CN101449229A - 用于控制触觉装置的方法和设备 - Google Patents

用于控制触觉装置的方法和设备 Download PDF

Info

Publication number
CN101449229A
CN101449229A CNA2007800181132A CN200780018113A CN101449229A CN 101449229 A CN101449229 A CN 101449229A CN A2007800181132 A CNA2007800181132 A CN A2007800181132A CN 200780018113 A CN200780018113 A CN 200780018113A CN 101449229 A CN101449229 A CN 101449229A
Authority
CN
China
Prior art keywords
actuator
haptic
load
signal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800181132A
Other languages
English (en)
Other versions
CN101449229B (zh
Inventor
A·E·奎德
姜孝植
D·摩西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mako Surgical Corp
Original Assignee
Mako Surgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mako Surgical Corp filed Critical Mako Surgical Corp
Publication of CN101449229A publication Critical patent/CN101449229A/zh
Application granted granted Critical
Publication of CN101449229B publication Critical patent/CN101449229B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Control Of Electric Motors In General (AREA)
  • Mechanical Control Devices (AREA)

Abstract

本发明涉及一种用于控制触觉装置的方法和设备。在一个实施例中,触觉装置包括:致动器;产生表示致动器速度的致动器信号的致动器传感器;负载;产生表示负载位置的负载输出信号的负载输出传感器;以及与负载输出传感器、致动器传感器和致动器进行电通信的控制器。控制器响应于致动器信号和负载输出信号控制致动器,以提供对用户的触觉响应。在一个实施例中,用于控制触觉装置的致动器的方法包括以下步骤:产生表示致动器的速度的致动器信号;产生表示负载的位置的位置信号;以及响应于致动器信号和负载输出位置信号控制致动器以产生对用户的触觉响应。

Description

用于控制触觉装置的方法和设备
技术领域
本发明总体上涉及触觉装置领域,更具体地涉及触觉装置控制器领域。
背景技术
线缆驱动触觉装置包含具有近端(或驱动端)和远端(或负载端)的线缆传动系统。近端包括致动器(如电机等,但不限于电机),该致动器驱动传动系统由此将负载传递到远端的端点。典型地,触觉装置的端点被布置在实际空间中,并且触觉表达算法产生位于实际空间中的虚拟的触觉面(或触觉对象)。触觉装置使用户能够与虚拟触觉面进行交互,例如,当端点遇到触觉面时,通过控制致动器将负载传递到传动系统的远端而使用户能够与虚拟触觉面进行交互。用户典型地握住触觉装置的远端或者工具或者附着到触觉装置的远端的装置。这样,触觉装置使用户能够“感觉到”触觉面。
传统的线缆驱动触觉装置可包括在线缆传动系统(cabletransmission)的近端处安装有致动器的传感器(例如编码器等位置传感器)。来自致动器传感器的数据(例如电机角度)被输入到正向运动学处理(forward kinematics process)以计算端点的位置。尽管该方案使触觉装置具有良好的触觉性能,但是存在以下缺点:由于线缆传动系统中的柔量和滞后引起算出的端点位置、并由此使实际空间中的触觉面可能不与端点的实际位置对应。例如,当用户向触觉装置的远端施力时,线缆传动系统可能弯曲,导致即使控制器保持致动器输出位置但端点也移动。也就是说,即使致动器尝试响应以保持希望的位置,但线缆传动系统的线缆的柔量使得端点发生一些移动。该移动导致实际端点位置相对于控制器基于致动器输出位置算出的端点位置之间的误差。
对于用户与虚拟环境进行交互的触觉应用,例如,当使用传统的线缆驱动触觉装置来修改虚拟CAD模型时(其中触觉装置使用户能够“感觉到”虚拟CAD模型的表面),在触觉装置的实际端点位置和算出的端点位置之间的误差并不重要,这是因为不需要在触觉装置的实际工作空间中精确定位触觉面。从而,触觉面可以被初始定位在工作空间内的不影响用户与虚拟环境进行交互的任何方便的地方。为此,传统的线缆驱动触觉装置的端点定位精度甚至被认为是不重要的。此外,这样的触觉装置通常被设计成紧凑的且具有最小的运动质量和惯性,因此,它们典型地没有额外的位置传感器,尤其是在传动系统的负载端没有额外的位置传感器,其中传感器将对触觉性能具有较大的不利影响。
然而,一些触觉应用可能需要高级别的端点定位精度。例如,在外科医生使用触觉装置来进行外科切割手术的计算机辅助外科手术中,触觉面为附着到触觉装置上的切割工具定义切割边界,由此必须使该触觉面在患者的实际空间中精确定位。为了提供充分的端点定位精度,可以使用带刚性传动系统(如齿轮传动)的触觉装置。然而,刚性传动系统的一个缺点在于它们可能不能反向驱动和/或不适用于触觉装置。尽管传统的线缆驱动触觉装置可以反向驱动,然而它们存在如上所述的端点定位精度的问题。用于提高端点定位精度的一种可能是从线缆传动系统的近(或驱动)端到远(或负载)端重新布置传感器,例如,从致动器到接合部(joint)重新布置传感器。这使得端点位置的确定更加精确。然而,将传感器重新布置到线缆传动系统的负载端可能导致控制器性能不稳定,这是因为感测和致动不位于同一部位,并且由并非刚性且具有能被控制器激励的动力学特性的传动系统连接。此外,当触觉装置仅在线缆传动系统的一侧具有传感器时,控制器缺少对提高触觉控制的稳定性有用的附加信息,该附加信息可用于提高触觉壁(haptic wall)的刚度。当触觉装置用在计算机辅助外科手术中时,提高触觉壁的刚度很重要,这是因为触觉面必须充分地向外科医生传达工具相对于实际组织表面的位置。
其它传统的定位装置和工业机器人也可能要求精确的端点定位,但是,与触觉装置不一样,这些装置通常具有刚性传动系统且完全依赖控制用致动器位置传感器。在某些情况下,定位系统使用驱动端位置传感器和负载端位置传感器二者,但是这些系统典型地用于定位,而并不用于用户交互或表达触觉对象。
因此,需要一种线缆驱动触觉装置,该装置能够补偿线缆传动系统中的柔量和滞后,使得能够表达在实际空间中精确定位的触觉面,且具有足够的壁刚度以精确并可靠地引导用户的动作。致动器和负载位置传感器二者的使用在两方面提高了触觉壁的刚度。首先,如果没有负载位置传感器,当用户向装置的端部施力时,即使控制器保持致动器输出位置,传动系统也将会弯曲且端点将移动。也就是说,即使致动器尝试响应而保持触觉位置,系统的线缆的柔量也使得能够发生一些移动。这种端点的移动则将导致末端位置相对于控制器基于致动器输出位置算出的末端位置的误差。
其次,致动器和负载输出位置二者的使用提供了附加信息,控制器可使用该信息帮助提高触觉控制的稳定性,使得提高触觉壁的刚度。虽然存在很多使用两个输入传感器来计算触觉控制输出的方式,但使用致动器输出位置传感器提供速度信号并使用负载输出位置传感器提供负载输出位置信号来控制算法是一种简单快速的方法,该方法相对于单个传感器的方案提高了装置的稳定性和精度。例如,当触觉装置被用在计算机辅助外科手术中时,因为触觉面必须精确并可靠地向外科医生传达工具相对于实际组织表面的定位,提高触觉壁的刚度非常重要。本发明致力于这些需要。
发明内容
本发明涉及用于控制触觉装置的方法和设备。
在一个方面,本发明涉及一种触觉装置。在一个实施例中,触觉装置包括:致动器;与致动器联系(in communication with)的致动器传感器,该致动器传感器产生表示致动器速度的致动器信号;负载;与负载联系的负载传感器,该负载传感器产生表示负载位置的负载信号;以及与负载传感器、致动器传感器和致动器进行电通信的控制器。该控制器响应于致动器信号和负载信号控制致动器,以提供对用户的触觉响应。
在另一实施例中,触觉装置包括与致动器和负载联系的线缆驱动传动系统。在另一实施例中,控制器响应于负载信号确定重力补偿力矩和笛卡尔端点位置。在另一实施例中,控制器通过对致动器信号进行滤波而形成滤波后的致动器速度并使该滤波后的致动器速度与雅可比行列式(Jacobian)相乘而计算端点速度来控制致动器。
在另一实施例中,控制器通过从端点速度中减去参考速度而形成端点速度差并使该端点速度差与阻尼增益相乘来计算阻尼力。在另一实施例中,控制器响应于阻尼力计算所希望的触觉力。
在另一实施例中,负载传感器选自由光学编码器、电编码器、磁致编码器和电位计构成的组。
在一个方面,本发明涉及一种用于控制触觉装置的致动器的方法。在一个实施例中,该方法包括以下步骤:产生表示致动器的速度的致动器信号;产生表示负载的位置的负载信号;以及响应于致动器信号和负载信号控制致动器以产生对用户的触觉响应。
在另一实施例中,该方法包括响应于负载信号确定重力补偿力矩和笛卡尔端点位置的步骤。在另一实施例中,控制致动器包括通过对致动器信号进行滤波而形成滤波后的致动器速度并使该滤波后的致动器速度与雅可比行列式(Jacobina)相乘而计算端点速度的步骤。在另一实施例中,该方法包括通过从端点速度中减去参考速度而形成端点速度差并使该端点速度差与阻尼增益相乘来计算阻尼力的步骤。在另一实施例中,该方法包括响应于阻尼力计算所希望的触觉力。
在另一实施例中,本发明是一种触觉装置,其包括:致动器;与致动器联系的致动器传感器,该致动器传感器产生表示致动器速度的致动器信号;负载;与负载联系的负载传感器,该负载传感器产生表示负载位置的负载信号;以及与负载传感器、致动器传感器和致动器进行电通信的控制器,该控制器响应于致动器信号和负载信号控制致动器,以提供对用户的触觉响应。
在另一实施例中,本发明是一种触觉装置,其包括:具有输入侧和输出侧的传动系统;与输入侧联系的致动器;与致动器联系的致动器传感器,该致动器传感器产生表示致动器速度的致动器信号;与输出侧联系的位置传感器,该位置传感器产生表示输出侧位置的位置信号;以及与位置传感器、致动器传感器和致动器进行电通信的控制器,该控制器响应于致动器信号和位置信号控制致动器,以提供对用户的触觉响应。
附图说明
尤其是在所附权利要求书中指明了本发明。通过接下来的结合附图所作的说明将可更好地理解本发明的上述优点和其他优点。在附图中,相同的参考标记通常在所有不同的视图中指同一部件。附图不必是按比例突出,而是总体上用来图解示出本发明的原理。
图1是线缆驱动系统的实施例的透视图;
图2是一维约束模型的实施例的图;
图2A是根据本发明所实施的一维约束模型的实施例的图;
图3是笛卡尔空间中的本发明的系统和处理的实施例的框图;
图3A是图3的触觉力计算器模块的框图;
图4是接合部空间中的本发明的系统和处理的实施例的框图;以及
图4A是图4的系统的另一个实施例的框图。
具体实施方式
参照图1,其示出本发明的线缆驱动触觉装置的一部分的实施例。线缆驱动触觉装置包括臂100,该臂包括线缆驱动传动系统114,124,134,144,这些都是可以反向驱动的(backdrivable)。对于每一个传动系统114,124,134,144,转动致动器110,120,130,140被定位在各传动系统的一端(也就是,近端或者驱动端),且接合部连接116,126,136,146被定位在各传动系统的另一端(也就是,远端或者负载端)。臂100装备有四个安装在转动致动器110,120,130,140的驱动端传感器112,122,132,142和四个安装在接合部连接116,126,136,146上的负载端传感器118,128,138,148。
在本实施例中,线缆驱动传动系统提供了齿轮减速,从而可以使用更小的致动器而不用引进齿空回、摩擦或其它使控制变困难的非线性的影响。然而,因为线缆引入一些柔量和滞后,在各传动系统114,124,134,144的负载端包括传感器118,128,138,148以提供充分的端点定位精度是有优势的。因为在传感器和致动器不位于同一位置时产生控制问题,因此在各传动系统114,124,134,144的驱动端包括传感器112,122,132,142也是有优势的。
触觉装置的传感器可以是位置传感器,例如,光学编码器、电编码器、分解器、磁比例传感器(magnetic scale sensor)、磁致伸缩传感器、电位计、RVDT、同步检波器(sychros)等。在一个实施例中,驱动端传感器是致动器编码器,而负载端传感器是接合部编码器(joint encoder)。传感器可以是增量型的并且要求自引导处理(homing process)。众所周知,自引导处理使传感器(例如,编码器)初始化,从而已知传感器的初始位置。自引导可以通过例如手动转动传感器到参考位置或者手动转动传感器直到传感器上的索引标记被读到来实现。参考位置或者索引标记与传感器的已知的绝对位置相互关联。一旦传感器被自引导,就基于传感器的已知的绝对位置和后续的位移来计算传感器的后续位置。作为选择,传感器可以是不需要自引导处理的绝对传感器(例如,绝对编码器)。
位置传感器提供位置测量。如果希望,可以基于来自位置传感器的位置数据来计算作为位置的导数的速度。作为选择,可以使用例如转速计等速度传感器来直接测量速度。在特定传感器仅被用于确定速度的实施例中,不必结合自引导处理使用如上所述的具有参考位置或索引标记的传感器或者绝对传感器。然而,为了安全的目的,优选使用以下这样的传感器:除了用于确定速度之外,该传感器还提供多余的位置测量。
使用中,触觉装置向与触觉装置接触的用户提供例如振动或者力反馈的触觉反馈。例如,随着用户操作触觉装置,触觉装置可激活致动器以产生施加到用户的力和/或力矩(例如,基于触觉表达算法)。该力反馈由用户感知为虚拟约束(例如虚拟壁)并且在某些方向上约束用户对触觉装置的移动。因此,虚拟壁能够防止沿对正在执行的操作有害的方向的运动。例如,如果用户是使用耦接到触觉装置的钻头来去除骨头的外科医生,则可以定义虚拟壁从而使得触觉装置将产生防止外科医生在骨头中移动钻头超过特定深度的力。在优选的实施例中,触觉装置是如在2006年2月21日提交的美国专利申请序号11/357,197(公开号US 2006/0142657)中描述的触觉装置,该专利申请的全部内容在此引入以供参考,和/或触觉装置是MAKO SURGICAL
Figure A200780018113D00111
Ft Lauderdale,Florida制造的HAPTIC GUIDANCESYSTEMTM
虚拟约束可以以一个到六个自由度来限制操作器。在图2中,实施单自由度虚拟壁210的模型,该模型具有用于刚性联结操纵器的虚拟弹簧214和虚拟阻尼器218,从而防止位于刚性联结的操纵器的远端处的工具穿透禁止壁222。在这种情况下,致动器和传感器协同定位,这产生了良好的触觉稳定特性。然而,对于柔性负载系统(例如线缆驱动传动系统),触觉表达不稳定,并减弱了触觉性能。而且,尽管图2的情况是针对协同定位的致动器和传感器,但在致动器和传感器不在同一位置的情况下,对于柔性传动系统,由弹性传动部件引起的动力学特性引入了额外的触觉控制困难。这导致非最小相位响应。
参照图2A,示出了对于传动系统220中存在物理柔量的情况的虚拟壁模型的优选实施方式的图。位置传感器被布置在近(或驱动)端。近端传感器还可以是指例如致动器传感器。类似地,位置传感器被布置在远(或负载)端。远端传感器还可以是指负载传感器或者接合部传感器。例如,安装在远端的编码器(例如接合部编码器)提供位置信息,而根据安装在近端的编码器(例如致动器编码器)的信号计算速度。利用来自远端传感器的位置信息实施虚拟弹簧214,利用由近端传感器计算的速度信息实施虚拟阻尼器218。使用近端传感器计算触觉控制器速度项、使用远端传感器计算触觉控制器位置项比使用远端传感器计算位置项和速度项时更加稳定。图2A中的该“双传感器”触觉控制能容易地扩展到具有弹性负载构件的多轴操纵器,例如串行操纵器或者并行操纵器。
在另一实施例中,本发明使用跟踪末端执行器或者触觉装置的其它部分的跟踪系统(例如全球GPS、RF、激光跟踪、高速摄像机等等)。该跟踪系统排除了对负载传感器的需要,该负载传感器在不增加质量、大小以及复杂性的前提下可能很难设计到触觉装置中。然而,为了取代负载传感器而不降低性能,跟踪系统必须足够快(触觉速度)且具有低反应时间以及优异的动力学性能。
在又一实施例中,一个或者多个独立机械臂可以附加到触觉装置的部分上,并用于取代集成的负载传感器以提供对传动系统的负载侧的位置的测量。机械臂可以是包括使机械臂的一端的位置能够被确定或跟踪的位置传感器的铰接连杆。这样,通过使机械臂的被跟踪端耦接到触觉装置的负载端,可以确定负载端的位置。在一个实施例中,机械臂包括如在美国专利6,322,567中公开的铰接连杆,该专利的全部内容在此引入以供参考。作为选择,用连杆取代机械臂,可以使用一个或者多个弦线电位计或者光纤位置传感装置。使用这些其它的技术来跟踪触觉装置的末端执行器或者端点与用负载传感器感测装置的独立接合部相比具有优势。特别地,这样的技术还可以测量来自在安装负载传感器的地方和装置的端点之间的触觉装置的结构的任何物理柔量。结果,该柔量可以由控制系统以与控制系统补偿传动柔量的方式相同的方式进行补偿。
尤其是因为传感器不具有传动比的优势,所以不管所选择的负载端传感器的类型,该传感器必须具有足够的分辨率。例如,给定传动比为30,则对于具有与相对于具有每转10,000个计数的致动器编码器同样的端点精度的负载编码器,负载编码器需要具有每转300,000个计数。高分辨率位置传感器包括带读出头的光学编码器,该读出头可以相对于编码器盘上的物理线(physical line)内插10倍到100倍;具有多条线的大直径编码器,其可与内插读出磁头结合;以及内插读出头,其与能够应用到感兴趣的接合部的旋转部的外径的带尺(tape-scale)一起使用。大直径或者带尺编码器可以具有封装优势,其可以被安装在轴、制动器、轮轴或者线缆路径孔的外侧。
参照图3,在一个实施例中,在笛卡尔空间中描述控制环。该控制环可以与例如由MAKO SURGICAL
Figure A200780018113D00131
Ft Lauderdale,Florida制造的HAPTIC GUIDANCE SYSTEMTM和/或以上参考的美国专利公报US 2006/0142657中公开的触觉装置结合使用,这些装置均包括机械臂,该机械臂包含线缆驱动传动系统。工具被安装在臂的远端。在本实施例中,致动器编码器或传感器410测量致动器的输出位置。该输出位置通过测量出每单位时间致动器输出位置的变化量而被速度滤波器414转换成速度。通过雅可比处理418对该速度进行运算,以获得算出的端点速度。由于该算出的端点速度未考虑传动和机械效应,因此,其不同于实际的端点速度。
在一个实施例中,速度滤波器414是清洗滤波器(washoutfilter)。清洗滤波器将求微分函数和滤波函数结合到一个滤波器中。清洗滤波器可被表示为:
F WOF ( s ) = s s p + 1
其中,P确定了极点(pole)的位置,通常应该位于比最快系统极点快2~3倍的位置。
更具体地,负载编码器或者传感器422确定负载位置,该负载位置是正向运动学处理426(其计算作为负载位置的函数的臂的笛卡尔端点位置)和重力补偿处理430(其计算作为负载位置的函数的需要用于抵消臂连接上的重力负载的致动器力矩或力(由致动器的类型确定))的输入值。可选择地,重力补偿处理430可以计算接合部力矩,该接合部力矩随后在被送到致动器之前转换成致动器力矩,该重力补偿处理430是使致动器将力矩施加到系统的触觉装置臂动力学处理470的一部分。正向运动学处理426的输出值是向触觉控制器或者触觉力计算器432的输入值,该输出值是工具末端当前位置。来自雅可比处理418的速度是向触觉控制器432的第二个输入。触觉控制器432的输出是触觉力(Fhaptic)。触觉力(Fhaptic)是向雅可比转置处理462的输入,该雅可比转置处理462的输出是触觉致动器力矩和/或力(τhaptic)。作为选择,输出是在被提供给块470之前被转换成触觉致动器力矩和/或力的触觉接合部力矩和/或力。
参照图3A,在一个实施例中,触觉控制器432包含触觉表达处理或算法434和加法器438二者。触觉表达处理434的输出是向加法器438的一个输入,该触觉表达处理434的输出是工具末端参考位置。加法器438的另一个输入是来自正向运动学处理426的位置信息。加法器438的输出是工具末端当前位置(x)和工具末端参考位置(xd)之间的差或者位置偏差(dx)。触觉表达处理434可以是例如在2006年12月27提交的美国专利申请序列号11/646,204中公开的触觉表达处理;2007年5月18日提交的名称为“Method and Apparatus forControlling a Haptic Device(用于控制触觉装置的方法和设备)”的美国专利申请(代理案号051892-0248)中公开的触觉表达处理;2007年5月18日提交的名称为“Method and Apparatus for Controlling aHaptic Device(用于控制触觉装置的方法和设备)”的美国专利申请(代理案号05892-0250);和/或2007年5月18日提交的名称为“Method and Apparatus for Controlling a Haptic Device(用于控制触觉装置的方法和设备)”的美国专利申请(代理编号051892-0253),这些专利申请的全部内容都在此引入以供参考。
来自触觉表达算法434的工具参考位置(xd)也是向微分器或微分运算器442的输出,该微分器或微分运算器442的输出(
Figure A200780018113D0014163450QIETU
d)是工具末端参考位置的速度。来自微分器442的工具末端参考位置的速度被输入到加法器446,并且从该速度中减去来自雅可比处理418的算出的端点速度。两个速度之间的差值是速度偏差(dv)。
通过使位置偏差(dx)与弹簧常数(Kp)450相乘来获得弹簧力(Fspring),通过使速度偏差(dv)与阻尼常数(Kd)454相乘来获得阻尼力(Fdamping)。由加法器458使阻尼力(Fdamping)和弹簧力(Fspring)相加来产生触觉力(Fhaptic)。
由加法器466使触觉力矩和/或力(τhaptic)和重力补偿处理430的输出即重力补偿力矩或力(τgravity_comp)相加,从而获得将由致动器产生的总力矩或力(τtotal)。该总力矩或力(τtotal)被输入到块470的臂动力学处理,该块470的臂动力学处理然后响应用户交互、解剖学交互、和使致动器移动的致动器力。致动器的运动再次引起由致动器编码器410和负载编码器422检测到的变化,封闭控制环。
在再一实施例中,以对端点位置的直接测量来代替负载编码器422。在该实施例中,不需要块422(负载编码器)和块426(正向运动学),来自端点传感器的直接信号被供应到块432。重力补偿处理430从来自块410的致动器位置输出获取其输入,该输入现在必需由重力补偿处理430转换成接合部角度。
参照图4,在一个实施例中,在接合部空间中描述前一幅图的控制环。在该实施例中,致动器编码器或传感器510测量致动器的输出位置。该致动器输出位置被速度滤波器514通过测量每单位时间的输出位置改变量而转换成速度
接合部编码器或传感器522确定接合部(负载)位置(qL),该接合部(负载)位置(qL)是到正向运动学处理526、重力补偿处理530和加法器538的输入值。正向运动学处理526的输出值,即工具末端当前位置是到触觉表达处理或算法534的输入值。触觉表达处理534的输出,即工具末端参考位置是反向运动学(inversekinematics)处理536的输入,该反向运动学处理536的输出,即接合部参考角度(qLd)既是到加法器538的第二个输入,也是到微分器或微分运算器542的输入。加法器538的输出是接合部当前位置和接合部参考位置之间的差值,或者接合部位置偏差(dq)。
微分器542的输出是所希望的接合部速度。来自微分器542的接合部速度被输入到加法器546,从该接合部速度中减去来自速度滤波器514的接合部速度
Figure A200780018113D00162
。二者之间的差值是接合部速度偏差(dqv)。
使接合部位置偏差(dq)与弹簧常数(Kp)550相乘来获得弹簧力矩(τspring),使接合部速度偏差与阻尼常数(Kd)554相乘来获得阻尼力矩(τdamping)。由加法器558使阻尼力矩(τdamping)和弹簧力矩(τspring)相加来产生触觉力矩(τhaptic)。由加法器566使触觉力矩(τhaptic)和重力补偿处理530的输出即重力补偿力矩(τgravity_comp)相加,从而获得将由致动器产生的总力矩(τtotal)。该总力矩(Ttotal)是使致动器将力矩施加到系统上的、到臂动力学处理570的输入。该力矩可引起被致动器编码器510和接合部编码器522检测的运动,封闭控制环。注意,在图4的实施例中,使增益Kp和Kd与接合部角度相乘,而不是像图3中那样,使增益Kp和Kd与工具末端位置相乘。如果对系统采用不同类型的致动器并且增益Kp和Kd必需对于各个接合部进行调谐,则该实施方式可能是有优势的。应注意,尽管图4是就用于单自由度系统的单个力矩或力进行的说明,但在多自由度系统中,该处理可以被重复,加上多个力矩或力从而产生作用于系统的总力矩或力。
参照图4A,示出了图4的系统的另一实施例。在该实施例中,重力补偿块530从致动器编码器510的输出中获得其输入值。此外,去除了正向运动学处理526和反向动学处理536。在该情况下,触觉表达算法534被用于表达接合部空间触觉对象并且输出所希望的接合部角度而不是工具末端位置。例如,软件产生的接合部停止或止动可以被用于改变从用户角度观察的接合部的物理行为,而不必改变接合部的物理硬件。也可以通过在提供到加法器566之前使这些接合部空间触觉对象与来自图3和图4所示的多个控制器的tau_haptic输出相加来使这些接合部空间触觉对象与其它触觉对象结合。
本发明的双重传感器控制的一个优点在于使用驱动端位置传感器和负载端位置传感器二者提供控制器可以用来提高触觉控制的稳定性的附加信息,由此使得触觉壁的刚度增大。本发明的双重传感器控制的另一个优点在于可以比较来自负载端传感器的数据和来自驱动端传感器的数据,以检测传感器或者传动中的故障,由此提高系统的安全性。尽管能够以任何适当的方式将双重传感器用于计算触觉控制输出,但使用驱动端输出位置传感器(例如致动器编码器)来提供速度信号以及使用负载端输出位置传感器(例如接合部编码器)来向控制算法提供负载输出位置信号是简单快速的方法,与传统的单个传感器方案相比,该方法提高了触觉装置的稳定性和精度。本发明的双重传感器控制的另一优点在于可以比较来自负载端传感器的数据和来自驱动端传感器的数据,从而确定和校正线缆传动系统中的柔量和滞后影响。结果,提高了端点定位精度。
这样,本发明使触觉装置能够被控制而补偿线缆传动系统中的柔量和滞后,从而使得能够在实际空间中以精确位置表达触觉面,并具有充分的壁刚度,从而精确和可靠地引导用户的动作。
尽管已经参照某些示例性优选实施例对本发明进行了说明,本领域的普通技术人员应容易理解和认识到,本发明不限于此,在如所附权利要求书限定的本发明的范围内,可以对这些优选实施例进行许多添加、删除或修改。因此,本发明的范围仅由所附权利要求书的范围来限定。

Claims (14)

1、一种触觉装置,其包括:
致动器;
与该致动器联系的致动器传感器,该致动器传感器产生表示致动器速度的致动器信号;
负载;
与该负载联系的负载输出传感器,该负载输出传感器产生表示负载位置的负载输出信号;以及
与该负载输出传感器、该致动器传感器和该致动器进行电通信的控制器,该控制器响应于该致动器信号和该负载输出信号控制该致动器,以提供对用户的触觉响应。
2、根据权利要求1所述的触觉装置,还包括与致动器和负载联系的线缆驱动传动系统。
3、根据权利要求1所述的触觉装置,其中,控制器响应于负载输出信号确定重力补偿力矩和笛卡尔端点位置。
4、根据权利要求1所述的触觉装置,其中,控制器通过对致动器信号进行滤波而形成滤波后的致动器速度并使该滤波后的致动器速度与雅可比行列式相乘来计算端点速度从而控制致动器。
5、根据权利要求4所述的触觉装置,其中,控制器通过从端点速度中减去参考速度而形成端点速度差并使该端点速度差与阻尼增益相乘来计算阻尼力。
6、根据权利要求5所述的触觉装置,其中,控制器响应于阻尼力计算所希望的触觉力。
7、根据权利要求1所述的触觉装置,其中,输出传感器选自包括光学编码器、电编码器、磁编码器和电位计的组。
8、一种用于控制触觉装置的致动器的方法,其包括以下步骤:
产生表示致动器的速度的致动器信号;
产生表示负载的位置的负载位置信号;以及
响应于致动器信号和负载位置信号控制致动器以产生对用户的触觉响应。
9、根据权利要求8所述的方法,还包括响应于负载位置信号确定重力补偿力矩和笛卡尔端点位置的步骤。
10、根据权利要求8所述的方法,其中,控制致动器包括通过对致动器信号进行滤波而形成滤波后的致动器速度并使该滤波后的致动器速度与雅可比行列式相乘来计算端点速度的步骤。
11、根据权利要求10所述的方法,还包括通过从端点速度中减去参考速度而形成端点速度差并使该端点速度差与阻尼增益相乘来计算阻尼力。
12、根据权利要求11所述的方法,还包括响应于阻尼力计算所希望的触觉力。
13、一种触觉装置,其包括:
电机;
与该电机联系的电机传感器,该电机传感器产生表示电机速度的电机信号;
接合部;
与该接合部联系的接合部传感器,该接合部传感器产生表示接合部位置的接合部位置信号;以及
与该接合部传感器、该电机传感器和该电机进行电通信的控制器,该控制器响应于该电机信号和该接合部位置信号控制该电机,以提供对用户的触觉响应。
14、一种触觉装置,其包括:
具有输入侧和输出侧的传动系统;
与该输入侧联系的致动器;
与该致动器联系的致动器传感器,该致动器传感器产生表示致动器速度的致动器信号;
与该输出侧联系的位置传感器,该位置传感器产生表示输出侧位置的位置信号;以及
与该位置传感器、该致动器传感器和该致动器进行电通信的控制器,该控制器响应于该致动器信号和该位置信号控制该致动器,以提供对用户的触觉响应。
CN2007800181132A 2006-05-19 2007-05-18 用于控制触觉装置的方法和设备 Active CN101449229B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US80185006P 2006-05-19 2006-05-19
US60/801,850 2006-05-19
PCT/US2007/011891 WO2007136739A2 (en) 2006-05-19 2007-05-18 A method and apparatus for controlling a haptic device

Publications (2)

Publication Number Publication Date
CN101449229A true CN101449229A (zh) 2009-06-03
CN101449229B CN101449229B (zh) 2011-10-12

Family

ID=38723850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800181132A Active CN101449229B (zh) 2006-05-19 2007-05-18 用于控制触觉装置的方法和设备

Country Status (7)

Country Link
US (1) US7683565B2 (zh)
EP (1) EP2018606B1 (zh)
JP (1) JP2009537228A (zh)
CN (1) CN101449229B (zh)
AU (1) AU2007254217A1 (zh)
CA (1) CA2651780C (zh)
WO (1) WO2007136739A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902019A (zh) * 2012-12-25 2014-07-02 苏茂 数据手套肘部关节检测装置
CN105404156A (zh) * 2015-12-31 2016-03-16 微创(上海)医疗机器人有限公司 触觉反馈装置及其变阻尼控制方法和应用
CN108367435A (zh) * 2015-10-08 2018-08-03 卡斯坦宁堡有限公司 机器人系统
CN111426493A (zh) * 2020-03-25 2020-07-17 上海荣泰健康科技股份有限公司 按摩椅故障检测方法、系统、终端以及介质
CN112085052A (zh) * 2020-07-28 2020-12-15 中国科学院深圳先进技术研究院 运动想象分类模型的训练方法、运动想象方法及相关设备
CN114367973A (zh) * 2020-10-15 2022-04-19 株式会社三丰 具有补充计量位置确定系统的机器人系统
TWI764891B (zh) * 2016-03-29 2022-05-21 瑞典商寇格尼博迪克斯有限公司 用以決定機械手幾何性質的方法、限制裝置、及系統

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US8996169B2 (en) 2011-12-29 2015-03-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US11202676B2 (en) 2002-03-06 2021-12-21 Mako Surgical Corp. Neural monitor-based dynamic haptics
AU2003218010A1 (en) 2002-03-06 2003-09-22 Z-Kat, Inc. System and method for using a haptic device in combination with a computer-assisted surgery system
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US7938009B2 (en) * 2006-02-03 2011-05-10 Immersion Corporation Haptic device testing
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US7759894B2 (en) * 2006-10-26 2010-07-20 Honeywell International Inc. Cogless motor driven active user interface haptic feedback system
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9469034B2 (en) * 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US8209054B2 (en) * 2008-05-09 2012-06-26 William Howison Haptic device grippers for surgical teleoperation
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US8344863B2 (en) * 2008-12-10 2013-01-01 Postech Academy-Industry Foundation Apparatus and method for providing haptic augmented reality
US8992558B2 (en) 2008-12-18 2015-03-31 Osteomed, Llc Lateral access system for the lumbar spine
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8989898B2 (en) * 2009-10-22 2015-03-24 Electroimpact, Inc. Robotic manufacturing system with accurate control
US8679125B2 (en) 2010-09-22 2014-03-25 Biomet Manufacturing, Llc Robotic guided femoral head reshaping
DE102010043574A1 (de) * 2010-11-08 2012-05-10 Fresenius Medical Care Deutschland Gmbh Manuell zu öffnender Klemmhalter mit Sensor
US9101379B2 (en) 2010-11-12 2015-08-11 Intuitive Surgical Operations, Inc. Tension control in actuation of multi-joint medical instruments
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
US20130274712A1 (en) * 2011-11-02 2013-10-17 Stuart O. Schecter Haptic system for balloon tipped catheter interventions
JP5930753B2 (ja) * 2012-02-13 2016-06-08 キヤノン株式会社 ロボット装置の制御方法及びロボット装置
JP5930754B2 (ja) * 2012-02-13 2016-06-08 キヤノン株式会社 ロボット装置の制御方法及びロボット装置
WO2013192598A1 (en) * 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Surgical robot platform
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
KR102235965B1 (ko) 2012-08-03 2021-04-06 스트리커 코포레이션 로봇 수술을 위한 시스템 및 방법
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
AU2014248758B2 (en) 2013-03-13 2018-04-12 Stryker Corporation System for establishing virtual constraint boundaries
EP2996615B1 (en) 2013-03-13 2019-01-30 Stryker Corporation System for arranging objects in an operating room in preparation for surgical procedures
US9677840B2 (en) 2014-03-14 2017-06-13 Lineweight Llc Augmented reality simulator
US9880046B2 (en) * 2014-05-15 2018-01-30 Texas Instruments Incorporated Method, apparatus and system for portable device surface and material analysis
FR3037841B1 (fr) * 2015-06-26 2017-08-18 Haption Bras articule motorise a cabestan a cable securise.
DE102015009048B3 (de) * 2015-07-13 2016-08-18 Kuka Roboter Gmbh Steuern eines nachgiebig geregelten Roboters
JP6652292B2 (ja) * 2015-09-24 2020-02-19 キヤノン株式会社 制御方法、制御プログラム、ロボットシステム、回転駆動装置の制御方法、およびロボット装置
CN113925610B (zh) 2015-12-31 2024-08-13 史赛克公司 用于在由虚拟对象限定的目标部位处对患者执行手术的系统和方法
EP3503814B1 (en) 2016-08-23 2024-07-10 Stryker European Operations Holdings LLC Instrumentation for the implantation of spinal implants
EP3554414A1 (en) 2016-12-16 2019-10-23 MAKO Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
JP7289834B2 (ja) * 2017-10-30 2023-06-12 エシコン エルエルシー モジュール式外科用器具の制御システム構成
US11191532B2 (en) 2018-03-30 2021-12-07 Stryker European Operations Holdings Llc Lateral access retractor and core insertion
US11745354B2 (en) 2018-08-16 2023-09-05 Mitutoyo Corporation Supplementary metrology position coordinates determination system including an alignment sensor for use with a robot
US11002529B2 (en) * 2018-08-16 2021-05-11 Mitutoyo Corporation Robot system with supplementary metrology position determination system
RU2718595C1 (ru) * 2019-11-25 2020-04-08 Ассистирующие Хирургические Технологии (Аст), Лтд Контроллер оператора для управления роботохирургическим комплексом
US11564674B2 (en) 2019-11-27 2023-01-31 K2M, Inc. Lateral access system and method of use
RU2757969C1 (ru) * 2020-12-22 2021-10-25 Акционерное общество "Казанский электротехнический завод" Устройство управления манипуляторами роботохирургического комплекса

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151885A (ja) * 1982-03-03 1983-09-09 Hitachi Ltd モ−タの位置制御方法
US4481453A (en) * 1982-07-23 1984-11-06 Motornetics Corporation Torque loop control system and method
US4621332A (en) * 1983-06-20 1986-11-04 Hitachi, Ltd. Method and apparatus for controlling a robot utilizing force, position, velocity, spring constant, mass coefficient, and viscosity coefficient
US5023808A (en) * 1987-04-06 1991-06-11 California Institute Of Technology Dual-arm manipulators with adaptive control
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5322320A (en) * 1992-01-14 1994-06-21 Nippondenso Co., Ltd. Shock absorber damping force control system for vehicle
US5629594A (en) * 1992-12-02 1997-05-13 Cybernet Systems Corporation Force feedback system
US5739811A (en) * 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5625576A (en) * 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface
US5691898A (en) * 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US5999168A (en) * 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US5828197A (en) * 1996-10-25 1998-10-27 Immersion Human Interface Corporation Mechanical interface having multiple grounded actuators
US6020876A (en) * 1997-04-14 2000-02-01 Immersion Corporation Force feedback interface with selective disturbance filter
US6104382A (en) * 1997-10-31 2000-08-15 Immersion Corporation Force feedback transmission mechanisms
US6281651B1 (en) * 1997-11-03 2001-08-28 Immersion Corporation Haptic pointing devices
US6067077A (en) * 1998-04-10 2000-05-23 Immersion Corporation Position sensing for force feedback devices
US6985133B1 (en) 1998-07-17 2006-01-10 Sensable Technologies, Inc. Force reflecting haptic interface
US6322567B1 (en) 1998-12-14 2001-11-27 Integrated Surgical Systems, Inc. Bone motion tracking system
US6084371A (en) * 1999-02-19 2000-07-04 Lockheed Martin Energy Research Corporation Apparatus and methods for a human de-amplifier system
US6762745B1 (en) * 1999-05-10 2004-07-13 Immersion Corporation Actuator control providing linear and continuous force output
US6522952B1 (en) * 1999-06-01 2003-02-18 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology Method and system for controlling cooperative object-transporting robot
EP1355765B1 (en) * 2001-01-29 2008-05-07 The Acrobot Company Limited Active-constraint robots
AU2003218010A1 (en) * 2002-03-06 2003-09-22 Z-Kat, Inc. System and method for using a haptic device in combination with a computer-assisted surgery system
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7308352B2 (en) * 2003-08-07 2007-12-11 Siemens Energy & Automation, Inc. Enhanced braking system and method
US7285932B2 (en) * 2003-10-28 2007-10-23 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for loss of control inhibitor systems
US7982711B2 (en) * 2003-12-19 2011-07-19 Immersion Corporation Haptic profiling system and method
WO2006039403A1 (en) * 2004-09-29 2006-04-13 Northwestern University System and methods to overcome gravity-induced dysfunction in extremity paresis
US20080007517A9 (en) * 2005-02-23 2008-01-10 Northwestern University Electrical damping system
CA2651784C (en) 2006-05-19 2015-01-27 Mako Surgical Corp. Method and apparatus for controlling a haptic device
US7710061B2 (en) * 2006-08-07 2010-05-04 The Board Of Trustees Of The Leland Stanford Junior University Motor control amplifier
US7750593B2 (en) * 2006-10-26 2010-07-06 Honeywell International Inc. Active human-machine interface system without a force sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902019A (zh) * 2012-12-25 2014-07-02 苏茂 数据手套肘部关节检测装置
CN108367435A (zh) * 2015-10-08 2018-08-03 卡斯坦宁堡有限公司 机器人系统
CN108367435B (zh) * 2015-10-08 2021-12-10 卡斯坦宁堡有限公司 机器人系统
CN105404156A (zh) * 2015-12-31 2016-03-16 微创(上海)医疗机器人有限公司 触觉反馈装置及其变阻尼控制方法和应用
CN105404156B (zh) * 2015-12-31 2018-02-06 微创(上海)医疗机器人有限公司 触觉反馈装置及其变阻尼控制方法和应用
TWI764891B (zh) * 2016-03-29 2022-05-21 瑞典商寇格尼博迪克斯有限公司 用以決定機械手幾何性質的方法、限制裝置、及系統
CN111426493A (zh) * 2020-03-25 2020-07-17 上海荣泰健康科技股份有限公司 按摩椅故障检测方法、系统、终端以及介质
CN112085052A (zh) * 2020-07-28 2020-12-15 中国科学院深圳先进技术研究院 运动想象分类模型的训练方法、运动想象方法及相关设备
CN114367973A (zh) * 2020-10-15 2022-04-19 株式会社三丰 具有补充计量位置确定系统的机器人系统
CN114367973B (zh) * 2020-10-15 2024-09-10 株式会社三丰 具有补充计量位置确定系统的机器人系统

Also Published As

Publication number Publication date
CA2651780C (en) 2015-03-10
WO2007136739A3 (en) 2008-07-24
EP2018606A2 (en) 2009-01-28
US7683565B2 (en) 2010-03-23
EP2018606B1 (en) 2019-02-20
WO2007136739A2 (en) 2007-11-29
CN101449229B (zh) 2011-10-12
US20070296366A1 (en) 2007-12-27
CA2651780A1 (en) 2007-11-29
JP2009537228A (ja) 2009-10-29
AU2007254217A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
CN101449229B (zh) 用于控制触觉装置的方法和设备
US10562183B2 (en) Position/force controller, and position/force control method and storage medium
CN102528809B (zh) 机器人控制设备
CN102809358B (zh) 坐标定位机
US7109678B2 (en) Holding arrangement having an apparatus for balancing a load torque
CN103872973B (zh) 修正移动体反转时的位置误差的伺服控制装置
JP4014719B2 (ja) Nc工作機械の制御装置および位置決め制御方法
US6539274B1 (en) Method for compensating for temperature-related dimensional deviations in machine geometry
Mobasser et al. Transparent rate mode bilateral teleoperation control
KR20200051485A (ko) 감속기 시스템, 구동 유닛으로의 지령값의 보정 방법, 보정 데이터의 생성 방법 및 감속기 시스템의 제조 방법
WO1995002487A1 (fr) Manipulateur
JP4030747B2 (ja) ロストモーション補正方法およびロストモーション補正装置
JP6540810B2 (ja) ハンド力覚計測装置、ハンド力覚計測方法、及びハンド力覚計測プログラム
JPH06332535A (ja) ロボットの制御装置
JP2645866B2 (ja) マニピュレータの制御方法および装置
KR100332296B1 (ko) 병렬 로봇의 제어방법 및 장치
JP3078884B2 (ja) 倣い制御装置
Rovers et al. Design of a robust master-slave controller for surgery applications with haptic feedback
JPH0583922B2 (zh)
JP3449237B2 (ja) 多軸コントローラ
JPH07195288A (ja) 産業用ロボットの制御方法およびその装置
Okubo et al. Control of nonlinear, continuous, dynamic systems via finite elements, sensitivity analysis, and optimization
Whitcomb et al. An experimental environment for adaptive robot force control
Horn New Notation for Serial Kinematic Chains
JPH0443740B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant