CN101450328B - 一种Fe-C-TiO2纳米管阵列的制备方法 - Google Patents
一种Fe-C-TiO2纳米管阵列的制备方法 Download PDFInfo
- Publication number
- CN101450328B CN101450328B CN2008101439947A CN200810143994A CN101450328B CN 101450328 B CN101450328 B CN 101450328B CN 2008101439947 A CN2008101439947 A CN 2008101439947A CN 200810143994 A CN200810143994 A CN 200810143994A CN 101450328 B CN101450328 B CN 101450328B
- Authority
- CN
- China
- Prior art keywords
- tio
- preparation
- nanotube array
- nano
- tube array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002071 nanotube Substances 0.000 title claims abstract description 80
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims description 36
- 239000002131 composite material Substances 0.000 claims abstract description 30
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000009713 electroplating Methods 0.000 claims abstract description 20
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 19
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 12
- 239000010936 titanium Substances 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 238000002425 crystallisation Methods 0.000 claims abstract 2
- 230000008025 crystallization Effects 0.000 claims abstract 2
- 239000007788 liquid Substances 0.000 claims abstract 2
- 239000000758 substrate Substances 0.000 claims abstract 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 37
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000005486 organic electrolyte Substances 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000004070 electrodeposition Methods 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 150000001721 carbon Chemical group 0.000 claims 1
- 238000003763 carbonization Methods 0.000 claims 1
- 230000018044 dehydration Effects 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 10
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 239000012467 final product Substances 0.000 abstract description 3
- 231100000331 toxic Toxicity 0.000 abstract description 3
- 230000002588 toxic effect Effects 0.000 abstract description 3
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 239000003344 environmental pollutant Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000011259 mixed solution Substances 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 231100000719 pollutant Toxicity 0.000 abstract description 2
- 238000000746 purification Methods 0.000 abstract description 2
- 239000010865 sewage Substances 0.000 abstract description 2
- 238000005868 electrolysis reaction Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 abstract 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 238000003491 array Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 10
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- -1 non-toxic treatment Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
一种Fe-C-TiO2纳米管阵列的制备方法,是在氢氟酸与二甲基亚砜混合液中电解制备氧化钛纳米管阵列于Ti基底材料上,并将所得的氧化钛纳米管阵列煅烧使其晶化成型;然后,将TiO2纳米管阵列置于无氧真空系统中煅烧,以聚乙二醇为碳源,制备C-TiO2复合纳米管阵列;将C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,制备出Fe-C-TiO2纳米管阵列。本发明具有工艺方法简单、操作方便、可有效增强最终产物二氧化钛纳米管阵列的吸附能力和电子传导能力,拓宽其在可见光区的吸收范围,提高其光电转换效率,工艺成熟,可实现工业化大规模生产,在有毒有害污染物的降解、无毒化处理,污水纯化等领域有着潜在的广阔应用前景。
Description
技术领域
杨丽霞13469053029
本发明涉及一种高效环境功能纳米材料的制备方法,特别是指一种Fe-C-TiO2纳米管阵列的制备方法。
背景技术
阳极氧化法制备二氧化钛纳米管阵列,具有比表面积大,孔径可调等优良特性,其特殊的纳米管状结构,已成为各国科学领域的研究热点。阳极氧化法制备二氧化钛纳米管阵列的电解液通常为无机水溶液体系,由于各种离子在水溶液中迁移速度相对较快,电化学阳极氧化的速度也快,可在比较短的时间内形成纳米管阵列。但施加的阳极氧化电压一般只能在10~25V的范围内,超出此电压范围就不能形成纳米管状结构,这同时在一定程度上限制了纳米管的管径,而且在水溶液体系中制备的纳米管管壁较薄,容易破损。200410021589.X公开了一种高长径比二氧化钛纳米管阵列的制备方法,其电解液的溶质为氟化物和支持电解质,溶剂为水,并加入醇类添加剂,在3~50V电压条件下电解,这种纳米管管子仍较短,只有250纳米长,比表面积不够大,且只能吸收紫外光区的光,不能充分利用自然界太阳光。目前,国内外还没有多种元素同时修饰阳极氧化法制备的二氧化钛纳米管阵列的报道。
发明内容
本发明的目的在于克服现有技术之不足而提供一种工艺方法简单、操作方便、可有效增强最终产物二氧化钛纳米管阵列的吸附能力和电子传导能力,拓宽其在可见光区的吸收范围,提高其光电转换效率的Fe-C-TiO2纳米管阵列的制备方法。
本发明---一种Fe-C-TiO2纳米管阵列的制备方法,包括以下步骤:
(1)将Ti基底材料表面打磨,清洗干净备用;
(2)有机电解液的配制:
电解液为HF质量百分含量为0.5-3%的氢氟酸与二甲基亚砜混合液。
(3)氧化钛纳米管的制备:
在35~60V直流电压下,以纯钛或钛合金为阳极,铂片为阴极,在步骤(2)所配置的电解液中电解制备氧化钛纳米管阵列;将所得的氧化钛纳米管阵列在400-500℃有氧条件下煅烧4-6h,使其晶化成型。
(4)C-TiO2复合纳米管阵列的制备:
将步骤(3)所得TiO2纳米管阵列置于无氧真空系统中,以聚乙二醇为碳源,于500-600℃煅烧2-12h,使聚乙二醇脱水碳化,所得碳原子沉积在TiO2纳米管的内壁上,得到C-TiO2复合纳米管阵列。
(5)Fe-C-TiO2复合纳米管阵列的制备:
将步骤(4)所得的C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,使铁纳米颗粒电沉积在C-TiO2复合纳米管内壁上得到Fe-C-TiO2纳米管阵列,电镀电流密度为0.002~0.005A/s。
本发明中,所述电解制备氧化钛纳米管的直流电压为45-55V。
本发明中,所述电解制备氧化钛纳米管的直流电压为50V。
本发明中,所述聚乙二醇于500-600℃煅烧5-9h。
本发明中,所述聚乙二醇于500-600℃煅烧7h。
本发明中,所述电镀电流密度为0.003~0.004A/s。
本发明中,所述电镀电流密度为0.0035A/s。
本发明的机理及具有的优点简述于下:
本发明在基于应用阳极氧化法制备的TiO 2 纳米管阵列具有比较面积大,孔径可调等优良特性上,通过在高温有氧条件下煅烧,使其转化为晶态良好、光电转换性能良好的TiO2纳米管阵列,然后,通过真空高温化学气相沉积法将碳沉积在TiO2纳米管内壁上,使得C-TiO2复合纳米管阵列具有了更强的吸附力和电子传导能力,而进一步通过简单易行的电化学方法将铁纳米颗粒沉积在C-TiO2复合纳米管的内部,又提高了在光催化反应过程中羟基自由基的浓度。经过铁、碳修饰的TiO2纳米管阵列,有效地扩展了TiO2在可见光区的吸收范围,并且降低光腐蚀,提高了其光电转换效率,在光催化降解有毒有机污染物如永久性有机污染物(POPs)和重金属离子光还原研究中,展现出优良的光催化效率。本发明---一种Fe-C-TiO2纳米管阵列的制备方法,具有工艺方法简单、操作方便、可有效增强最终产物二氧化钛纳米管阵列的吸附能力和电子传导能力,拓宽其在可见光区的吸收范围,提高其光电转换效率,工艺成熟,可实现工业化大规模生产,在有毒有害污染物的降解、无毒化处理,污水纯化等领域有着潜在的广阔应用前景。
附图说明
附图1为碳修饰的TiO2纳米管阵列的扫描电子显微镜图。
附图2为C-TiO2纳米管阵列的透射电子显微镜图。
附图3为C-TiO2复合纳米管阵列的拉曼光谱图。
附图4A为C-TiO2纳米管阵列刚刚放置于甲基橙溶液中的照片。
附图4B为C-TiO2纳米管阵列放置于甲基橙溶液中30分钟后的照片。
附图5为Fe-C-TiO2纳米管上Fe的循环伏安特征谱图。
附图6为Fe-C-TiO2纳米管阵列的交流阻抗谱。
附图1中,扫描电子显微镜放大倍率为15000倍;附图2中,透射电子显微镜放大倍率为50000倍;附图1、2显示C-TiO2纳米管长5微米,管径200纳米。
附图3中,C-TiO2复合纳米管阵列的拉曼光谱表明C-TiO2复合材料的组分分别是锐钛矿、金红石和碳。
附图4A、附图4B充分展示了Fe-C-TiO2复合纳米材料的高吸附特性,这是常规TiO2纳米材料所不具备的性质。在光催化降解甲基橙实验中,Fe-C-TiO2复合纳米管阵列展示的光催化效率是未修饰TiO2纳米管阵列的8倍。
附图5的Fe-C-TiO2纳米管上Fe的循环伏安特征谱图证明了铁的存在。
附图6的Fe-C-TiO2纳米管阵列的交流阻抗谱图说明Fe-C-TiO2具有良好的电子传导能力,而未经修饰的纳米TiO2的导电能力非常差,接近绝缘体。
具体实施方式
实施例1:
(1)将Ti基底材料表面打磨,清洗干净备用;
(2)有机电解液配制:
量取1.47mL质量百分含量为40%的氢氟酸(HF)溶液,与28.53mL的无水二甲基亚砜(DMSO)均匀混合,配制成HF质量百分含量为2%的DMSO溶液;
(3)制备氧化钛纳米管阵列:
以纯度99.9%以上的钛片(1*4cm)为阳极,铂片(1*2cm)为阴极,在45V直流电压下,电解2小时,即可制得长5微米的氧化钛纳米管;在450℃有氧条件下将以上制备的无定形氧化钛纳米管阵列煅烧5h,使其晶化。
(4)C-TiO2复合纳米管阵列的制备:
将步骤(3)所得TiO2纳米管阵列置于无氧真空系统中的石墨槽中,加入0.2g聚乙二醇为碳源,真空条件加热至550℃,保温6h,降至室温。
(5)Fe-C-TiO2复合纳米管阵列的制备:
将步骤(4)所得的C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,使铁纳米颗粒电沉积在C-TiO2复合纳米管的内壁上得到Fe-C-TiO2纳米管阵列,电镀电流密度为0.004A/s,电镀时间为150s。
实施例2:
(1)将Ti基底材料表面打磨,清洗干净备用;
(2)有机电解液配制:
量取2.21mL质量百分含量为40%的氢氟酸(HF)溶液,与27.79mL的无水二甲基亚砜(DMSO)均匀混合,配制成HF质量百分含量为3%的DMSO溶液;
(3)制备氧化钛纳米管阵列:以纯度99.9%以上的钛片(1*4cm)为阳极,铂片(1*2cm)为阴极,在60V直流电压下,电解1小时,即可制得长12微米的纳米管。在500℃有氧条件下将以上制备的氧化钛纳米管阵列煅烧6h,使其晶化。
(4)C-TiO2复合纳米管阵列的制备:
将步骤(3)所得TiO2纳米管阵列置于无氧真空系统中的石墨槽中,加入0.4g聚乙二醇为碳源,真空条件加热至600℃,保温12h,降至室温。
(5)Fe-C-TiO2复合纳米管阵列的制备:
将步骤(4)所得的C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,使铁纳米颗粒电沉积在C-TiO2复合纳米管的内壁得到Fe-C-TiO2纳米管阵列,电镀电流密度为0.005A/s,电镀时间为300s。
实施例3:
(1)将Ti基底材料表面打磨,清洗干净备用;
(2)配制有机电解液:
量取0.375mL质量百分含量为40%的氢氟酸(HF)溶液,与29.625mL的无水二甲基亚砜(DMSO)均匀混合,配制成HF质量百分含量为0.5%的DMSO溶液;
(3)制备氧化钛纳米管阵列:以纯度99.9%以上的钛片(1*4cm)为阳极,铂片(1*2cm)为阴极,在35V直流电压下,电解4小时,即可制得长2微米的纳米管。在400℃有氧条件下将以上制备的无定形氧化钛纳米管阵列煅烧4h,使其晶化。
(4)C-TiO2复合纳米管阵列的制备:
将步骤(3)所得TiO2纳米管阵列置于无氧真空系统中的石墨槽中,加入0.05g聚乙二醇为碳源,真空条件加热至500℃,保温2h,降至室温。
(5)Fe-C-TiO2复合纳米管阵列的制备:
将步骤(4)所得的C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,使铁纳米颗粒电沉积在C-TiO2复合纳米管的内壁上得到Fe-C-TiO2纳米管阵列,电镀电流密度为0.002A/s,电镀时间为60s。
Claims (7)
1.一种Fe-C-TiO2纳米管阵列的制备方法,包括以下步骤:
(1)将Ti基底材料表面打磨,清洗干净备用;
(2)有机电解液的配制:
电解液为HF质量百分含量为0.5-3%的氢氟酸与二甲基亚砜混合液;
(3)氧化钛纳米管的制备:
在35~60V直流电压下,以纯钛或钛合金为阳极,铂片为阴极,在步骤(2)所配置的电解液中电解制备氧化钛纳米管阵列;将所得的氧化钛纳米管阵列在400-500℃有氧条件下煅烧4-6h,使其晶化成型;
(4)C-TiO2复合纳米管阵列的制备:
将步骤(3)所得TiO2纳米管阵列置于无氧真空系统中,以聚乙二醇为碳源,于500-600℃煅烧2-12h,使聚乙二醇脱水碳化,所得碳原子沉积在TiO2纳米管的内壁上,得到C-TiO2复合纳米管阵列;
(5)Fe-C-TiO2复合纳米管阵列的制备:
将步骤(4)所得的C-TiO2复合纳米管阵列置于FeSO4电镀液中电镀,使铁纳米颗粒电沉积在C-TiO2复合纳米管内壁上得到Fe-C-TiO2纳米管阵列,电镀电流密度为0.002~0.005A/s。
2.根据权利要求1所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述电解制备氧化钛纳米管的直流电压为45-55V。
3.根据权利要求1或2所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述电解制备氧化钛纳米管的直流电压为50V。
4.根据权利要求1所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述聚乙二醇于500-600℃煅烧5-9h。
5.根据权利要求1或4所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述聚乙二醇于500-600℃煅烧7h。
6.根据权利要求1所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述电镀电流密度为0.003~0.004A/s。
7.根据权利要求1或6所述的一种Fe-C-TiO2纳米管阵列的制备方法,其特征在于:所述电镀电流密度为0.0035A/s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101439947A CN101450328B (zh) | 2008-12-17 | 2008-12-17 | 一种Fe-C-TiO2纳米管阵列的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101439947A CN101450328B (zh) | 2008-12-17 | 2008-12-17 | 一种Fe-C-TiO2纳米管阵列的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101450328A CN101450328A (zh) | 2009-06-10 |
CN101450328B true CN101450328B (zh) | 2010-12-15 |
Family
ID=40732918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101439947A Expired - Fee Related CN101450328B (zh) | 2008-12-17 | 2008-12-17 | 一种Fe-C-TiO2纳米管阵列的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101450328B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871117B (zh) * | 2010-06-30 | 2011-11-23 | 湖南大学 | 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列制备方法 |
CN102140660B (zh) * | 2011-01-18 | 2012-04-25 | 浙江大学 | 超声辅助TiO2/Ag3PO4复合纳米管阵列材料的电化学制备方法 |
CN104593849A (zh) * | 2014-12-23 | 2015-05-06 | 昆明理工大学 | 一种渗碳的二氧化钛纳米管阵列的制备方法及应用 |
-
2008
- 2008-12-17 CN CN2008101439947A patent/CN101450328B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101450328A (zh) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101851772B (zh) | 一种Cu2O/TiO2纳米管阵列及其制备方法 | |
Gong et al. | Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting | |
Yin et al. | Enhanced solar water-splitting efficiency using core/sheath heterostructureCdS/TiO2 nanotube arrays | |
Yuan et al. | Facile synthesis of Co0. 85Se nanotubes/reduced graphene oxide nanocomposite as Pt-free counter electrode with enhanced electrocatalytic performance in dye-sensitized solar cells | |
Xu et al. | Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting | |
Zhu et al. | CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property | |
Gao et al. | Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-heterojunction structure for highly efficient photoelectrochemical hydrogen production | |
CN102517601B (zh) | 一种表面组装有石墨烯的Cu2O/TiO2纳米管阵列电极的制备方法 | |
Matsuda et al. | Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation | |
CN105597784B (zh) | MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用 | |
CN106848494B (zh) | 一种碳自掺杂氮化碳纳米薄膜电极的简单制备方法 | |
CN103132120B (zh) | 一种制备可高效降解有机污染物的光电催化电极材料的方法 | |
CN102071449A (zh) | 一种环境功能纳米材料—Cu-Fe/TiO2纳米管阵列及其制备和应用 | |
CN103132119B (zh) | 一种石墨烯/TiO2花状纳米簇的制备方法 | |
CN107833758B (zh) | 一种镍基一体化电极的制备方法及应用 | |
CN105986292B (zh) | 一种钴、镍双层氢氧化物修饰的二氧化钛纳米管阵列的制备方法及光电化学水解制氢应用 | |
CN101109096A (zh) | 钼钨掺杂阳极氧化法制备二氧化钛纳米管阵列的方法 | |
CN104805463B (zh) | 一种具有光催化性能的钨酸铋纳米薄膜及其制备方法和用途 | |
CN102485968A (zh) | 锌掺杂二氧化钛纳米管阵列的制备方法 | |
Gao et al. | In situ synthesis of cobalt triphosphate on carbon paper for efficient electrocatalyst in dye-sensitized solar cell | |
CN105289660B (zh) | 一种铁酸镁/硫化钼异质结纳米线的合成方法和用途 | |
Darrudi et al. | Electrochemical co-deposition of cobalt and graphene, produced from recycled polypropylene, on TiO2 nanotube as a new catalyst for photoelectrochemical water splitting | |
Dong et al. | NaBH4 reduction of TiSiO nanotubes photoanode for high-efficiency photoelectrochemical water splitting | |
CN101450328B (zh) | 一种Fe-C-TiO2纳米管阵列的制备方法 | |
Chun et al. | Fabrication of dye-sensitized solar cells using TiO2-nanotube arrays on Ti-grid substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101215 Termination date: 20121217 |