CN101421203B - 多孔质构件 - Google Patents

多孔质构件 Download PDF

Info

Publication number
CN101421203B
CN101421203B CN200780011742.2A CN200780011742A CN101421203B CN 101421203 B CN101421203 B CN 101421203B CN 200780011742 A CN200780011742 A CN 200780011742A CN 101421203 B CN101421203 B CN 101421203B
Authority
CN
China
Prior art keywords
gas
porous
porous member
pressure
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200780011742.2A
Other languages
English (en)
Other versions
CN101421203A (zh
Inventor
大见忠弘
岸幸男
井口真仁
市川佳孝
小松祐介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Niterra Co Ltd
Original Assignee
Tohoku University NUC
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nihon Ceratec Co Ltd filed Critical Tohoku University NUC
Publication of CN101421203A publication Critical patent/CN101421203A/zh
Application granted granted Critical
Publication of CN101421203B publication Critical patent/CN101421203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明提供一种在要求高洁净度的领域内使用时能够抑制微波频带内的能耗,而且可均匀地分散气体的多孔质构件。多孔质构件由多孔质陶瓷形成,微波频带内的介质损耗正切是1×10-3以下。陶瓷构件由局部备有该多孔质构件的陶瓷烧结体构成。

Description

多孔质构件
技术领域
本发明涉及一种多孔质构件,其用于电子器件的干法制备用、医疗药品制造用、食品加工制造等要求节能、均匀气体流量的环境下使用的零件和构件。 
背景技术
随着半导体的集成度提高,设计规则的微细化向前进展,要求容许的附着物和金属污染的大小及其数量缩小、减少。 
另一方面,作为用于制造半导体的设备,为了提高效率,已经采用基于微波的等离子体激励方式。即使治疗药品、食品等领域,在干燥等工序中也能采用微波,通常,防止金属等污染的这些构造体采用陶瓷。 
在这里,作为半导体制造设备,用例子说明微波等离子处理装置,可在气体分散用等的构件中采用多孔体,例如专利文献1公开的那样,以数mm间隔在材料中形成了多个贯通孔。 
但是,通过这些贯通孔的工艺气体,归根到底是通过构件内形成的贯通孔,所以在曝露于该气体的硅晶片上,与气体的接触状况未必均匀,招来半导体产品的成品率下降。因此,例如,提出如专利文献2那样使用多孔质材料。 
可是,在使用了现有多孔质构件的零件中,由于材料的介质损耗正切较大,招致微波损失、等离子体不稳定、进而造成半导体产品成品率下降。而且,由于不能充分控制气孔率和气孔径,所以难以控制稳定的气体流量。 
专利文献1:特开2003-133237号公报 
专利文献2:特开2003-045809号公报 
发明内容
本发明是鉴于所述的缺点而创造的,其目之一在于提供一种在需要高洁净度领域内的使用中能够抑制微波频带内的能量损失而且可均匀地分散气体的多孔质构件。 
本发明的又一个目的,在于提供一种所述多孔质构件的制造方法。 
本发明的其他目的,在于提供由整体具备所述多孔质构件的陶瓷烧结体构成的陶瓷构件。 
本发明的另外目的,在于提供一种所述陶瓷构件的制造方法。 
因此,鉴于所述课题,对于多孔质构件,为了抑制微波频带内的能耗,避免局部加热引起的损坏,本发明人发现:重要的是构成构件在微波频带内的介质损耗正切为1×10-3以下,而且为了均匀地分散气体,气孔率和气孔径,进而压力损失都具有适合范围,并达到实现本发明。 
本发明的多孔质构件,其特征是由多孔质的陶瓷形成,微波频带内的介质损耗正切为1×10-3以下。 
这里,在本发明的多孔质构件中,优选是开气孔率为15~60%、平均气孔径为100μm以下、压力损失在1~10cc/min/cm2流量下为133Pa以上、或者含有Al、Si及Y的各自氧化物之中的至少一种。 
进而,本发明的陶瓷构件是具有具备多孔质构件的陶瓷烧结体,所述多孔质构件由多孔质的陶瓷形成,且微波频带内的介质损耗正切是1×10-3以下。 
这里,在本发明的陶瓷构件中,所述多孔质构件优选是开气孔率为15~60%、平均气孔径为100μm以下、压力损失在1~10cc/min/cm2流量下为133Pa以上、或者含有Al、Si及Y的各自氧化物之中的至少一种。 
而且,本发明的多孔质构件的制造方法,其特征是以重量计按100∶15~100∶60的配合比配合平均粒径1~300μm的陶瓷原料粉末和由玻璃构成的接合材料,制成浆料,并以1550℃~1700℃烧成。 
根据本发明,就能够提供一种在需要高洁净度领域内使用中抑制微波频带内的能耗,而且可均匀地分散气体的多孔质构件及其制造方法、使用了该多孔质构件的陶瓷构件及其制造方法。 
附图说明
图1是提供说明压力损失测定方法的图。 
图2表示由微波引起的破损评价的图。 
图3是提供评价气体分散性的图。 
符号说明 
1 多孔质构件(多孔体) 
2 固定构件 
6 气体流入管 
7 气体流出管 
8 导管 
9 排气泵 
10 气体配管 
11,12 压力计 
13 质量流计 
15 气体 
16 配管 
20 压力损失 
21 箭头 
30 破损评价装置 
31 框体 
32 扩散叶片 
33 旋转轴 
34 驱动部 
35 扩散叶片旋转装置 
36 输出部 
37 主体 
38 微波发生器 
40 气体分散评价装置 
41 框体 
42 盖构件 
43气体导入孔 
44支承部(多孔体和陶瓷一体化产品) 
45支承部(使微波透过的构件) 
下面,进一步详细说明本发明。 
本发明的多孔质构件的介质损耗正切为1×10-3以下是重要的,进而,优选5×10-4以下。其理由是因为在本发明中,介质损耗正切大于1×10-3时,导致微波频带内的能耗和局部加热引起的破损,对构成构件而言不令人满意。 
该多孔质构件的开气孔率在15~60%范围内,优选在20~30%的范围内。其理由是因为,在开气孔率未满15%的区域内,通气显著降低,超过60%的区域招致压力损失的降低,气体的均匀分散性降低。因而对于半导体、对医疗食品等的构件不理想。 
同样,该多孔质构件的平均气孔径为100μm以下是重要的,优选为50μm以下,更优选为10~25μm。其理由是因为,平均气孔径超过100μm时,均匀的气体、气体的喷出极其困难。 
压力损失在流量1~10cc/min/cm2下为133Pa以上。其理由是因为,压力损失不足133Pa时,不能获得足够的分散气体效果,发生局部的气体吹出。 
接着,说明所述多孔质构件的制造方法的一个例子。 
准备氧化铝粉末和石英玻璃作为起始原材料。氧化铝粉末纯度为高纯度,平均粒径为30μm,另一方面石英玻璃也与氧化铝同样,采用高纯度(99%以上)、平均粒径5μm的石英玻璃。 
原料的纯度,特别是碱金属给介质损耗正切带来较大的影响,所以,例如,希望Na和K少。 
原料的平均粒径过小时难以获得通气性,过大时在分散气体方面不能获得足够的压力损失,所以优选1~300μm左右,更优选是10~25μm左右。至于石英玻璃,因为用作接合材料,粗料难以熔融,不能保证作为接合材料的效果,因此优选1~10μm左右。 
按100∶15~100∶60的配合比来混合氧化铝和石英玻璃,还添加混合分散剂、PVA等期望的有机成型辅助剂,并制成浆料,填充到陶瓷烧结体内,以1550~1700℃进行烧成。在烧成中,期望炉内充分地流通空气。这样做,形成多孔质陶瓷和致密陶瓷的整体烧结件。 
氧化铝与石英玻璃的配合比过少时造成材料强度降低,过多时堵塞气孔,失去了气体通气性,所以优选100∶15~100∶60左右,更优选是100∶30~100∶45左右。 
或者,使所述浆料流入到如石膏的高吸水性填充用模内,并在固化成型后脱模,通过包括脱脂的烧成而形成多孔质陶瓷。而后也可以通过使致密质陶瓷和多孔质陶瓷接合而形成多孔质陶瓷和致密陶瓷的整体烧结件。 
接合例如可以在多孔质陶瓷与致密质陶瓷的界面之间夹有可形成接合层的生料片,或者在多孔质陶瓷部涂敷形成接合层的浆料后,填充到致密陶瓷并进行烧成。并不仅限定所述制作方法,例如,添加氧化铝粉末和石墨粉末、树脂珠那样的造孔剂,若能得到具有规定的气孔率、气孔径、压力损失的多孔体,不管什么方法都行。 
如以上那样得到的多孔质陶瓷具有用于加工的强度,即使在腐蚀性气体及其等离子气体中加热的环境下使用,也不会因热冲击而破损或由于施加微波发生局部加热,能够稳定地进行使用。 
在本发明中,优选介质损耗正切是5×10-4以下、气孔率是20~30%、气孔径是10~25μm。 
实施例 
下面,举出本发明的实施例。以下的实施例中,实施例1~4虽是优选的,但不言而喻,本发明不限定这些实施例。 
用于制造本发明多孔质构件的使用原料的材料粒子种类/纯度/粒径,接合材料的种类/材料粒子的配合比率都已表示在下述表1中。材料粒子的种类是氧化铝、石英、氧化钇,纯度为99%以上,粒径是1~300μm。接合材料使用了纯度99%以上的石英,或碱成分少的无碱玻璃。 
按规定比例称量材料粒子和接合材料,在离子交换水中,通过使用了树脂球的球磨机制成材料粒子和接合材料的混合浆料。使其流入到由氧化铝制成的□200×t50mm的模中,静置浆料。除去了浆料上部的澄清液(离 子交换水)后,通过干燥、脱模制成了成形体。 
在大气中用电阻加热炉对所述成形体进行烧成,制成了多孔质构件。所获得的多孔质构件的特性用下面的装置和方法进行测定。 
图1是提供说明压力损失测定法的测定装置的概略结构图。如图1所示,测定装置配备有与真空室连接的气体配管10。 
气体配管10备有气体流入管6和气体流出管7。气体15通过质量流计13用配管16与气体流入管6连接。气体流出管7通过导管8,用配管16与排气泵9连接。 
气体流入管6连接着一次压压力计11,测定作为向气体配管10的流入压力的一次压力P1。另一方面,气体流出管7连接着二次压压力计12,测定作为来自气体配管10的流出压力的二次压力P2。气体配管10内的空间5配置多孔质构件1的测定试料(多孔体)。如箭头21所示那样导入、排出气体。由这时的一次压测定值(输出)17与二次压测定值(输出)18之差P1-P2=ΔP,通过差动放大器求出压力损失(ΔP)20。这种测定也可以借助使用了计算机的测定装置进行测定。 
还有,测定条件如下。流动气体种类为Ar、流动气体的流量是0.1~3cc/min/cm2、一次压力P1是133Pa~267hPa、二次压力P2是7Pa、测定温度是常温、T/P形状是 
Figure DEST_PATH_G50506552150138000D000041
图2是用于评价微波引起破损的装置的概略结构图。参照图2,破损评价装置30配备有:不锈钢制框体31;设于框体外部,以使通过贯通了壁部的旋转轴33使框体内的扩散叶片32旋转的扩散叶片旋转装置35;具有用于向框体内提供微波(例如,2.45GHz)的输出部36和设于框体外的主体37的微波发生器38。 
框体31内设有固定构件2和支承部45,该固定构件2用以固定与 
Figure DEST_PATH_G50506552150138000D000042
Figure DEST_PATH_G50506552150138000D000043
多孔质构件1的试料一体化的支承部44,支承部45将固定构件2支撑在框体内,并具有透射微波的构件。 
图3是表示气体分散评价用的装置结构的概略剖面图。如图3所示,为了堵住不锈钢制框体41的上部开口,气体分散评价装置40设有盖构件42。为了堵塞盖构件42的侧壁下端之间,设置 
Figure DEST_PATH_G50506552150138000D000045
的多孔质构件1,而且多孔体与支承部44的陶瓷一体化。在盖构件 42的顶面设有多个气体导入孔43。并且,在内壁,以等间隔水平地排列配置直径 
Figure DEST_PATH_G50506552150138000D000051
50mm的红圈。眼前一侧为开口的状态,以便观察其内部。 
接着,说明各特性的测定方法。 
(一)介质损耗正切:为了测定微波频带2和3GHz的介质损耗正切,把所得的多孔质体研磨加工成□1.5×L100mm的形状,通过使用空腔谐振器的摄动法,用AGILENT TECH.制的网络分析器8791ES设备进行了测定。 
(二)开气孔率:用阿基米德法(JIS R1634)测定□30×t10mm左右的多孔体。 
(三)平均气孔径:用水银压入法(JIS R1655)测定 
Figure DEST_PATH_G50506552150138000D000052
左右的多孔体。 
(四)压力损失:如图1所示,将研磨加工成 
Figure DEST_PATH_G50506552150138000D000053
形状的多孔质体1固定在与真空室连接的气体配管10内部5,并一次对气体配管内部5抽真空。而后,在下游侧为真空的状态下使Ar气从上游侧流动,测定上游侧的压力(一次压力P1)与下游侧的压力(二次压力P2)之差,其压力差ΔP为压力损失20。还有,设定气体流量为1cc/min/cm2。 
在所获得的多孔质构件1中,与致密体的接合部涂敷与多孔质构件1相同的接合材料,再次进行热处理,使之接合。 
如图2所示,将所得的陶瓷构件安装到评价装置上,以2.45GHz的微波发生器输出600W,施加30分钟微波,确认有无局部加热引起的破损。 
而且,如图3所示,通过使1~100cc/min/cm2的干冰流动,以框体内标识的红圈5a看出容易度确认白烟是否从多孔质构件1里均匀出来,确定有无气体分散的均匀性。 
下列表1示出了所获得的结果。 
[表1] 
Figure G2007800117422D00081
由所述表1很清楚,介质损耗正切超过1×10-3时,施加微波后的试料认为有向边缘部破裂引起的损伤。 
在气体分散方面,压力损失不足133Pa时,只有来自喷出部附近吐出,不是均匀分散气体的状态。 
开气孔率是60%以上、气孔径是100μm以上时也同样不能均匀地吐出气体。 
另一方面,开气孔率不足15%时,没有气体的通气性。 
例如,可知材料粒子的纯度(氧化铝纯度99.99%)、接合材料的纯度(石英纯度99.99%)高,实施例1~4的介质损耗正切变低,例如,可知实施例8(氧化铝纯度99%)、比较例1(接合材料:含有碱金属2%的产品)、比较例3(氧化铝纯度96.5%)等材料粒子、接合材料的纯度越低,介质损耗正切越高。 
至于频率,可知在3GHz频带下,其介质损耗正切较高,但随纯度而改变的趋势不变,高纯度制品其介质损耗正切低。 
由实施例1~4(接合材料15、30、45、60wt%)可知,接合材料量越多,开气孔率、平均气孔径越小,压力损失也越大。 
由实施例2(平均粒径30μm)、5(平均粒径300μm)、6(平均粒径110μm)、7(平均粒径60μm)、比较例5(原料粒径1000μm)可知,原料平均粒径越大,开气孔率、平均气孔径越大,压力损失也越低。 
在实施例中,均以气体流量1cc/min/cm2流动时,压力损失都是133Pa以上,气体被均匀分散,三个红圈均匀呈现阴暗,与此相反,在比较例4、5、7、9、10中,压力损失不足133Pa,所以来自气体喷出口的白烟浓,中央部分的红圈与其它两个红圈比较,清楚呈现,可知气体没有均匀地流动。 
如以上说过的那样,利用本发明制成的多孔质构件(多孔体),介质损耗正切低,所以没有因微波的局部加热而引起的破损,由于具有一定以上的压力损失,可以均匀地分散气体。现有技术不抑制介质损耗正切,或者压力损失低,所以难以控制气体流量。 
另外,若使用本发明,例如,在使用了微波加热的干燥工序中,就没有气体分散板(多孔质部分)的局部加热引起的破损,能够均匀地使气体 流动。 
产业上的利用可能性 
本发明的多孔质构件,适用于用作电子器件的干法工艺用、医疗药品制造用、食品加工制造等要求节能、气体流量均匀的环境下使用的零件、构件的多孔质构件。 

Claims (3)

1.一种多孔质构件,其特征在于,
该多孔质构件是由多孔质的陶瓷形成的,在微波等离子体处理装置中用于气体分散,且微波频带内的介质损耗正切是1×10-3以下,多孔质的开气孔率是15~60%,多孔质的平均气孔径是10~25μm。
2.根据权利要求1所述的多孔质构件,其特征在于,
在1~10cc/min/cm2流量下,压力损失为133Pa以上。
3.根据权利要求1所述的多孔质构件,其特征在于,
含有Al、Si及Y的各自氧化物中的至少一种。
CN200780011742.2A 2006-03-31 2007-03-29 多孔质构件 Active CN101421203B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP098093/2006 2006-03-31
JP2006098093A JP5229847B2 (ja) 2006-03-31 2006-03-31 多孔質部材とその製造方法とその製造方法を用いたセラミックス部材の製造方法
PCT/JP2007/056803 WO2007114219A1 (ja) 2006-03-31 2007-03-29 多孔質部材

Publications (2)

Publication Number Publication Date
CN101421203A CN101421203A (zh) 2009-04-29
CN101421203B true CN101421203B (zh) 2014-05-14

Family

ID=38563487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780011742.2A Active CN101421203B (zh) 2006-03-31 2007-03-29 多孔质构件

Country Status (5)

Country Link
US (1) US20090169854A1 (zh)
JP (1) JP5229847B2 (zh)
KR (1) KR101017548B1 (zh)
CN (1) CN101421203B (zh)
WO (1) WO2007114219A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927121B2 (ja) * 2010-10-26 2016-05-25 小松精練株式会社 多孔質セラミックス焼結体及びその製造方法
CN103594319A (zh) * 2013-11-27 2014-02-19 苏州市奥普斯等离子体科技有限公司 一种粉体材料表面等离子体处理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739169A (zh) * 2003-05-09 2006-02-22 松下电器产业株式会社 复合电介质及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416675A (en) * 1982-02-22 1983-11-22 Corning Glass Works High capacity solid particulate filter apparatus
JPH10100320A (ja) * 1996-09-30 1998-04-21 Mitsubishi Gas Chem Co Inc 複合セラミックス板およびその製造法
JP3228198B2 (ja) * 1997-10-17 2001-11-12 住友金属工業株式会社 セラミックス材料と回路基板およびその製造方法
US6579817B2 (en) * 2000-04-26 2003-06-17 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same
JP2002299331A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi プラズマ処理装置
JP2003282462A (ja) * 2002-03-27 2003-10-03 Kyocera Corp シャワープレートとその製造方法及びそれを用いたシャワーヘッド
JP2004299966A (ja) * 2003-03-31 2004-10-28 Ngk Insulators Ltd ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ
JP4502639B2 (ja) * 2003-06-19 2010-07-14 財団法人国際科学振興財団 シャワープレート、プラズマ処理装置、及び、製品の製造方法
JP4532897B2 (ja) * 2003-12-26 2010-08-25 財団法人国際科学振興財団 プラズマ処理装置、プラズマ処理方法及び製品の製造方法
KR101172334B1 (ko) * 2003-12-26 2012-08-14 고에키자이단호진 고쿠사이카가쿠 신고우자이단 샤워 플레이트, 플라즈마 처리 장치, 및 제품의 제조방법
JP4443976B2 (ja) * 2004-03-30 2010-03-31 忠弘 大見 セラミックスの洗浄方法および高清浄性セラミックス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739169A (zh) * 2003-05-09 2006-02-22 松下电器产业株式会社 复合电介质及其制造方法

Also Published As

Publication number Publication date
KR20080113434A (ko) 2008-12-30
WO2007114219A1 (ja) 2007-10-11
JP2007269585A (ja) 2007-10-18
US20090169854A1 (en) 2009-07-02
JP5229847B2 (ja) 2013-07-03
CN101421203A (zh) 2009-04-29
KR101017548B1 (ko) 2011-02-28

Similar Documents

Publication Publication Date Title
JP4939932B2 (ja) 窒化アルミニウム粉末及びその製造方法
KR101448330B1 (ko) 감소된 변형 내화 세라믹 합성물 및 이의 제법
CN206595225U (zh) 一种微波等离子体粉体处理器
CN101421203B (zh) 多孔质构件
WO2022127132A1 (zh) 5g基站用高纯低辐射球形硅微粉的制备工艺及设备
CN108061462A (zh) 一种烧结装置
TWI568704B (zh) 圓筒形濺射靶件、圓筒形成形體、圓筒形濺射靶件之製造方法、圓筒形燒結體之製造方法及圓筒形成形體之製造方法
TWI699444B (zh) 圓筒形濺射靶件及其製造方法
JP2010189205A (ja) シリカ容器及びその製造方法
JP2003282462A (ja) シャワープレートとその製造方法及びそれを用いたシャワーヘッド
IT202000015202A1 (it) Metodi e sistemi per sintetizzare un geopolimero
JP5930380B2 (ja) アルミナ質焼結体及びその製造方法
CN106946454B (zh) 用于生产具有高硅酸含量的材料的复合体的方法
JP2008143748A (ja) 反りのない炭化ケイ素焼結体及びその製造方法
JP2008230904A (ja) 多孔質体およびその製造方法
JP2012211082A (ja) シリカ容器
JP2013155098A (ja) アルミナ質焼結体及びその製造方法
TWI697458B (zh) 濺鍍靶
CN106363792B (zh) 一种扁流道保温板微粒均匀混合供料装置
JP2006016214A (ja) 窒化アルミニウム粉末の製造方法
CN211189997U (zh) 一种用于电子基材的气力混合机
CN207996598U (zh) 一种硅碳棒混料装置
EP0968761A2 (en) Discharge device for raw materials and fuels
KR101652802B1 (ko) 세라믹 모재의 이트리아 코팅 장치 및 코팅 방법
JP3877813B2 (ja) 大型窒化アルミニウム焼結体及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160802

Address after: Japan's Miyagi Prefecture

Patentee after: Tokoku University of National University Corp.

Patentee after: Nippon Special Ceramic Co., Ltd.

Address before: Japan's Miyagi Prefecture

Patentee before: Tokoku University of National University Corp.

Patentee before: Nihon Ceratec Co., Ltd.