CN101412924A - 一种联合加氢工艺方法 - Google Patents

一种联合加氢工艺方法 Download PDF

Info

Publication number
CN101412924A
CN101412924A CN 200810134136 CN200810134136A CN101412924A CN 101412924 A CN101412924 A CN 101412924A CN 200810134136 CN200810134136 CN 200810134136 CN 200810134136 A CN200810134136 A CN 200810134136A CN 101412924 A CN101412924 A CN 101412924A
Authority
CN
China
Prior art keywords
oil
diesel
reaction
raw material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200810134136
Other languages
English (en)
Other versions
CN101412924B (zh
Inventor
关明华
刘涛
曾榕辉
石友良
郭蓉
黄新露
白振民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN 200810134136 priority Critical patent/CN101412924B/zh
Publication of CN101412924A publication Critical patent/CN101412924A/zh
Application granted granted Critical
Publication of CN101412924B publication Critical patent/CN101412924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种联合加氢工艺方法,特别是蜡油加氢处理、劣质柴油加氢改质、柴油加氢精制的联合加氢工艺方法。首先蜡油原料油在氢气存在下通过第一反应区,生成物分离得到的液体作为催化裂化原料,分离得到气相与劣质柴油原料混合进入第二反应区进行加氢改质反应,第二反应区生成物与其它来源柴油原料混合进入第三反应区加氢精制反应,第三反应区生成物分离得到的气体经脱硫后循环使用,分离得到的液体经汽提后得到加氢石脑油和加氢柴油。本发明针对蜡油加氢处理、劣质柴油加氢改质和柴油加氢精制技术特点,将三种技术有机联合,在达到目的产品要求的前提下简化了工艺流程,可以减少设备,降低投资和操作费用。

Description

一种联合加氢工艺方法
技术领域
本发明涉及一种联合加氢工艺方法,特别是蜡油加氢处理、柴油加氢改质和柴油加氢精制组合方法。
背景技术
目前世界经济的持续发展和环保法规的日益严格,需要生产大量轻质清洁燃料,这些都要求对现有的炼油技术进行完善和改进,以最低的成本生产出符合要求的产品。随着原油资源的日益短缺和重质化、劣质化发展,催化裂化(FCC)和焦化成为生产轻质燃料产品的重要手段,但这两种工艺得到的产品质量一般难以达到严格的指量指标要求。轻质燃料产品质量体系中,硫含量是最重要的指标,如何降低石油产品中硫含量是当前石油加工行业面对的最重要问题之一,另外柴油产品的十六烷值一直受到关注,其规格要求也越来越严格。目前,以脱硫和改质为主要目的加氢工艺在清洁燃料生产中获得了广泛应用。如催化裂化原料的加氢预处理技术,轻质烃类(如柴油馏分)加氢精制和加氢改质技术等。
其中加氢精制技术主要有两种:一种是将二次加工柴油馏分在中压或低压下单段加氢精制,如FR2764902、RU2058371、US5068025、US5543036、US5817594、US5035793等,都公开了柴油馏分加氢精制的工艺,该技术可以很容易使馏分中的硫含量达到非常低的水平,但十六烷值提高幅度很小,基本上在3~6个单位,而且芳烃饱和程度差。另一种是使用贵金属催化剂的两段精制技术,它可以确保柴油中的硫、氮在第一段中完全脱除和芳烃在第二段中大量脱除,使产品中硫、氮和芳烃含量达到要求,如US5556824和US5651878等,但其催化剂和装置的一次性投资非常巨大,又分两段操作,操作非常复杂,而且催化剂的稳定性还有待于进一步验证,另外由于体积空速比较小,装置的处理能力有限。
其中柴油馏分加氢改质技术主要目的是提高柴油的产品质量,现有的柴油加氢改质如CN1156752A和CN1289832A等,尽管可以大幅度提高柴油的十六烷值和降低硫、氮等杂质含量,但该技术仅适用于十六烷值低、芳烃含量高的柴油原料。
FCC原料加氢预处理技术可以避免催化裂化汽油加氢精制过程中辛烷值损失,并且还具有如下优点:可以降低FCC催化剂的更换速率;降低FCC焦炭产率;改善FCC产品分布、提高目的产品产率、降低非目的产品产率;直接改善FCC产品质量,降低产品硫含量;降低FCC再生器SOx、NOx的排放量等,因此FCC原料加氢预处理工艺在现代炼油厂中得到广泛的应用。现有的催化裂化原料预处理技术主要有:US3983029和US6793804公开了加氢处理工艺和催化剂,CN1313379公开了一种劣质催化裂化原料的加氢处理方法,CN1646665公开了烃类原料的加氢处理。
现有技术中蜡油加氢处理和加氢精制两种工艺过程为单独操作,尽管能够满足目的要求,但是由于两套加工装置完全独立,各自有独立的设备和管线,势必导致总投资费用高,操作费用高等不足。
发明内容
针对现有技术的不足,本发明提供一种针对蜡油加氢脱硫、柴油加氢改质和柴油加氢精制联合工艺方法,可以在最大限度减少建设投资的基础上生产出合格的柴油产品和优质催化裂化原料油。
一种联合加氢工艺方法,原料包括蜡油馏分原料和柴油馏分油原料,包括如下步骤:
a、在加氢处理操作条件下,蜡油馏分原料经过加氢处理催化剂床层,加氢处理反应流出物在热高压分离器中分离得到气相和液相,气相包括氢气和轻质烃类,液体为加氢蜡油;
b、在加氢改质操作条件下,劣质柴油原料油与步骤a得到的气相混合经过加氢改质催化剂床层,加氢改质催化剂含有改性Y型分子筛;其中劣质柴油馏分原料的芳烃含量不小于45wt%;
c、在加氢精制操作条件下,步骤b得到的反应流出物与柴油馏分原料油混合通过加氢精制催化剂床层,加氢精制反应物分离得到富氢气体和液相;其中柴油馏分原料的芳烃含量小于45wt%;
d、步骤c得到的高压富氢气体气相经脱硫化氢后循环使用,液相进入分馏系统分馏得到烃类产品。
步骤a所述的蜡油原料油一般包括馏程为350~620℃重质馏分,如可以是石油加工过程中得到的各种减压瓦斯油(VGO)、脱沥青油(DAO)、焦化瓦斯油(CGO)、重循环油(HCO)等中的一种或几种,也可以是来自煤焦油、煤液化油等。
步骤a所述的加氢处理催化剂为常规加氢处理催化剂,可以是各种商业催化剂,如抚顺石油化工研究院(FRIPP)研制生产的3926、3936、CH-20、3996、FF-14、FF-16、FF-18、FF-26等加氢处理催化剂,法国石油公司(IFP)的HR-416、HR-448等催化剂,丹麦脱普索公司(Topsor)的TK-525、TK-557催化剂,何兰阿克佐公司(AKZO)的KF-752、KF-840、KF-901、KF-907等。体相催化剂如抚顺石油化工研究院(FRIPP)研制生产的FH-FS等。上述加氢处理催化剂也可以按本领域知识进行制备,普通加氢处理催化剂(负载型催化剂,活性金属含量相对较低,一般以氧化物计为20%~45%)一般先制备催化剂载体,然后用浸渍法负载活性金属组分,体相催化剂(活性金属含量高,一般以氧化物计为50%~85%)一般采用共沉淀法制备。
步骤a所述的加氢处理操作条件为:反应压力3.0~20.0MPa,氢油体积比为200:1~2500:1,体积空速为0.1~8.0h-1,反应温度260℃~455℃;优选的操作条件为反应压力4.0~18.0MPa,氢油体积比300:1~2000:1,体积空速0.2~6.0h-1,反应温度280~444℃。热高压分离器操作压力与反应系统压力相同,温度一般为180~410℃,优选为220~390℃,热高压分离器分离出的气相中含有蜡油加氢处理过程产生的轻质烃类,如柴油馏分和汽油馏分,该轻质烃类进行柴油加氢改质反应,可以获得优质产品。
步骤b所述的劣质柴油馏分原料十六烷值通常小于40,芳烃含量不小于45wt%,优选十六烷值为小于35,芳烃含量大于50wt%。包括环烷基原油的直馏柴油、各种催化柴油、各种煤液化油轻质馏分等的一种或儿种的混合油,其馏程一般为150℃~390℃。
步骤b所述的加氢改质催化剂床层可以为单独使用加氢改质催化剂,也可以与加氢精制催化剂级配使用,级配使用时一般是反应物料先与加氢精制催化剂接触,然后与加氢改质催化剂接触。其中加氢改质催化剂为含有改性Y型分子筛的加氢改质催化剂,以重量计催化剂含有WO315%~30%,NiO或CoO2%~15%,改性Y型分子筛10%~45%,同时可以含有助剂如F,以重量计F含量为1%~9%,载体为氧化铝和/或无定形硅铝。其中改性Y型分子筛具有如下性质:晶胞常数为2.436~2.444nm,红外总酸(160℃)为0.5~1.1mmol/g。加氢改质催化剂可以使用商品催化剂,如抚顺石油化工研究院研制生产的3963催化剂、FC-18催化剂等,也可以按木领域知识制备。加氢精制催化剂可以采用本领域普通加氢精制催化剂,也可以采用高活性加氢精制催化剂,也可以采用普通加氢精制催化剂与高活性加氢精制催化剂按适宜方式配合使用。催化剂可以选择适宜的商业催化剂,如抚顺石油化工研究院研制生产的FH-5A、FDS-4A、FH-98、FH-DS、FH-UDS等加氢精制催化剂,或按本领域现有方法制备。
步骤b所述的加氢改质操作条件为:反应压力4.0MPa~18.0MPa,反应温度为300℃~440℃,液时体积空速0.3h-1~4.0h-1,氢油体积比为100:1~2000:1。步骤a的压力较步骤b的压力略高,便于氢气能够串级循环,通常高0.01~2.0MPa。
步骤c所述的其它柴油原料十六烷值通常大于35,芳烃含量小于45wt%,优选十六烷值为大于40,芳烃含量小于40wt%。包括直馏柴油、焦化柴油等的一种或几种的混合油,其中可以含有汽油馏分,如直馏汽油、焦化汽油等,其馏程一般为64℃~380℃。
步骤c所述的加氢精制可以采用本领域普通加氢精制催化剂,也可以采用高活性加氢精制催化剂,也可以采用普通加氢精制催化剂与高活性加氢精制催化剂按适宜方式配合使用。催化剂可以选择适宜的商业催化剂,如抚顺石油化工研究院研制生产的FH-5A、FDS-4A、FH-98、FH-DS、FH-UDS等加氢精制催化剂,或按本领域现有方法制备。
步骤c所述的加氢精制操作条件一般为:反应压力4.0MPa~18.0MPa,反应温度为260℃~440℃,液时体积空速0.3h-1~6.0h-1,氢油体积比为100:1~2000:1。步骤b的压力较步骤c的压力略高,便于氢气能够串级循环,通常高0.01~2.0MPa。
与现有技术相比,本发明通过优化工艺流程和优化适宜的催化剂级配及操作条件,使不同劣质原料在最适宜条件下提高产品质量,最终获得了理想的综合加工效果。在工艺流程上,本发明方法与两种原料分别加工时比较:具有节省设备(气液分离设备、汽提设备、压缩机等)、工艺流程短、设备投资低、操作费用低等优点。同时蜡油加氢处理采用热高分流程,可以节约冷高分和冷低分设备,三套系统共用氢气系统和脱硫系统,可以节约新氢压缩机、循环氢压缩机和脱硫系统。另外加氢处理得到的轻质馏分通过加氢改质和加氢精制反应区,可以进一步提高质量。
附图说明
图1是本发明的一种实施方式流程示意图。
具体实施方式
首先蜡油加氢处理原料油1与氢气2混合进入加氢处理反应器3,得到含硫、氮等杂质低的加氢处理反应流出物4。加氢处理生成物4在热高压分离器5中分离得到液体加氢蜡油6直接进入催化裂化装置,热高压分离器5中分离得到气相7包括氢气和轻质馏分油,气相7与加氢改质劣质柴油馏分原料油8混合进入加氢改质反应器9。经过一系列反应,得到加氢改质反应流出物10。加氢改质反应流出物10继续与柴油馏分原料11混合进入加氢精制反应器12,得到加氢精制反应流出物13,加氢精制反应流出物13在高压分离器14中分离得到的含硫化氢气体15进入脱硫塔16,得到的脱硫后循环气17经过循环氢压缩机18增压后与新氢19混合循环使用。高压分离器14中分离得到的液体20进入汽提塔21(如果加氢精制反应流出物13中汽油馏分较多,可改为分馏塔),然后得到气体产品22,汽油(或石脑油)23和柴油产品24。
使用原料油的主要性质见表1,加氢处理操作条件和结果见表2,加氢精制操作条件和结构见表3。催化剂为抚顺石油化工研究院研制生产的商品催化剂。
表1 原料油性质
 
原料油名称 原料油-1 原料油-2 原料油-3 原料油-4
来源 柴油1 劣质柴油2 焦化汽柴油 蜡油
密度(20℃)/g·cm-3 0.8731 0.9466 0.8195 0.9235
馏程范围,℃ 180~375 170~385 55~360 350~570
硫含量,wt% 1.25 0.97 0.86 2.25
氮含量,wt% 0.07 0.11 0.09 0.17
十六烷值 39.2 21.2
芳烃含量,wt% 40.5 72.2 15.3 55.2
表2 加氢处理操作条件和结果
 
编号 实施例1 实施例2 实施例3 实施例4
原料油 原料油-4 原料油-4 原料油-4 原料油-4
催化剂 FF-14 FF-14 FF-18 FF-18
反应压力/MPa 9.5 5.8 16.0 12.6
平均反应温度/℃ 370 365 385 375
LHSV/h-1 1.2 0.8 1.5 3.0
氢油体积比(v/v) 600:1 400:1 1500:1 1000:1
热高压分离器温度,℃ 250 200 400 300
蜡油收率,wt% 93.5 94.2 88.9 91.4
硫含量/μg·g-1 2100 2800 200 900
表3 加氢改质、加氢精制操作条件和结果
 
编号 实施例1 实施例2 实施例3 实施例4
工艺过程 加氢改质 加氢改质 加氢改质 加氢改质
原料油 原料油-2 原料油-2 原料油-2 原料油-2
催化剂 FH-98/3963 FC-18 FH-98/3963 FH-98/FC-18
催化剂比例(v/v) 40/60 / 50/50 20/80
反应压力/MPa 9.0 5.5 15.5 12.0
 
反应温度/℃ 350 345 360 370
LHSV/h-1 1.0 0.7 1.2 1.5
氢油体积比(v/v) 800:1 1000:1 900:1 700:1
工艺过程 加氢精制 加氢精制 加氢精制 加氢精制
加氢改质反应流出物之外的新鲜原料油 原料油-1 原料油-1 原料油-3 原料油-3
新鲜原料油比例(wt%) 40 75 30 50
催化剂 FH-98 FH-98 FH-98 FH-UDS
反应压力/MPa 8.7 5.3 15.0 11.7
反应温度/℃ 350 340 370 345
LHSV/h-1 2.5 1.5 3.5 3.0
氢油体积比(v/v) 500∶1 400∶1 700∶1 350∶1
<145℃石脑油馏分
硫含量/μg·g-1 <5 <5 <5 <5
≥145℃柴油馏分
密度(20℃)/g·cm-3 0.8425 0.8453 0.8315 0.8304
硫含量/μg·g-1 120 45 <10 <10
十六烷值 49.1 48.2 52.1 53.5
从以上的实施例中可以看出来,该组合工艺的最大特点在于,合理利用加氢处理、加氢改质和加氢精制工艺的各自特点,在保持不同装置产品要求的同时,由于采用了组合工艺,大大降低了装置的设备投资和操作费用。同时,蜡油加氢处理过程生产的轻质烃类经热高分后直接进入柴油加氢改质装置,一方面可以提高柴油产品质量,另一方面节省了分离设备,并且由于不需要空气冷却器降温而大大提高了热量的利用率,降低了装置能耗。加氢改质柴油进入加氢精制反应区可以进一步进行补充加氢精制,节省了后处理催化剂,降低了建设投资。由于采用三个反应区串连流程,可以最大限度降低循环氢压缩机负荷。

Claims (15)

1、一种联合加氢工艺方法,原料包括蜡油馏分原料和柴油馏分油原料,包括如下步骤:
a、在加氢处理操作条件下,蜡油馏分原料经过加氢处理催化剂床层,加氢处理反应流出物在热高压分离器中分离得到气相和液相,气相包括氢气和轻质烃类,液体为加氢蜡油;
b、在加氢改质操作条件下,劣质柴油原料油与步骤a得到的气相混合经过加氢改质催化剂床层,加氢改质催化剂含有改性Y型分子筛;其中劣质柴油馏分原料的芳烃含量不小于45wt%;
c、在加氢精制操作条件下,步骤b得到的反应流出物与柴油馏分原料油混合通过加氢精制催化剂床层,加氢精制反应物分离得到富氢气体和液相;其中柴油馏分原料的芳烃含量小于45wt%;
d、步骤c得到的高压富氢气体气相经脱硫化氢后循环使用,液相进入分馏系统分馏得到烃类产品。
2、按照权利要求1所述的方法,其特征在于步骤a所述的蜡油馏分原料包括减压瓦斯油、脱沥青油、焦化瓦斯油、重循环油中的一种或几种,或者来自煤焦油或煤液化油。
3、按照权利要求1所述的方法,其特征在于步骤a所述的加氢处理操作条件为:反应压力3.0~20.0MPa,氢油体积比为200:1~2500:1,体积空速为0.1~8.0h-1,反应温度260℃~455℃;热高压分离器操作压力与反应系统压力相同,温度为180~410℃,热高压分离器分离出的气相中含有蜡油加氢处理过程产生的轻质烃类。
4、按照权利要求1所述的方法,其特征在于步骤a所述的加氢处理操作条件为:反应压力4.0~18.0MPa,氢油体积比300:1~2000:1,体积空速0.2~6.0h-1,反应温度280~444℃;热高压分离器操作温度为220~390℃。
5、按照权利要求1所述的方法,其特征在于步骤b所述的劣质柴油馏分原料十六烷值小于40,芳烃含量不小于45wt%。
6、按照权利要求1所述的方法,其特征在于步骤b所述的劣质柴油馏分原料十六烷值为小于35,芳烃含量大于50wt%。
7、按照权利要求1、5或6所述的方法,其特征在于步骤b所述的劣质柴油馏分原料为环烷基原油的直馏柴油、催化柴油、煤液化油轻质馏分中的一种或几种。
8、按照权利要求1所述的方法,其特征在于步骤b所述的加氢改质催化剂以重量计催化剂含有改性Y型分子筛10%~45%,载体为氧化铝和/或无定形硅铝,其中改性Y型分子筛具有如下性质:晶胞常数为2.436~2.444nm,红外总酸为0.5~1.1mmol/g。
9、按照权利要求1所述的方法,其特征在于步骤b所述的加氢改质操作条件为:反应压力4.0MPa~18.0MPa,反应温度为300℃~440℃,液时体积空速0.3h-1~4.0h-1,氢油体积比为100:1~2000:1。
10、按照权利要求1所述的方法,其特征在于步骤c所述的柴油馏分原料的十六烷值大于35,芳烃含量小于45wt%。
11、按照权利要求1所述的方法,其特征在于步骤c所述的柴油馏分原料的十六烷值为大于40,芳烃含量小于40wt%。
12、按照权利要求1、10或11所述的方法,其特征在于步骤c所述的柴油馏分原料包括直馏柴油或焦化柴油。
13、按照权利要求12所述的方法,其特征在于所述的柴油馏分原料中含有汽油馏分。
14、按照权利要求1所述的方法,其特征在于步骤c所述的加氢精制操作条件为:反应压力4.0MPa~18.0MPa,反应温度为260℃~440℃,液时体积空速0.3h-1~6.0h-1,氢油体积比为100:1~2000:1。
15、按照权利要求1所述的方法,其特征在于步骤a的压力较步骤b的压力高0.01~2.0MPa,步骤b的压力较步骤c的压力高0.01~2.0MPa,便于氢气能够串级循环。
CN 200810134136 2007-10-18 2008-07-17 一种联合加氢工艺方法 Active CN101412924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810134136 CN101412924B (zh) 2007-10-18 2008-07-17 一种联合加氢工艺方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200710157657 2007-10-18
CN200710157657.9 2007-10-18
CN 200810134136 CN101412924B (zh) 2007-10-18 2008-07-17 一种联合加氢工艺方法

Publications (2)

Publication Number Publication Date
CN101412924A true CN101412924A (zh) 2009-04-22
CN101412924B CN101412924B (zh) 2013-03-20

Family

ID=40593668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810134136 Active CN101412924B (zh) 2007-10-18 2008-07-17 一种联合加氢工艺方法

Country Status (1)

Country Link
CN (1) CN101412924B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206511A (zh) * 2011-04-26 2011-10-05 神华集团有限责任公司 由煤直接液化油和延迟焦化重柴油馏分来生产柴油的方法及其应用
CN102465030A (zh) * 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种加氢工艺组合方法
CN102876366A (zh) * 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种联合加氢处理方法
CN103131469A (zh) * 2011-11-25 2013-06-05 中国石油天然气股份有限公司 固定床渣油加氢处理方法
CN103773455A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种动植物油、催化柴油联合加氢工艺方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128859C (zh) * 1999-03-08 2003-11-26 中国石化集团洛阳石油化工工程公司 烃加氢转化组合方法
US7041211B2 (en) * 2001-06-28 2006-05-09 Uop Llc Hydrocracking process
CN1191334C (zh) * 2001-07-31 2005-03-02 中国石油化工股份有限公司 渣油加氢、催化裂化与柴油加氢脱芳烃结合的方法
CN100448956C (zh) * 2005-10-19 2009-01-07 中国石油化工股份有限公司 一种联合加氢工艺方法
CN100489069C (zh) * 2006-01-19 2009-05-20 中国石油化工股份有限公司 一种由焦化全馏分油生产柴油的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465030A (zh) * 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种加氢工艺组合方法
CN102465030B (zh) * 2010-11-05 2014-07-23 中国石油化工股份有限公司 一种加氢工艺组合方法
CN102206511A (zh) * 2011-04-26 2011-10-05 神华集团有限责任公司 由煤直接液化油和延迟焦化重柴油馏分来生产柴油的方法及其应用
CN102206511B (zh) * 2011-04-26 2014-07-09 神华集团有限责任公司 由煤直接液化油和延迟焦化重柴油馏分来生产柴油的方法及其应用
CN102876366A (zh) * 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种联合加氢处理方法
CN102876366B (zh) * 2011-07-11 2015-08-12 中国石油化工股份有限公司 一种联合加氢处理方法
CN103131469A (zh) * 2011-11-25 2013-06-05 中国石油天然气股份有限公司 固定床渣油加氢处理方法
CN103131469B (zh) * 2011-11-25 2015-05-13 中国石油天然气股份有限公司 固定床渣油加氢处理方法
CN103773455A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种动植物油、催化柴油联合加氢工艺方法
CN103773455B (zh) * 2012-10-24 2016-05-18 中国石油化工股份有限公司 一种动植物油、催化柴油联合加氢工艺方法

Also Published As

Publication number Publication date
CN101412924B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
CN101412928B (zh) 一种加氢脱硫组合方法
CN101724457B (zh) 一种柴油加氢组合方法
CN101376839B (zh) 一种柴油馏分深度加氢方法
CN101348732B (zh) 一种重质馏分油加氢处理方法
CN101724454A (zh) 一种生产高辛烷值汽油的加氢裂化方法
CN102757818B (zh) 一种生产无硫汽油的方法
CN100587038C (zh) 一种生产优质催化裂化原料的加氢方法
CN105694966B (zh) 一种由催化裂化柴油生产石脑油和清洁汽油的方法
CN1982418A (zh) 一种由重馏分油生产清洁燃料的方法
CN101412924B (zh) 一种联合加氢工艺方法
CN101412923B (zh) 加氢改质组合方法
CN101747936B (zh) 一种生产优质低硫柴油馏分的加氢方法
CN103773495A (zh) 一种加氢处理—催化裂化组合工艺方法
CN102876366B (zh) 一种联合加氢处理方法
CN109988650B (zh) 劣质柴油加氢改质和加氢精制组合方法
CN101412926B (zh) 一种加氢改质组合方法
CN101376840B (zh) 重质馏分油加氢处理方法
CN101376841B (zh) 一种重质馏分油加氢处理方法
CN101412925B (zh) 联合加氢工艺方法
CN109988643B (zh) 劣质柴油加氢改质和加氢精制组合工艺
CN100419044C (zh) 一种从煤液化油最大量生产大比重航空煤油的方法
CN102311782A (zh) 一种煤焦油加氢提质生产柴油的方法
CN101993724B (zh) 一种灵活生产优质柴油的加氢组合方法
CN101434866B (zh) 一种重质馏分油加氢处理与催化裂化组合方法
CN100594232C (zh) 一种劣质馏分油的改质方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant