CN101401006A - Dvor监视装置及dvor监视方法 - Google Patents

Dvor监视装置及dvor监视方法 Download PDF

Info

Publication number
CN101401006A
CN101401006A CNA2007800090754A CN200780009075A CN101401006A CN 101401006 A CN101401006 A CN 101401006A CN A2007800090754 A CNA2007800090754 A CN A2007800090754A CN 200780009075 A CN200780009075 A CN 200780009075A CN 101401006 A CN101401006 A CN 101401006A
Authority
CN
China
Prior art keywords
mentioned
signal
dvor
carrier wave
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800090754A
Other languages
English (en)
Other versions
CN101401006B (zh
Inventor
木原弘喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101401006A publication Critical patent/CN101401006A/zh
Application granted granted Critical
Publication of CN101401006B publication Critical patent/CN101401006B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • G01S1/024Means for monitoring or calibrating of beacon transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/38Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna
    • G01S1/40Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna the apparent movement of the antenna being produced by cyclic sequential energisation of fixed antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/44Rotating or oscillating beam beacons defining directions in the plane of rotation or oscillation
    • G01S1/46Broad-beam systems producing at a receiver a substantially continuous sinusoidal envelope signal of the carrier wave of the beam, the phase angle of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon, e.g. cardioid system
    • G01S1/50Broad-beam systems producing at a receiver a substantially continuous sinusoidal envelope signal of the carrier wave of the beam, the phase angle of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon, e.g. cardioid system wherein the phase angle of the direction-dependent envelope signal is compared with a non-direction-dependent reference signal, e.g. VOR

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radio Transmission System (AREA)

Abstract

通过监视天线(11)接收包括从DVOR装置发送的载波信号和副载波信号的电波,通过正交检波器(12、13、14)使各副载波成分的信号的相位比载波成分的信号偏移与距DVOR装置规定距离相当的相位差,通过合成器(18)合成载波成分的信号和副载波成分的信号,输出到DVOR解调器(19)。

Description

DVOR监视装置及DVOR监视方法
技术领域
本发明涉及例如监视DVOR装置的动作状态的DVOR监视装置及DVOR监视方法,特别涉及改善DVOR装置的动作监视功能的技术。
背景技术
一直以来,在各地的机场,为了支援客机等飞机的着陆,设置了各种设备。在这些设备中,具有例如DVOR(Doppler Very High FrequencyOmni-directional Radio Range:多普勒甚高频全向信标)装置。DVOR装置是通过电波将方位信息提供给飞机的装置。
另外,为了运用上述DVOR装置,需要稳定动作。于是,在现有技术中,使用如下的监视装置:通过接收来自DVOR装置的载波和副载波、并分析这些载波和副载波的相位,进行DVOR装置的动作确认。
但是,在使用上述监视装置的方法中,在将监视天线设置在距DVOR信号发送天线60m以下的近距离的情况下,因载波和副载波的相位关系混乱而失去副载波的振幅信息,不能进行正确的监视处理,所以监视天线需要设置在距离60m以上的场所。
于是,以前提出了如下方法(例如,日本特公平4-35715公报):将在规定距离的位置进行接收时产生的侧波带信号的不需要的振幅变化,置换成与侧波带信号的相位延迟相当的相位延迟的新的载波并消去,从而可以将监视天线设置在距DVOR信号发送天线60m以下的近距离。
但是,在上述方法中,必须预先存储具有相位延迟的载波的波形数据,从而对存储容量施以这部分的压力。
发明内容
本发明的目的在于提供一种DVOR监视装置及DVOR监视方法,即使将监视天线设置在距DVOR信号发送天线近的位置,也能实现正确的监视性能。
为了达成上述目的,本发明如下构成。
本发明的DVOR监视装置,具有:接收器,从DVOR装置接收电波,该电波包括被调制的载波和副载波;第一信号抽取器,从通过上述接收器得到的接收信号中抽取上述载波成分的信号;第二信号抽取器,从通过上述接收器得到的接收信号中抽取上述副载波成分的信号,并使上述副载波成分的信号的相位比上述载波成分的信号偏移与距上述DVOR装置规定距离相当的相位差;合成器,合成上述第一和第二信号抽取器的各输出;解调器,解调该合成器的输出信号;及监视器,根据通过该解调器得到的信号进行上述DVOR装置的动作确认。
根据该构成,使副载波成分的信号的相位比载波成分的信号偏移与距DVOR装置规定距离相当的相位差,合成载波成分的信号和副载波成分的信号,输出到解调器。因此,不对存储容量施以不具备预先存储与相位延迟和提前相当的新的载波的波形数据的存储器的部分的压力,可以将监视天线设置在距DVOR信号发送天线近距离的位置,由此可以缩小设置监视天线所需的土地面积。
附图说明
图1是表示本发明一实施方式涉及的DVOR监视装置的构成的框图。
图2是用于说明同一实施方式的带通滤波器的特性控制方法的波谱波形图。
具体实施方式
以下,参照附图详细说明本发明的实施方式。
图1是表示本发明一实施方式涉及的DVOR监视装置的构成的框图。
在图1中,通过监视天线11接收到的来自DVOR装置(图未示出)的DVOR信号被分配给3个系统,一方面分配给正交检波器12,另一方面分别分配给正交检波器13、14。
第一系统的上述DVOR信号被正交检波器12正交检波、频率变换成接收中间频率信号之后,由带通滤波器(BPF1)15抽取出载波成分的信号。
第二系统的上述DVOR信号被正交检波器13正交检波、频率变换成接收中间频率信号,并使其比载波成分的信号前进与距DVOR装置规定距离(60m)相当的相位差之后,由带通滤波器(BPF2)16抽取出副载波成分的信号。
第三系统的上述DVOR信号被正交检波器14正交检波、频率变换成接收中间频率信号,并使其比载波成分的信号延迟与距DVOR装置规定距离(60m)相当的相位差之后,由带通滤波器(BPF3)17抽取出副载波成分的信号。
这些带通滤波器15、16、17的各输出通过合成器18合成后,通过DVOR解调器19解调,由DVOR监视控制器20实施DVOR装置的动作确认用的信号处理。解调方式例如采用对应于AM(Amplitude Modulation)解调方式的解调方式。
在上述构成中,以下参照图2说明其处理动作。
首先,为了通过DVOR监视控制器20实现正确的监视处理,通过三个正交检波器12、13、14对由监视天线11接收的DVOR信号进行频率转换,使正交检波器13、14的本地信号具有对应于监视天线11的设置距离而发生的载波和副载波之间的相位差,从而分别输出去除了相位误差的载波和副载波。
此时,使带通滤波器15、16、17的中心频率,如图2所示,高于本地频率(L0)、且与符合于波谱(LSB)、(CAR)、(USB)的频率一致。由此,通过合成器18来合成由带通滤波器15、16、17抽出的信号成分,从而能实现利用现有的解调处理来远距离设置监视天线11的情况同等的监视性能。
如上所述,在上述实施方式中,通过正交检波器12、13、14,使各副载波成分的信号的相位比载波成分的信号偏移与距DVOR装置规定距离相当的相位差,通过合成器18合成载波成分的信号和副载波成分的信号,输出到DVOR解调器19。
因此,不对存储容量施以不具备预先存储与相位延迟和提前相当的新的载波的波形数据的存储器的部分的压力,可以将监视天线11设置在距DVOR装置的DVOR信号发送天线近距离的位置,由此可以缩小用于设置监视天线所需的土地面积,同时可以将监视天线11设置在任何场所。
另外,虽然根据上述实施方式说明了本发明,但本发明不限于上述实施方式,能在实施阶段不脱离该宗旨的范围内改变构成要素来具体化。而且可以通过上述实施方式所公开的多个构成要素的适当组合,形成种种发明。例如,也可以从各实施方式所示的全部构成要素中删除几个构成要素。

Claims (5)

1.一种DVOR监视装置,其特征在于,具备:
接收器,从DVOR装置接收电波,该电波包括被调制的载波和副载波;
第一信号抽取器,从通过上述接收器得到的接收信号中抽取上述载波成分的信号;
第二信号抽取器,从通过上述接收器得到的接收信号中抽取上述副载波成分的信号,并使上述副载波成分的信号的相位比上述载波成分的信号偏移与距上述DVOR装置规定距离相当的相位差;
合成器,合成上述第一和第二信号抽取器的各输出;
解调器,解调该合成器的输出信号;及
监视器,根据通过该解调器得到的信号进行上述DVOR装置的动作确认。
2.如权利要求1所述的DVOR监视装置,其特征在于,
上述第一信号抽取器对由上述接收器得到的接收信号进行正交检波并通过第一带通滤波器,从而抽取上述载波成分的信号;
上述第二信号抽取器对由上述接收器得到的接收信号进行正交检波并使相位偏移上述相位差,通过其通过带域不同于上述第一带通滤波器的第二带通滤波器,从而抽取上述副载波成分的信号。
3.一种DVOR监视装置,其特征在于,具备:
接收器,从DVOR装置接收电波,该电波包括被调制的载波和副载波;
第一信号抽取器,从通过上述接收器得到的接收信号中抽取上述载波成分的信号;
第二信号抽取器,从通过上述接收器得到的接收信号中抽取上述副载波成分的信号,使上述副载波成分的信号的相位比上述载波成分的信号前进与距上述DVOR装置规定距离相当的相位差;
第三信号抽取器,从通过上述接收器得到的接收信号中抽取上述副载波成分的信号,使上述副载波成分的信号的相位比上述载波成分的信号延迟与距上述DVOR装置规定距离相当的相位差;
合成器,合成上述第一、第二和第三信号抽取器的各输出;
解调器,解调该合成器的输出信号;及
监视器,根据通过该解调器得到的信号进行上述DVOR装置的动作确认。
4.如权利要求3所述的DVOR监视装置,其特征在于,
上述第一信号抽取器对由上述接收器得到的接收信号进行正交检波并通过第一带通滤波器,从而抽取上述载波成分的信号;
上述第二信号抽取器对由上述接收器得到的接收信号进行正交检波并使相位前进上述相位差,通过其通过带域不同于上述第一带通滤波器的第二带通滤波器,从而抽取上述副载波成分的信号;
上述第三信号抽取器对由上述接收器得到的接收信号进行正交检波并使相位延迟上述相位差,通过其通过带域不同于上述第一带通滤波器的第三带通滤波器,从而抽取上述副载波成分的信号。
5.一种DVOR监视方法,从DVOR装置接收包括被调制的载波和副载波的电波,根据通过解调器解调该接收信号而得到的信号进行上述DVOR装置的动作确认,其中,
从来自上述DVOR装置的电波中抽取上述载波成分的信号和上述副载波成分的信号,使相互具有与距上述DVOR装置预定距离相当的相位差之后,合成上述载波成分的信号和上述副载波成分的信号,输出到上述解调器。
CN2007800090754A 2006-09-14 2007-08-31 Dvor监视装置及dvor监视方法 Expired - Fee Related CN101401006B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006249910A JP4738295B2 (ja) 2006-09-14 2006-09-14 Dvorモニタ装置及びdvorモニタ方法
JP249910/2006 2006-09-14
PCT/JP2007/067054 WO2008032592A1 (en) 2006-09-14 2007-08-31 Dvor monitor device, and dvor monitor method

Publications (2)

Publication Number Publication Date
CN101401006A true CN101401006A (zh) 2009-04-01
CN101401006B CN101401006B (zh) 2012-02-29

Family

ID=39183653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800090754A Expired - Fee Related CN101401006B (zh) 2006-09-14 2007-08-31 Dvor监视装置及dvor监视方法

Country Status (5)

Country Link
US (1) US7952520B2 (zh)
EP (1) EP2015099B1 (zh)
JP (1) JP4738295B2 (zh)
CN (1) CN101401006B (zh)
WO (1) WO2008032592A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117973A (zh) * 2013-03-06 2013-05-22 中国科学院自动化研究所 基于正交检波的多路并行解调系统
CN104270123A (zh) * 2014-09-25 2015-01-07 中国科学院自动化研究所 一种基于单片机的多路相敏检波信号发生系统
CN105703844A (zh) * 2016-03-10 2016-06-22 中国计量科学研究院 一种vor标准信号的产生方法及发射机
CN110703184A (zh) * 2019-10-22 2020-01-17 四川九洲空管科技有限责任公司 一种全数字化多普勒甚高频全向信标系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491710B2 (ja) * 2008-08-06 2014-05-14 株式会社東芝 DVOR(DopplerVHFOmnidirectionalRadioRange)システム、モニタ装置及びDVOR装置監視方法
JP2011203076A (ja) * 2010-03-25 2011-10-13 Toshiba Corp Ils装置
JP2014185994A (ja) * 2013-03-25 2014-10-02 Toshiba Corp モニタ装置及びドップラーvorシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2476853A1 (fr) * 1980-02-26 1981-08-28 Thomson Csf Dispositif de controle d'un systeme de radionavigation du type vor doppler et systeme vor doppler le comprenant
DE3108980C2 (de) * 1981-03-10 1983-09-08 Standard Elektrik Lorenz Ag, 7000 Stuttgart Doppler-Drehfunkfeuer mit einer Überwachungseinrichtung
JPH01114771A (ja) * 1987-10-29 1989-05-08 Unyusho Senpaku Gijutsu Kenkyusho Dsb方式ドップラーvorモニタ方法
US5045859A (en) * 1988-09-15 1991-09-03 Aviation Systems Concepts, Inc. Phase reference navigation system and method
JPH02304384A (ja) * 1989-05-19 1990-12-18 Nec Corp 方位測定システム
JP2936649B2 (ja) 1990-05-31 1999-08-23 松下電器産業株式会社 空気清浄器
FR2667160B1 (fr) * 1990-09-26 1993-06-25 Thomson Csf Procede et dispositif de mesure de l'integrite d'une emission.
JP2579724B2 (ja) * 1992-11-27 1997-02-12 東芝テスコ株式会社 ダブルサイドバンドドプラvorにおける近接位相誤差補正装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117973A (zh) * 2013-03-06 2013-05-22 中国科学院自动化研究所 基于正交检波的多路并行解调系统
CN104270123A (zh) * 2014-09-25 2015-01-07 中国科学院自动化研究所 一种基于单片机的多路相敏检波信号发生系统
CN104270123B (zh) * 2014-09-25 2017-04-12 中国科学院自动化研究所 一种基于单片机的多路相敏检波信号发生系统
CN105703844A (zh) * 2016-03-10 2016-06-22 中国计量科学研究院 一种vor标准信号的产生方法及发射机
CN110703184A (zh) * 2019-10-22 2020-01-17 四川九洲空管科技有限责任公司 一种全数字化多普勒甚高频全向信标系统

Also Published As

Publication number Publication date
US20090174602A1 (en) 2009-07-09
EP2015099A4 (en) 2013-01-30
US7952520B2 (en) 2011-05-31
WO2008032592A1 (en) 2008-03-20
EP2015099B1 (en) 2015-02-25
CN101401006B (zh) 2012-02-29
EP2015099A1 (en) 2009-01-14
JP4738295B2 (ja) 2011-08-03
JP2008070263A (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
CN101401006B (zh) Dvor监视装置及dvor监视方法
US4309769A (en) Method and apparatus for processing spread spectrum signals
US3471856A (en) Position location and data collection system and method
US8125213B2 (en) System for extraction and analysis of significant radioelectric signals
US4305159A (en) Compressive receiver
US11343670B2 (en) Identifying devices with transpositional modulation
CN106130583A (zh) 一种基于fpga的数字中频信号解调方法
US2787787A (en) Receiving arrangements for electric communication systems
EP0099702A2 (en) A frequency converter
US20070275679A1 (en) Radio receiver for aviation communications and navigation
JPS5899773A (ja) デフアレンシヤル・オメガシステムの位相補正値受信装置
US4490829A (en) Detection of angular modulated electromagnetic signals
CA2100318A1 (en) Direct sequence spread spectrum direction finder
CN110794361A (zh) 一种双通道塔康信号侦察装置
CA2217181A1 (en) Method and device for analysing radio navigation signals
US11841442B2 (en) Doppler tracking for signals of opportunity using rate-line detection
US20110216859A1 (en) High-Frequency Signal Receiver Simultaneously Receiving Several Such Signals
Nguyen et al. In-flight performance analysis of direct RF sampling architecture applied to VHF band avionics
US3461388A (en) Phase locked loop receiver
US4225966A (en) Power area collocation of transmitters
US20180120366A1 (en) Method and system for detecting useful signals, with respective non-negligible frequency drift, in a total signal
CN103684497B (zh) 基于分数阶Fourier变换的频带折迭式数字信道化接收方法
US10404292B2 (en) Signal receiving apparatus and signal receiving method, signal generating apparatus and signal generating method
Pham et al. Tracking capability for entry, descent and landing and its support to NASA Mars Exploration Rovers
US4025923A (en) Synchronous filter for VOR systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120229

Termination date: 20170831

CF01 Termination of patent right due to non-payment of annual fee