (en) * 1989-12-27 1990-10-23 Uop Multiple zone adsorption process
US5013334A (en) * 1990-01-09 1991-05-07 Uop Methane purification by pressure swing adsorption
CA2041874C (en) * 1990-01-09 1999-04-06 Richard T. Maurer Separation of ethane from methane by pressure swing adsorption
US5100635A (en) * 1990-07-31 1992-03-31 The Boc Group, Inc. Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
FR2691379B1 (fr) * 1992-05-19 1994-08-05 Carrar Utilisation de deca-dodecasil 3r pour l'adsorption et la detection de gaz carbonique.
JP2559557B2 (ja) * 1993-02-04 1996-12-04 共栄物産株式会社 生コンクリートもしくはコンクリート二次製品製造時に排出されるスラッジを用いた二酸化炭素消費材およびその製造方法並びに排ガス中の二酸化炭素消費方法
EP0652047B1 (en) * 1993-11-10 1999-10-27 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent
US5464467A (en) * 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5587003A (en) * 1995-03-21 1996-12-24 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5846295A (en) * 1997-03-07 1998-12-08 Air Products And Chemicals, Inc. Temperature swing adsorption
US5779767A (en) * 1997-03-07 1998-07-14 Air Products And Chemicals, Inc. Use of zeolites and alumina in adsorption processes
US5846298A (en) * 1997-05-09 1998-12-08 Air Products And Chemicals, Inc. Ozone recovery by zeolite adsorbents
US5938819A (en) * 1997-06-25 1999-08-17 Gas Separation Technology Llc Bulk separation of carbon dioxide from methane using natural clinoptilolite
US5980611A (en) * 1997-09-25 1999-11-09 The Boc Group, Inc. Air purification process
US6238460B1 (en) 1997-09-26 2001-05-29 The Boc Group, Inc. Air purification process
FR2773499B1 (fr) * 1998-01-14 2000-02-11 Air Liquide Procede de purification par adsorption de l'air avant distillation cryogenique
CA2264418C (en) * 1998-03-12 2002-05-14 Adeola Florence Ojo Removal of carbon dioxide from gas streams
US6024781A (en) * 1998-04-17 2000-02-15 The Boc Group, Inc. Separation of carbon dioxide and hydrocarbons
US6183539B1 (en) * 1998-07-01 2001-02-06 Zeochem Co. Molecular sieve adsorbent for gas purification and preparation thereof
US6080226A (en) * 1998-09-30 2000-06-27 Uop Llc Nitrous oxide purification by pressure swing adsorption
FR2796570B1 (fr) 1999-07-22 2002-06-07 Air Liquide Adsorbant a selectivite amelioree pour la separation des gaz
FR2800995B1 (fr) * 1999-10-05 2002-01-04 Ceca Sa Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux
US6096194A (en) * 1999-12-02 2000-08-01 Zeochem Sulfur adsorbent for use with oil hydrogenation catalysts
EP1142622B1 (en) * 2000-04-04 2006-06-21 Tosoh Corporation Method of adsorptive separation of carbon dioxide
US6596256B1 (en) 2000-08-28 2003-07-22 The Boc Group, Inc. Synthesis of low silicon sodium X zeolite
US6432171B1 (en) 2000-08-28 2002-08-13 The Boc Group, Inc. Thermal swing adsorption process
US6416569B1 (en) 2000-08-28 2002-07-09 The Boc Group, Inc. Temperature swing adsorption process
US6409800B1 (en) 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
FR2832141B1 (fr) * 2001-11-14 2004-10-01 Ceca Sa Procede de purification de gaz de synthese
WO2005053831A2 (en) * 2003-11-26 2005-06-16 Cabot Corporation Fuel reformer catalyst and absorbent materials
US7732372B2 (en) * 2003-11-26 2010-06-08 Cabot Corporation Particulate absorbent materials
US7267811B2 (en) * 2003-11-26 2007-09-11 Cabot Corporation Fuel reformer catalyst and absorbent materials
EP1786540A4 (en) 2004-08-03 2008-05-07 Univ Colorado MEMBRANES FOR HIGH-DETECTIVE SEPARATIONS
US7404846B2 (en) * 2005-04-26 2008-07-29 Air Products And Chemicals, Inc. Adsorbents for rapid cycle pressure swing adsorption processes
WO2007134094A2 (en) * 2006-05-15 2007-11-22 The Regents Of The University Of Colorado, A Body Corporate High flux and selectivity sapo-34 membranes for co2/ch4 separations
TW200904752A (en) * 2007-03-09 2009-02-01 Univ Colorado Regents Synthesis of zeolites and zeolite membranes using multiple structure directing agents
US8529663B2 (en) * 2007-05-18 2013-09-10 Exxonmobil Research And Engineering Company Process for removing a target gas from a mixture of gases by swing adsorption
AU2008254512B2 (en) * 2007-05-18 2012-03-01 Exxonmobil Upstream Research Company Process for removing a target gas from a mixture of gases by thermal swing adsorption
US7959720B2 (en) * 2007-05-18 2011-06-14 Exxonmobil Research And Engineering Company Low mesopore adsorbent contactors for use in swing adsorption processes
US8545602B2 (en) * 2007-05-18 2013-10-01 Exxonmobil Research And Engineering Company Removal of CO2, N2, and H2S from gas mixtures containing same
US8444750B2 (en) * 2007-05-18 2013-05-21 Exxonmobil Research And Engineering Company Removal of CO2, N2, or H2S from gas mixtures by swing adsorption with low mesoporosity adsorbent contactors
EA015731B1 (ru) * 2007-05-18 2011-10-31 Эксонмобил Рисерч Энд Инджиниринг Компани Способ удаления coиз потока газовой смеси
US8529662B2 (en) * 2007-05-18 2013-09-10 Exxonmobil Research And Engineering Company Removal of heavy hydrocarbons from gas mixtures containing heavy hydrocarbons and methane
JP5186410B2 (ja) * 2008-02-14 2013-04-17 公益財団法人地球環境産業技術研究機構 Co2分離剤、及びco2の選択的分離方法
US8142746B2 (en) * 2008-02-21 2012-03-27 Exxonmobil Research And Engineering Company Separation of carbon dioxide from methane utilizing zeolitic imidazolate framework materials
US8142745B2 (en) * 2008-02-21 2012-03-27 Exxonmobil Research And Engineering Company Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials
US8071063B2 (en) * 2008-02-21 2011-12-06 Exxonmobile Research And Engineering Company Separation of hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials
CA2657127C (en) 2009-03-05 2016-07-05 The Governors Of The University Of Alberta Removal of carbon dioxide from paraffins
WO2010109477A2 (en) 2009-03-27 2010-09-30 Council Of Scientific & Industrial Research A process for the preparation of molecular sieve adsorbent for the size/shape selective adsorption of carbon dioxide from its gaseous mixture with nitrogen
WO2010113169A1 (en) 2009-03-31 2010-10-07 Council Of Scientific & Industrial Research A process for the preparation and use of pentasil type zeolite for the selective adsorption of carbon dioxide from flue gas
AU2011245307B2 (en) 2010-04-29 2014-10-09 The Regents Of The University Of Colorado, A Body Corporate High flux SAPO-34 membranes for CO2/CH4 separation and template removal method
US8328911B2 (en) 2010-06-21 2012-12-11 The University Of Kentucky Research Foundation Method for removing CO2 from coal-fired power plant flue gas using ammonia as the scrubbing solution, with a chemical additive for reducing NH3 losses, coupled with a membrane for concentrating the CO2 stream to the gas stripper
US8337593B2 (en) 2010-08-18 2012-12-25 Uop Llc Process for purifying natural gas and regenerating one or more adsorbers
KR20130141563A (ko) * 2011-03-31 2013-12-26 다이요 닛산 가부시키가이샤 가스 정제 방법
FR2979253B1 (fr) * 2011-08-26 2014-07-25 IFP Energies Nouvelles Procede et dispositif de separation par adsorption modulee en pression du dioxyde de carbone contenu dans le flux de sortie d'une unite de reformage a la vapeur
US20150369533A1 (en) * 2013-01-29 2015-12-24 Joseph Company International, Inc. Carbon dioxide charging apparatus and method for heat exchange unit
US9155996B2 (en) * 2013-03-14 2015-10-13 Board Of Trustees Of The Leland Stanford Junior University Sorbents for carbon dioxide capture
US9403148B2 (en) * 2014-06-23 2016-08-02 Saudi Arabian Oil Company Synthesis of ultra-small pore aluminosilicates by controlled structural collapse of zeolites
CN104353422A (zh) * 2014-10-21 2015-02-18 繁昌县倍思生产力促进中心有限公司 一种抗菌口罩吸附剂及其制备方法
WO2017048742A1 (en) 2015-09-16 2017-03-23 Uop Llc Pressure swing adsorption process and apparatus for purifying a hydrogen-containing gas stream
US10399007B2 (en) 2016-11-08 2019-09-03 Uop Llc Temperature swing adsorption process and apparatus with closed loop regeneration
CN106914214B (zh) * 2017-03-15 2019-08-16 中国科学院上海高等研究院 用于盐碱土改良的烟气净化吸附剂及盐碱土改良方法
FR3078897B1 (fr) 2018-03-18 2022-05-06 Arkema France Procede de decarbonatation de flux gazeux

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6503410A (zh) * 1963-02-21 1965-09-20
CA996472A (en) * 1972-07-13 1976-09-07 Hanju Lee Method for the selective removal of hydrogen sulfide from a carbon dioxide containing stream
JPS54146283A (en) * 1978-05-09 1979-11-15 Toray Ind Inc Paraxylene separating adsorbent
US4481018A (en) * 1982-11-15 1984-11-06 Air Products And Chemicals, Inc. Polyvalent ion exchanged adsorbent for air separation
GB8334610D0 (en) * 1983-12-30 1984-02-08 Bp Chem Int Ltd Selective absorption of carbon monoxide on zeolites
GB8421918D0 (en) * 1984-08-30 1984-10-03 Bp Chem Int Ltd Selective adsorption of carbon dioxide
US4557736A (en) * 1984-10-29 1985-12-10 Air Products And Chemicals, Inc. Binary ion exchanged type X zeolite adsorbent
ATE77255T1 (de) * 1987-03-09 1992-07-15 Uop Inc Adsorptives reinigungsverfahren.

Also Published As

Publication number Publication date
AU607017B2 (en) 1991-02-21
MY104108A (en) 1993-12-31
US4775396A (en) 1988-10-04
BR8805757A (pt) 1989-07-25
EP0316665A1 (en) 1989-05-24
NO884927L (no) 1989-05-08
KR930006400B1 (ko) 1993-07-14
NO171351B (no) 1992-11-23
EP0316665B1 (en) 1992-01-15
NO884927D0 (no) 1988-11-04
AR241892A1 (es) 1993-01-29
NO171351C (no) 1993-03-03
ZA888292B (en) 1989-07-26
AU2465388A (en) 1989-05-11
JPH01160816A (ja) 1989-06-23
NZ226842A (en) 1990-03-27
EG18731A (en) 1994-02-28
CN1036338A (zh) 1989-10-18
GR3004057T3 (zh) 1993-03-31
CA1312829C (en) 1993-01-19
KR890007781A (ko) 1989-07-05
ATE71553T1 (de) 1992-02-15
DE3867806D1 (de) 1992-02-27
JPH0688768B2 (ja) 1994-11-09
IN172068B (zh) 1993-03-27

Similar Documents

Publication Publication Date Title
CN1014587B (zh) 二氧化碳在沸石上的选择性吸附
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US5174979A (en) Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
CA2236611C (en) Ozone recovery by zeolite adsorbents
US8500850B2 (en) Process and zeolitic materials for the separation of gases
US4859217A (en) Process for separating nitrogen from mixtures thereof with less polar substances
EP1370341B1 (en) Pressure swing adsorption process
US6544318B2 (en) High purity oxygen production by pressure swing adsorption
US20030172808A1 (en) Method for purifying hydrogen-based gas mixtures using a calcium x- zeolite
EP1243328B1 (en) Argon/Oxygen selective x-zeolite
US20070243129A1 (en) Exchange cation selection in ETS-4 to control adsorption strength and effective pore diameter
CN1127153A (zh) 通过吸附从气体混合物中分离氮气的方法
CA2137941C (en) Enhanced gas separations and zeolite compositions therefor
EP1351753A2 (en) Selective removal of nitrogen from natural gas by pressure swing adsorption
EP1163042A1 (en) Selective removal of nitrogen from natural gas by pressure swing adsorption
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
US6261344B1 (en) PSA process using a faujasite zeolite containing metal cations as adsorbent
EP0192394B1 (en) Selective adsorption process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee