CN101389935A - 使用步进频率脉冲的雷达液位检测 - Google Patents

使用步进频率脉冲的雷达液位检测 Download PDF

Info

Publication number
CN101389935A
CN101389935A CNA2007800065108A CN200780006510A CN101389935A CN 101389935 A CN101389935 A CN 101389935A CN A2007800065108 A CNA2007800065108 A CN A2007800065108A CN 200780006510 A CN200780006510 A CN 200780006510A CN 101389935 A CN101389935 A CN 101389935A
Authority
CN
China
Prior art keywords
radar signal
liquid level
frequency
radar
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800065108A
Other languages
English (en)
Other versions
CN101389935B (zh
Inventor
B·赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Enraf BV
Original Assignee
Enraf BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enraf BV filed Critical Enraf BV
Publication of CN101389935A publication Critical patent/CN101389935A/zh
Application granted granted Critical
Publication of CN101389935B publication Critical patent/CN101389935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种通过发射到液面的雷达信号和从液面反射的雷达信号准确确定液位L的方法。本发明还涉及一种通过根据本发明的方法准确确定液位的设备,所述设备至少包括:雷达天线,所述雷达天线设置在液体上方,用于向液体发射雷达信号并接收从液面反射的雷达信号;以及根据发射雷达信号和反射雷达信号确定液位的装置。

Description

使用步进频率脉冲的雷达液位检测
技术领域
本发明涉及一种通过发射到液面的雷达信号和从液面反射的雷达信号准确确定液体的液位L的基于相位的方法。
本发明还涉及一种通过根据本发明的方法准确确定液体的液位的设备,所述设备至少包括:雷达天线,所述雷达天线设置在液体上方,用于向液体发射雷达信号并接收从液面反射的雷达信号;以及根据发射雷达信号和反射雷达信号确定液位的装置。
背景技术
雷达(无线电探测和测距)广泛地用于非接触式距离测量。一种非常熟知的原理是时差法。根据该方法,雷达天线发射撞击物体(例如液面)的雷达信号。物体朝雷达天线的方向往回反射发射的雷达信号/雷达波,雷达天线接收反射的雷达信号/雷达波。
虽然能够使用分开的雷达天线以用于发射的雷达信号和反射的雷达信号,但一般惯例是使用同一雷达天线以用于发射和接收。雷达系统测量发射的雷达信号和接收的雷达信号之间的时间差Δt。如果发射的雷达信号的速度是已知的,那么使用合适的测量手段就能以简单的方式确定距液体表面的距离。
一种如序言所述的采用上述测量原理的设备经常用于通过雷达信号准确地确定过程工业或炼油厂中的储罐中的液体(例如水或油)的液位。所使用的雷达信号一般是脉冲雷达信号。
目前已知的方法特别是基于发射的雷达信号和反射的雷达信号之间的相位差。不幸的是,目前使用的雷达接收机不能直接测量实际相位差。由于关于测得的相位差的不可靠性和不确定性,不可能确定明确且可靠的液体的实际液位值。
发明内容
根据本发明的方法的目的是消除上述缺点并提出更准确的测量原理,在所述测量原理中考虑了目前使用的测量方法中的上述不准确性。为了达到该目的,根据本发明的方法包括以下步骤:
i)按时序向液面发射具有频率f1、f2、...和相位
Figure A200780006510D00061
的雷达信号;
ii)按时序接收从液面反射的具有频率f1、f2、...和相位
Figure A200780006510D00062
的雷达信号;
iii)确定发射雷达信号和反射雷达信号之间的相位差
Figure A200780006510D00063
Figure A200780006510D00064
iv)部分地根据所确定的相位差推导液位L。
更具体地,根据本发明的方法的特征在于步骤iv)包括以下步骤:
v)确定相继发射的具有频率f1、f2、...的雷达信号之间的频率差Δf1-2、...;
vi)确定相继确定的相位差
Figure A200780006510D00065
...之间的相移ΔΨ1-2、...。
根据本发明,然后根据在步骤v和vi中确定的频率差Δf1-2和相移ΔΨ1-2在步骤vii中推导较不准确的液位值L’。
通过在根据本发明的步骤viii中根据步骤vii中确定的较不准确的液位值L’推导发射雷达信号和反射雷达信号之间的数值k,随后可以确定实际相位差,根据所述实际相位差,根据步骤viii中确定的数值k和步骤iii中确定的相位差以高准确度确定液体的液位L。
这提供了比用通常的测量方法可能获得的对实际液位的更准确的描述。基于相位的信号处理方法能够以小于1mm的误差容限实现液位测量。本发明利用了不同频率的雷达信号的相位差。
依照根据本发明的测量方法,液位L由下式确定:
Figure A200780006510D00066
其中
v           通过介质的雷达信号的速度;
f1          雷达信号的频率;
Figure A200780006510D00067
         具有频率f1的发射雷达信号和反射雷达信号之间的实际相位差。
根据所述方法,首先实施不准确的液位测量,其中,不准确的液位L’由下式确定:
L’=Ψ12V/(4πΔf12),其中
v            通过介质的雷达信号的速度;
Δf12         雷达信号f1和f2之间的频率差;
ΔΨ12      相位差
Figure A200780006510D00071
Figure A200780006510D00072
之间的相移。
具有频率f1的发射的雷达信号和反射的雷达信号之间的实际相位差由下式确定:
Figure A200780006510D00073
其中
Figure A200780006510D00074
     测量的具有频率f1的发射雷达信号和反射雷达信号之间
        的相位差;
k       数值。
通过依照本发明的测量方法根据k=|2fL′/v|可以确定数值k,在确定数值k后,可以确定具有频率f1的发射的雷达信号和反射的雷达信号之间的实际相位差,根据所述实际相位差可以获得实际的液位测量值L。
根据本发明的设备的特征在于,雷达天线被设置成用于按时序向液面发射具有频率f1、f2、...和相位
Figure A200780006510D00075
...的雷达信号;以及用于按时序接收从液面反射的具有频率f1、f2、...和相位
Figure A200780006510D00076
的雷达信号;其中,所述装置被设置成用于确定发射雷达信号和反射雷达信号之间的相位差
Figure A200780006510D00077
并且部分地根据所确定的相位差推导液位L。
更具体地,所述装置被设置用于确定相继发射的具有频率f1、f2、...的雷达信号之间的频率差Δf1-2、...,以及确定相继确定的相位差...之间的相移ΔΨ1-2、...,其中,所述装置还设置用于根据所确定的频率差Δf1-2和相移ΔΨ1-2推导较不准确的液位值L’,且还用于根据较不准确的液位值L’推导发射雷达信号和反射雷达信号之间的数值k。
类似于上文所述的测量方法,根据本发明,所述装置被设置用于根据所确定的数值k和所确定的相位差来确定液位L。
具体实施方式
现在将参照附图更详细地解释根据本发明的方法和设备。
如上文已经提出的,本发明涉及一种用于以可靠且非常准确的方式确定液体的液位的基于相位的方法。所述方法使用雷达信号以确定存储在例如储罐中的产品的液位,其中,罐中存在的各种障碍物或部件不会干扰该测量方法。
一种熟知的液位测量的原理是使用脉冲雷达信号。图1示意地示出根据该已知的测量原理确定罐中的液体的液位的设备。设备10设置在罐1的上部,所述罐1由壁1a、顶部1b和底部1c构成。罐1的高度由字母H表示。
罐1中存有一定量的液体2,液位3的高度由字母L表示。
设备10具有至少一个雷达天线12,其设有用于朝液面3的方向发射雷达信号4a的发射面11。雷达信号4a从液面3部分地反射,反射的雷达信号4b继而被雷达天线12截获。当然,也能够使用向液面发射雷达信号的分立天线和截获反射的雷达信号的分立接收机。
根据现有技术的设备10也设有用于根据发射的雷达信号4a和反射的雷达信号4b确定液位3(L)的装置,其中,该测量系统是基于确定发射信号脉冲和接收信号脉冲之间的时间差Δt。因为雷达信号的速度是已知的,所以距测量物体的距离(或者在本情况下是距液面的距离)可由下式确定:
L=H-h=1/2.v.Δt     (1)
其中
H      =罐的高度(m)
L      =雷达天线和液面之间的距离(m)
h      =液面的高度(m)
v      =通过该介质的雷达波的传播速度(m/sec)
Δt    =发射雷达信号和反射雷达信号之间的时间差(sec)
基于脉冲雷达信号的液位测量的缺点在于发射雷达信号和接收雷达信号之间的时间测量必须非常高。不准确的时间测量会不可避免地导致不准确的液位测量。除其它因素外,基于脉冲雷达信号的测量还取决于雷达信号的脉冲形状,并且还可能取决于脉冲振幅。除此之外,雷达信号从液面之外的物体的反射也会干扰这种方法。
一种更广泛的方法通常使用频率调制(频率调制连续波(FMCW)雷达),其中,雷达信号的频率随时间改变。所述信号可例如为三角形形状,如图3所示。由于在天线和目标表面之间所要经过的距离引起的时间延迟,因此在发射雷达信号4a和反射雷达信号4b之间存在频率差fbeat。可通过傅里叶变换计算所述频率差fbeat(见图4)。从而可针对三角形信号确定距离L:
L = f beat v 4 ΔF f m - - - ( 2 )
其中
fm       =调制频率(Hz)
ΔF       =“扫描(sweep)”频带(Hz)
fbeat     =发射雷达信号与接收雷达信号之间的“拍(beat)”频(Hz)
v        =通过介质的雷达波的传播速度(m/sec)
FMCW技术没有脉冲雷达测量的缺点。更准确的频数已经代替了时间延迟测量。能够在数字信号处理中使用快速傅里叶变换(FFT)以获得功率谱密度(PSD),其中,在拍频信号的频带内看到的功率分布显示为单个峰值。如果发生了由物体(障碍物)出现在信号路线而引起的反射,那么所述反射在PSD曲线图中将表现为多峰值,也如图4所示。普通的软件算法可用于确定正确选定的峰值的中频fbeat,其对应于从液面的反射。
然而,FMCW雷达的上述测量方法具有许多显著的缺点。首先,对频率“扫描”的斜率的稳定性提出很高要求,其必须高度恒定。其次,难以维持“扫描”形状的高线性,因此频带的中频是不容易辨认的。再次,利用对拍频的精确中心进行傅里叶变换而进行的计算非常易受由障碍物造成的反射(在图1中在4’处表示)的干扰,因此这可导致几个毫米范围内的误差,所述障碍物例如为罐混合器(在图1中以5表示并设有搅动元件5a)、罐底(1c)、罐壁(1a)、梯子、热交换器、所述驱动器。
为此,已经发展形成了称作步进频率-连续波(SF-CW)的测量技术。SF-CW雷达法以离散频率发射和接收一系列正弦信号,这些离散频率填充了测量和控制中所需的频带(图5)。使用SF-CW雷达装置,通过确定相位-距离关系来确立目标距离,或者:
Figure A200780006510D00092
其中
Figure A200780006510D00093
      =参考信号和反射信号之间的相位差
L        =雷达天线和待测物体之间的距离(m)
f        =“离散”频率之一(Hz)
v        =通过介质的雷达波的传播速度(m/sec)
由于相位特征中的相位不确定度2π和不确定的干扰,不能通过雷达仪器直接测量这个实际相位差
Figure A200780006510D00101
测量相位差表示为
Figure A200780006510D00102
通常,相位信号表示为正弦信号,例如表示为
Figure A200780006510D00103
Figure A200780006510D00104
由于
Figure A200780006510D00105
k为整数,因此丢失准确信息。因为精确值k是未知的,所以测量也将是不准确的。系数k称作“包裹(wrapping)”系数,并且该系数k导致相位不确定度,即“包裹”相位
Figure A200780006510D00106
也参见图6。在离散信号的情况下,该相位表示为:
Figure A200780006510D00107
在(4)式中,k是整数,使得
Figure A200780006510D00108
通过将距离L表示为数值k的函数来最佳地说明由数值k引起的不准确性:
Figure A200780006510D00109
例如,基于雷达的液位测量设备主要在8-12.5GHz(X波段)的频带宽度内操作。10GHz的频率对应于在真空中等于30mm的波长λ。如果数值k变化1,那么这就对应于15mm的距离变化。因此,数值k对液位距离L的准确测量具有较大的重要性。
在数字化的数据中,可以在频带宽度的中心频率或中频处计算相位不确定度。用于从信号确定距离L的常用方法(称作PSD法,如上所述)是要在如图7所示的频率测量期间确定正弦波的周期数。这与PSD法中的傅里叶变换相同。因此,可以推导出适用于所述距离的下式:
L PSD = m · v 2 ( f max - f min ) - - - ( 6 )
其中,m是信号的周期数。通过使用基于振幅(PSD)的起始距离LPSD,可根据下式确定数值k的不确定度系数:
k PSD = int [ 2 f L PSD v ] - - - ( 7 )
系数int[...]代表舍入(rounding-off)系数,其使k舍入为最接近的整数。通过如此获得的不确定度系数(“包裹系数”)k,可类似于(5)式得到标准的基于相位的距离LCONV
然而,如果基于PSD的距离LPSD的误差大于四分之一波长(即,在10GHz时为7.5mm),那么这将导致不正确的不确定度系数kPSD,也相应地导致具有若干倍于二分之一波长大小的误差的不正确的相位距离LCONV。这意味着标准的基于相位的液位的准确度高度取决于基于PSD的液位。通常已知基于PSD的方法易受到各种干扰。如果干扰物体存在于雷达波束的路径中,在基于PSD的液位测量中可能出现十分之几毫米大小的误差。该干扰物体或障碍物可以例如是存储容器1的壁1a、底部1c等,以及混合器(5-5a)、加热线圈或梯子。参见图1。
已经发现,在PSD谱中的峰值附近的百分之几的误差已经足够产生不正确的不确定度系数kPSD。除此之外,如果储罐中的介质的液位上升到靠近天线的高度,那么来自天线区域附近的干扰也可导致显著的误差。通常,常用的PSD方法是非常易受影响的,这导致了不稳定且不准确的计算方法。因此,在该标准的“基于相位”的方法中,误差包括二分之一波长的“液位跳跃”(level leap),其在X带宽中为15mm。这种液位跳跃在一些应用中是很不理想的。
此外,一些已知的基于相位的FMCW和/或SFCW测量方法使用相对相位测量以便校正两个连续测量之间的距离变化。
LCONV=LO+ΔL1+ΔL2+..+ΔL1        (9)
其中
L0              =起始距离(m)
ΔL1、ΔL2        =两个连续测量之间的距离差(m)
应当理解,即使LPSD代表仅仅一次性的不正确的不确定度系数,但是累积误差可变为很大的误差。标准的基于相位的距离计算的脆弱性受不正确的基于PSD的方法影响,导致准确度差的性能。
根据本发明的方法的目的在于消除这种测量误差。从上述等式(3)已经确定,如果在一个或多个频率处的实际相位是已知的,那么距目标的绝对距离(L)可以根据下式确定:
数字控制的SF-CW雷达技术的已知特征在于所产生的每个步进频率是已知的。根据本发明,所述方法使用不同频率处的相位变化来解决半波长的相位不确定性问题,从而准确地确定绝对距离L。根据本发明的方法涉及使用在两个不同频率处测得或形成的相位以根据下式确定粗略距离:
L coarse = v 4 πΔf Δ ψ w - - - ( 11 )
其中,Δf=f1-f2
Figure A200780006510D00122
随后根据下式可以通过粗略的液位测量Lcoarse确定整数k:
k ψ = int [ 2 f L coarse v ] - - - ( 12 )
在该情况中,系数int[..]也表示舍入系数,其使k舍入为最接近的整数。因此,相位和数值可用来确定发射雷达信号和反射雷达信号之间的绝对相位,也从而确定绝对的、非常准确的液位距离LINV
Figure A200780006510D00124
根据本发明的测量方法的特征在于一种独立的基于相位的信号处理方法。使用上述方法,即使在复杂的测量条件下也能实现±1mm或更好的非常可靠且可重复的准确度。
因此,根据本发明的方法不使用已知的、较不准确的PSD作为相位不确定度的参考。相比于已知方法,根据本发明的方法不采用影响当前距离的相对于先前测量的相对相位距离变化。所述方法在每次测量中计算绝对相位和距离,这给出了对当前目标距离的绝对度量。因此,使用本方法完全避免了来自先前测量的相位误差累积。
根据本发明,图1所示的设备10的液位确定装置13还包括信息处理单元13a,按照根据本发明的方法的步骤,所述信息处理单元13a设置成用于确定发射信号4a和反射雷达信号4b之间的相位差
Figure A200780006510D00125
并且部分地根据所确定的相位差来推导液位L。
在图8、9和10中示出一些试验结果或测量数据。障碍物试验示于图8a-8b-8c中。
在液位测量中实施这个所谓的障碍物试验,以确定在目标测量期间将出现在雷达波束中的不期望的物体的存在。所述不期望的物体可以是所谓的罐混合器5-5a、梯子、加热线圈、罐底1c、罐壁1a等(见图1)。这些不期望的物体或障碍物可电磁地干扰正常的目标探测和目标测量。
为了说明这点,图8a-8c示出用确定储罐中的液位的不同的测量方法获得的试验结果,这些不同的方法是:已知的、基于振幅的方法(图8a,称为“使用PSD-振幅方法时的液位LPSD误差”);基于相位的方法(图8b,称为“使用标准的相位方法时的液位LCONV误差”);以及根据本发明的方法(图8c,称为“使用根据本发明的方法时的液位LINV误差”)。显然,如本专利申请所述的新的相位无关的新方法的准确度和可重复性比用已知的基于相位和/或基于PSD的方法获得的准确度和可重复性更高。本发明方法的准确度比用已知方法获得的准确度高大约50倍。
在图9a“LINV-新方法”中示出针对罐壁效应、障碍物和附近效应(near effect)的试验,其中,根据本发明的方法的准确度与标准的基于PSD的方法(图9b,称为“LPSD-已知的傅里叶FMCW方法”)相比较。本发明方法的准确度比用常用方法获得的准确度高大约55倍。
在图10(称为“靠近底部的障碍物(加热元件)”)中示出所实施的用以确定底部对测量的影响的试验结果。用化学液体填充空罐。底部反射对通过已知方法实施的液位测量具有大的影响,而对通过根据本发明的方法实施的液位测量的影响较少。

Claims (13)

1.一种通过发射到液面的雷达信号和从液面反射的雷达信号准确确定液体的液位L的方法,所述方法包括下列步骤:
i)按时序向液面发射具有频率f1、f2、...和相位
Figure A200780006510C00021
...的雷达信号;
ii)按时序接收从液面反射的具有频率f1、f2、...和相位的雷达信号;
iii)确定发射雷达信号和反射雷达信号之间的相位差
Figure A200780006510C00023
Figure A200780006510C00024
iv)部分地根据所确定的相位差推导液位L。
2.根据权利要求1所述的方法,其特征在于,步骤iv)包括下列步骤:
v)确定相继发射的具有频率f1、f2、...的雷达信号之间的频率差Δf1-2、...;
vi)确定相继确定的相位差...之间的相移ΔΨ1-2、...。
3.根据权利要求2所述的方法,其特征在于:在步骤vii)中,根据在步骤v和vi中确定的频率差Δf1-2和相移ΔΨ1-2推导较不准确的液位值L’。
4.根据权利要求3所述的方法,其特征在于:在步骤viii)中,根据步骤vii中确定的较不准确的液位值L’推导发射雷达信号和反射雷达信号之间的数值k。
5.根据权利要求4所述的方法,其特征在于:所述相位被过滤以推导所述数值k。
6.根据权利要求4或5所述的方法,其特征在于:在步骤ix)中,根据在步骤viii中确定的数值k和步骤iii中确定的相位差确定液位L。
7.根据前述权利要求中任一项所述的方法,其特征在于,所述液位L由下式确定:
Figure A200780006510C00026
其中
v    通过介质的雷达信号的速度;
f1   雷达信号的频率;
Figure A200780006510C00027
  具有频率f1的发射雷达信号和反射雷达信号之间的实际相位差。
8.根据权利要求7所述的方法,其特征在于,不准确的液位L’由下式确定:
L′=Δψ12v/(4пΔf12),其中
v       通过介质的雷达信号的速度;
Δf12   雷达信号f1和f2之间的频率差;
ΔΨ12  相位差
Figure A200780006510C00031
Figure A200780006510C00032
之间的相移。
9.根据权利要求7或8所述的方法,其特征在于,实际相位差由下式确定:
Figure A200780006510C00033
其中
Figure A200780006510C00034
   测量的具有频率f1的发射雷达信号和反射雷达信号之间的相位差;
k     数值。
10.根据权利要求7-9中任一项所述的方法,其特征在于:数值k由下式确定:
k=|2fL′/v|
11.一种通过根据本发明的方法准确确定液体的液位的设备,所述设备至少包括:雷达天线,所述雷达天线设置在液体上方,用于向液体发射雷达信号并接收从液面反射的雷达信号;以及根据发射雷达信号和反射雷达信号确定液位的装置,其特征在于:所述雷达天线设置成用于按时序向液面发射具有频率f1、f2、...和相位...的雷达信号;以及用于按时序接收从液面反射的具有频率f1、f2、...和相位
Figure A200780006510C00036
的雷达信号;其中,所述装置设置成用于确定发射雷达信号和反射雷达信号之间的相位差...,并且部分地根据所确定的相位差推导液位L。
12.根据权利要求11所述的设备,其特征在于:所述装置设置成用于确定相继发射的具有频率f1、f2、...的雷达信号之间的频率差Δf1-2、...并确定相继确定的相位差
Figure A200780006510C00038
...之间的相移ΔΨ1-2、...。
13.根据权利要求12所述的设备,其特征在于:所述装置还设置成用于根据所确定的频率差Δf1-2和相移ΔΨ1-2推导较不准确的液位值L’,还用于根据所述较不准确的液位值L’推导发射雷达信号和反射雷达信号之间的数值k。
14.根据权利要求13所述设备,其特征在于:所述装置设置成用于根据所确定的数值k和所确定的相位差来确定液位L。
CN2007800065108A 2006-02-22 2007-02-19 使用步进频率脉冲的雷达液位检测 Active CN101389935B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1031209 2006-02-22
NL1031209A NL1031209C2 (nl) 2006-02-22 2006-02-22 Werkwijze en inrichting voor het nauwkeurig vaststellen van het niveau L van een vloeistof met behulp van naar het vloeistofniveau uitgestraalde radarsignalen en door het vloeistofniveau gereflecteerde radarsignalen.
PCT/NL2007/000048 WO2007111498A2 (en) 2006-02-22 2007-02-19 Radar liquid level detection using stepped frequency pulses

Publications (2)

Publication Number Publication Date
CN101389935A true CN101389935A (zh) 2009-03-18
CN101389935B CN101389935B (zh) 2011-05-25

Family

ID=37067612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800065108A Active CN101389935B (zh) 2006-02-22 2007-02-19 使用步进频率脉冲的雷达液位检测

Country Status (11)

Country Link
US (1) US8319680B2 (zh)
EP (1) EP1994379B1 (zh)
JP (1) JP5276451B2 (zh)
CN (1) CN101389935B (zh)
AU (1) AU2007230003B2 (zh)
CA (1) CA2640427C (zh)
MX (1) MX2008010118A (zh)
NL (1) NL1031209C2 (zh)
NO (1) NO20084017L (zh)
RU (1) RU2431809C2 (zh)
WO (1) WO2007111498A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650689A (zh) * 2012-05-17 2012-08-29 中国路桥工程有限责任公司 一种步进频率脉冲雷达位移测量方法
CN109298423A (zh) * 2018-10-22 2019-02-01 南京信大气象科学技术研究院有限公司 一种基于连续波的测浪雷达

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1031209C2 (nl) 2006-02-22 2007-08-24 Enraf Bv Werkwijze en inrichting voor het nauwkeurig vaststellen van het niveau L van een vloeistof met behulp van naar het vloeistofniveau uitgestraalde radarsignalen en door het vloeistofniveau gereflecteerde radarsignalen.
NL1034327C2 (nl) 2007-09-04 2009-03-05 Enraf Bv Werkwijze en inrichting voor het binnen een bepaald meetbereik vaststellen van het niveau L van een vloeistof met behulp van naar het vloeistofniveau uitgestraalde radarsignalen en door het vloeistofniveau gereflecteerde radarsignalen.
US7965182B2 (en) 2008-02-08 2011-06-21 Honeywell International Inc. Apparatus and method for providing a failsafe-enabled wireless device
US8159358B2 (en) 2008-05-12 2012-04-17 Enraf B.V. Apparatus and method for storage tank hatch monitoring in an inventory management system
US7891229B2 (en) 2008-05-13 2011-02-22 Enraf B.V. Method and apparatus for real-time calibration of a liquid storage tank level gauge
US8631696B2 (en) 2008-08-12 2014-01-21 Enraf, B.V. Apparatus and method for monitoring tanks in an inventory management system
US8271212B2 (en) * 2008-09-18 2012-09-18 Enraf B.V. Method for robust gauging accuracy for level gauges under mismatch and large opening effects in stillpipes and related apparatus
US8224594B2 (en) 2008-09-18 2012-07-17 Enraf B.V. Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications
US8659472B2 (en) * 2008-09-18 2014-02-25 Enraf B.V. Method and apparatus for highly accurate higher frequency signal generation and related level gauge
US8234084B2 (en) 2009-03-17 2012-07-31 Enraf B.V. Apparatus and method for automatic gauge reading in an inventory control and management system
US8997549B2 (en) 2010-09-23 2015-04-07 Honeywell International Inc. Apparatus and methods for automatically testing a servo gauge in an inventory management system
US8670945B2 (en) 2010-09-30 2014-03-11 Honeywell International Inc. Apparatus and method for product movement planning to support safety monitoring in inventory management systems
US8701483B2 (en) * 2010-12-16 2014-04-22 Vega Grieshaber Kg Device for emulsion measuring by means of a standpipe
US8510065B2 (en) * 2010-12-16 2013-08-13 The Boeing Company Wireless liquid quantity measurement system
US8497799B2 (en) * 2011-05-24 2013-07-30 Rosemount Tank Radar Ab FMCW-type radar level gauge
DE102011082367A1 (de) * 2011-09-08 2013-03-14 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
US10300830B2 (en) 2011-10-24 2019-05-28 Solaris Oilfield Site Services Operating Llc Storage and blending system for multi-component granular compositions
US10836568B2 (en) 2011-10-24 2020-11-17 Solaris Oilfield Site Services Operating Llc Blender hopper control system for multi-component granular compositions
CA2963102C (en) * 2011-10-24 2018-08-21 Solaris Oilfield Site Services Operating Llc Fracture sand silo system and methods of deployment and retraction of same
US9046406B2 (en) 2012-04-11 2015-06-02 Honeywell International Inc. Advanced antenna protection for radars in level gauging and other applications
US9024808B2 (en) 2013-03-07 2015-05-05 Rosemount Tank Radar Ab Filling level determination using transmit signals with different frequency steps
US9291443B2 (en) 2013-03-07 2016-03-22 Rosemount Tank Radar Ab FMCW radar level gauge with lock state control
US9336074B2 (en) 2013-07-26 2016-05-10 Honeywell International Inc. Apparatus and method for detecting a fault with a clock source
US9234784B2 (en) 2013-10-25 2016-01-12 Rosemount Tank Radar Ab Frequency modulated radar level gauging
US9612147B2 (en) * 2014-02-10 2017-04-04 Rosemount Tank Radar Ab Radar level gauge system with multiple receiver branches
US9395229B2 (en) * 2014-03-05 2016-07-19 Rosemount Tank Radar Ab Low power radar level gauge system with integrated microwave circuit
US11029187B2 (en) 2017-06-21 2021-06-08 Vega Grieshaber Kg Fill level reflectometer having a variable measurement sequence
CA3139932A1 (en) * 2019-05-23 2020-11-26 Worthington Cylinders Corporation Methods and systems for a wireless monitoring system for a tank
USD936177S1 (en) 2020-01-07 2021-11-16 Worthington Cylinders Corporation Lid for a tank
USD934987S1 (en) 2020-01-07 2021-11-02 Worthington Cylinders Corporation Lid for a tank

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217267A (en) * 1963-10-02 1965-11-09 Ling Temco Vought Inc Frequency synthesis using fractional division by digital techniques within a phase-locked loop
US3353104A (en) 1963-10-02 1967-11-14 Ltv Electrosystems Inc Frequency synthesizer using fractional division by digital techniques within a phase-locked loop
US3337814A (en) * 1966-08-23 1967-08-22 Collins Radio Co Phase comparator for use in frequency synthesizer phase locked loop
US3535104A (en) * 1969-05-23 1970-10-20 Du Pont Ferromagnetic particles containing chromium
US3579281A (en) * 1969-06-04 1971-05-18 Sierra Research Corp Combining network providing compensated tuning voltage for varactor
US3789302A (en) * 1972-03-31 1974-01-29 Microwave Ass Inc Fm heterodyne transmitter
IT986172B (it) * 1973-06-18 1975-01-20 Fatme Spa Dispositivo di sincronizzazione automatica per un oscillatore in particolare per impianti di tele comunicazione
JPS513160A (zh) * 1974-06-25 1976-01-12 Matsushita Electric Ind Co Ltd
GB1444860A (en) * 1974-12-12 1976-08-04 Mullard Ltd Frequency synthesiser
US4000476A (en) * 1974-12-19 1976-12-28 Digital Communications Corporation Phase locked loop with circuit for preventing sidelock
US4072947A (en) * 1976-11-11 1978-02-07 Rca Corporation Monotonically ranging FM-CW radar signal processor
US4068199A (en) * 1976-12-23 1978-01-10 Gte Sylvania Incorporated Digital phase-locked loop frequency modulator
US4114110A (en) * 1977-12-01 1978-09-12 The United States Of America As Represented By The Secretary Of The Army Frequency synthesizer
DE2928487A1 (de) * 1979-07-14 1981-02-05 Philips Patentverwaltung Verfahren zur messung der relativen feuchte eines messgutes mit hilfe von mikrowellen im ghz-bereich
US4363030A (en) 1979-11-30 1982-12-07 Drexelbrook Engineering Company Fail-safe instrument system
JPS5843632A (ja) * 1981-09-01 1983-03-14 テクトロニツクス・インコ−ポレイテツド 位相固定回路
US4451930A (en) * 1982-08-02 1984-05-29 Motorola Inc. Phase-locked receiver with derived reference frequency
US4567448A (en) * 1982-08-05 1986-01-28 Epson Corporation Variable frequency oscillator
US4516084A (en) * 1983-02-18 1985-05-07 Rca Corporation Frequency synthesizer using an arithmetic frequency synthesizer and plural phase locked loops
US4675617A (en) * 1986-02-03 1987-06-23 Martin Kenneth W Stable voltage controlled oscillator
US4691176A (en) * 1986-03-17 1987-09-01 General Electric Company Adaptive carrier tracking circuit
US5210539A (en) * 1986-09-30 1993-05-11 The Boeing Company Linear frequency sweep synthesizer
GB8702804D0 (en) * 1987-02-07 1987-03-11 Schlumberger Electronics Uk Frequency response analysis
US4823399A (en) * 1987-07-30 1989-04-18 General Instrument Corporation Refined tuning of RF receiver with frequency-locked loop
US4800341A (en) * 1987-11-02 1989-01-24 Eaton Corporation Fast switching frequency synthesizer
JPH02109486A (ja) * 1988-10-19 1990-04-23 Matsushita Electric Ind Co Ltd 自動周波数切替装置
US4928525A (en) 1989-03-02 1990-05-29 Aderholt Gary L Sonic tank inventory control system and method
DE58906115D1 (de) * 1989-03-31 1993-12-09 Siemens Ag Verfahren zum Synchronisieren der Phase von Taktsignalen zweier Taktgeneratoren in Kommunikationsnetzen.
US5027526A (en) * 1989-06-02 1991-07-02 Crane R Stephen Digital linear measuring device
JPH0693025B2 (ja) * 1989-06-16 1994-11-16 日本無線株式会社 Fm―cw測距方法
EP0408983B1 (de) * 1989-07-20 1995-01-04 Siemens Aktiengesellschaft Frequenzsynthesizer
US4972160A (en) * 1989-12-07 1990-11-20 Northern Telecom Limited Phase-lock loop circuit with improved output signal jitter performance
US5036291A (en) * 1990-05-11 1991-07-30 General Instrument Corporation On channel agile FM demodulator
JPH0537435A (ja) * 1991-07-31 1993-02-12 Nec Corp Tdma方式に用いる局部発振周波数シンセサイザ
DE4218303C1 (de) 1992-06-03 1994-03-03 Endress Hauser Gmbh Co Verfahren und Anordnung zur Abstandsmessung nach dem Impulslaufzeitprinzip
US5428361A (en) * 1993-08-06 1995-06-27 Rockwell International Corporation Large time-bandwidth chirp pulse generator
US5406842A (en) * 1993-10-07 1995-04-18 Motorola, Inc. Method and apparatus for material level measurement using stepped frequency microwave signals
US5446416A (en) * 1993-10-20 1995-08-29 Industrial Technology Research Institute Time acquisition system with dual-loop for independent frequency phase lock
CA2130871C (en) * 1993-11-05 1999-09-28 John M. Alder Method and apparatus for a phase-locked loop circuit with holdover mode
US5400253A (en) * 1993-11-26 1995-03-21 Southern Power, Inc. Automated statistical inventory reconcilation system for convenience stores and auto/truck service stations
GB9408189D0 (en) * 1994-04-25 1994-06-15 Interface Devices Distribution Fluid level detectors
US5442359A (en) * 1994-06-30 1995-08-15 Unisys Corporation Apparatus and method for mitigating range-doppler ambiguities in pulse-doppler radars
US5774089A (en) * 1996-03-15 1998-06-30 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Method to resolve ambiguities in a phase measurement
DE29608551U1 (de) 1996-05-12 1996-07-25 Sailer, Josef, 87474 Buchenberg Meßvorrichtung mit absenkbarer Meßsonde, insbesondere für Grundwassermessungen
US5708424A (en) * 1996-08-19 1998-01-13 Orlando; Vincent Wireless remote fuel gauge
US5950487A (en) 1996-09-20 1999-09-14 Vista Research, Inc. Gauge for measuring liquid levels
US5734302A (en) * 1996-10-07 1998-03-31 Industrial Technology Research Institute DC frequency modulation circuit using two phase locked loops
FR2757639B1 (fr) * 1996-12-20 1999-03-26 Thomson Csf Radar de detection d'obstacles notamment pour vehicules automobiles
EP0887658B1 (en) 1997-06-27 2004-08-25 EADS Deutschland GmbH Radar level gauge
US5994905A (en) * 1997-12-02 1999-11-30 Wavetek Corporation Frequency domain reflectometer and method of suppressing harmonics
GB2342995B (en) 1998-10-21 2003-02-19 Federal Ind Ind Group Inc Improvements in pulse-echo measurement systems
EP1141744B1 (de) * 1998-11-11 2003-09-24 Siemens Aktiengesellschaft Verfahren zur detektion und korrektur von nichtlinearitäten hochfrequenter, spannungsgesteuerter oszillatoren
GB9903461D0 (en) * 1999-02-17 1999-04-07 Motherwell Control Systems Lim Radar gauge
US6662649B1 (en) * 1999-03-19 2003-12-16 Simmons Sirvey Corporation Material level monitoring and reporting
US6374187B1 (en) * 1999-03-19 2002-04-16 Simmons Sirvey Corp. Underground storage tank monitoring system and method
US6114987A (en) * 1999-05-29 2000-09-05 Sensor Technologies & Systems, Inc. Dual-loop linearizer for FM-CW radar
US6636575B1 (en) * 1999-08-05 2003-10-21 Koninklijke Philips Electronics N.V. Cascading PLL units for achieving rapid synchronization between digital communications systems
DE19952826C1 (de) * 1999-11-03 2001-04-12 Krohne Sa Zeitbasisgenerator
EP1253441B1 (en) * 2000-01-28 2010-04-07 Hitachi, Ltd. Distance measuring device
JP2001256666A (ja) * 2000-03-09 2001-09-21 Ricoh Co Ltd 光ピックアップ装置
DE10028864A1 (de) * 2000-06-10 2001-12-20 Daimler Chrysler Ag Verfahren und Vorrichtung zur Verbesserung der Temperaturstabilität und Alterungsbeständigkeit von Radar-Füllstandsmessern einer mechanischen Referenz
DE10040180B4 (de) 2000-08-17 2007-07-26 Vega Grieshaber Kg Füllstand- oder Druckmesssensoren mit schmutzabweisenden und/oder selbstreinigenden Eigenschaften
DE10040943A1 (de) * 2000-08-21 2002-03-07 Endress Hauser Gmbh Co Vorrichtung zur Bestimmung des Füllstandes eines Füllguts in einem Behälter
US6650280B2 (en) * 2000-12-08 2003-11-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Measurement system and method
US6671500B2 (en) * 2001-03-30 2003-12-30 Skyworks Solutions, Inc. Frequency plan
SE0202491D0 (sv) 2002-08-22 2002-08-22 Saab Marine Electronics System for level gauging and alarms
US6629458B1 (en) * 2002-09-24 2003-10-07 Saab Marine Electronics Ab Device in a level gauging system
WO2004046749A2 (en) * 2002-11-19 2004-06-03 Radatec, Inc. Method and system for calibration of a phase-based sensing system
GB0228731D0 (en) * 2002-12-10 2003-01-15 Trw Ltd Frequency shift keying radar with ambiguity detection
DE10260962A1 (de) * 2002-12-20 2004-07-01 Endress + Hauser Gmbh + Co. Kg Füllstandsmeßgerät und Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
US6774732B1 (en) * 2003-02-14 2004-08-10 Motorola, Inc. System and method for coarse tuning a phase locked loop (PLL) synthesizer using 2-PI slip detection
US6876261B2 (en) 2003-04-21 2005-04-05 Tektronix, Inc. Phase lock for synthesizer phase reference oscillator
US6762634B1 (en) * 2003-08-13 2004-07-13 Pericom Semiconductor Corp. Dual-loop PLL with DAC offset for frequency shift while maintaining input tracking
US7119738B2 (en) * 2004-03-01 2006-10-10 Symbol Technologies, Inc. Object location system and method using RFID
US7030761B2 (en) * 2004-03-16 2006-04-18 Symbol Technologies Multi-resolution object location system and method
US7135870B2 (en) * 2004-05-04 2006-11-14 Kam Controls Incorporated Device for determining the composition of a fluid mixture
JP2005337825A (ja) * 2004-05-26 2005-12-08 Japan Radio Co Ltd 電波を利用した水位測定装置及び水位測定方法
US7319401B2 (en) * 2004-08-27 2008-01-15 Rosemount Tank Radar Ab Radar level gauge system with variable alarm limits
US7170412B2 (en) * 2004-08-31 2007-01-30 Symbol Technologies, Inc. Angle of position object location system and method
DE102004061449A1 (de) 2004-12-17 2006-06-22 Endress + Hauser Gmbh + Co. Kg Nach dem Laufzeitprinzip arbeitendes Füllstandsmessgerät und Verfahren zu dessen Inbetriebnahme
US7672835B2 (en) * 2004-12-24 2010-03-02 Casio Computer Co., Ltd. Voice analysis/synthesis apparatus and program
US7809171B2 (en) * 2005-01-10 2010-10-05 Battelle Memorial Institute Facial feature evaluation based on eye location
DE102005019095A1 (de) 2005-04-25 2006-10-26 Ott Messtechnik Gmbh & Co. Kg Längenmessgerät
US7355548B2 (en) * 2005-09-01 2008-04-08 Rosemount Tank Radar Ab Processing of tank signal in radar level gauge system
NL1030317C2 (nl) 2005-10-31 2007-05-03 Enraf Bv Inrichting voor het met behulp van een radarantenne vaststellen van het niveau van een vloeistof, alsmede een dergelijke radarantenne.
EP1783517A1 (en) * 2005-11-04 2007-05-09 AGELLIS Group AB Multi-dimensional imaging method and apparatus
NL1031209C2 (nl) 2006-02-22 2007-08-24 Enraf Bv Werkwijze en inrichting voor het nauwkeurig vaststellen van het niveau L van een vloeistof met behulp van naar het vloeistofniveau uitgestraalde radarsignalen en door het vloeistofniveau gereflecteerde radarsignalen.
NL1032192C2 (nl) 2006-07-18 2008-01-21 Enraf Bv Opslagtank voor een vloeistof.
IL181568A0 (en) 2007-02-26 2007-07-04 High Check Control Ltd Fluid measurement system
NL1034327C2 (nl) * 2007-09-04 2009-03-05 Enraf Bv Werkwijze en inrichting voor het binnen een bepaald meetbereik vaststellen van het niveau L van een vloeistof met behulp van naar het vloeistofniveau uitgestraalde radarsignalen en door het vloeistofniveau gereflecteerde radarsignalen.
US7891229B2 (en) * 2008-05-13 2011-02-22 Enraf B.V. Method and apparatus for real-time calibration of a liquid storage tank level gauge
US8631696B2 (en) 2008-08-12 2014-01-21 Enraf, B.V. Apparatus and method for monitoring tanks in an inventory management system
US8315825B2 (en) * 2008-09-18 2012-11-20 Enraf B.V. Method and apparatus for adaptively handling level measurements under unstable conditions
US8271212B2 (en) * 2008-09-18 2012-09-18 Enraf B.V. Method for robust gauging accuracy for level gauges under mismatch and large opening effects in stillpipes and related apparatus
US8659472B2 (en) * 2008-09-18 2014-02-25 Enraf B.V. Method and apparatus for highly accurate higher frequency signal generation and related level gauge
US8224594B2 (en) * 2008-09-18 2012-07-17 Enraf B.V. Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications
US8234084B2 (en) * 2009-03-17 2012-07-31 Enraf B.V. Apparatus and method for automatic gauge reading in an inventory control and management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650689A (zh) * 2012-05-17 2012-08-29 中国路桥工程有限责任公司 一种步进频率脉冲雷达位移测量方法
CN109298423A (zh) * 2018-10-22 2019-02-01 南京信大气象科学技术研究院有限公司 一种基于连续波的测浪雷达

Also Published As

Publication number Publication date
EP1994379A2 (en) 2008-11-26
EP1994379B1 (en) 2014-03-19
CN101389935B (zh) 2011-05-25
AU2007230003A1 (en) 2007-10-04
JP5276451B2 (ja) 2013-08-28
MX2008010118A (es) 2009-01-27
WO2007111498A2 (en) 2007-10-04
RU2008137555A (ru) 2010-03-27
CA2640427A1 (en) 2007-10-04
US8319680B2 (en) 2012-11-27
JP2009527760A (ja) 2009-07-30
AU2007230003B2 (en) 2012-07-19
RU2431809C2 (ru) 2011-10-20
NL1031209C2 (nl) 2007-08-24
NO20084017L (no) 2008-09-22
US20110163910A1 (en) 2011-07-07
CA2640427C (en) 2016-03-22
WO2007111498A3 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
CN101389935A (zh) 使用步进频率脉冲的雷达液位检测
US8186214B2 (en) Method and device for determining the level L of a liquid within a specified measuring range by means of radar signals transmitted to the liquid surface and radar signals reflected from the liquid surface
EP2210071B1 (en) System and method for filling level determination
CN102016524B (zh) 使用带有周期性排列的基准阻抗转变元件的波导结构的雷达液位计系统
Vogt et al. Silo and tank vision: Applica? tions, challenges, and technical solutions for radar measurement of liquids and bulk solids in tanks and silos
EP2199763B1 (en) Level Measurement Arrangement
CN110554210B (zh) 测量介质流速的方法
EP3811040B1 (en) Radar level gauge
US9671488B2 (en) Radar level gauge with signal division
KR101576438B1 (ko) 장애물에 의한 오차를 해소하기 위한 수위 측정 방법 및 이를 이용한 레이더 방식 레벨 게이지 시스템
US20150323370A1 (en) Method for Evaluation for Measurement Signals of a Level Gauge
Sai et al. Advanced high precision radar gauge for industrial applications
EP3959490B1 (en) Pulsed rlg with improved resistance to signal disturbance
US20240271985A1 (en) Fill-level measurement using a machine learning algorithm
Sai et al. Highly reliable and accurate level radar for automated legal custody transfer and inventory management
EP4116678A1 (en) Non-intrusive contactless filling level determination system and method
Sai High precision self-adaptive radar gauging under clutter environments
WO1993020455A1 (en) Method and means for determining directional characteristics of large sensor or radiator arrays
AU3741493A (en) Method and means for determining directional characteristics of large sensor or radiator arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant