CN101388650A - Nested type Miller active capacitor frequency compensation circuit - Google Patents

Nested type Miller active capacitor frequency compensation circuit Download PDF

Info

Publication number
CN101388650A
CN101388650A CN 200810201177 CN200810201177A CN101388650A CN 101388650 A CN101388650 A CN 101388650A CN 200810201177 CN200810201177 CN 200810201177 CN 200810201177 A CN200810201177 A CN 200810201177A CN 101388650 A CN101388650 A CN 101388650A
Authority
CN
China
Prior art keywords
amplifier
current buffer
frequency
compensation
frequency compensation
Prior art date
Application number
CN 200810201177
Other languages
Chinese (zh)
Inventor
马海峰
锋 周
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to CN 200810201177 priority Critical patent/CN101388650A/en
Publication of CN101388650A publication Critical patent/CN101388650A/en

Links

Abstract

The invention relates to a nested Miller active capacitance frequency compensating circuit, which is used in a three-level operation amplifier, which is composed of three CMOS amplifier stage circuits, two compensating capacitors, one positive phase current buffer and one reversed phase current buffer which are connected through nestings, wherein a three-level amplifier which is built can be expanded to high frequency on a non-main pole in frequency response characteristics, simultaneously, a zero point of a left half-plane is also introduced, which increases the phase margin and saves the power consumption. Compared with an existing three-level amplifier frequency compensation technique, the frequency compensation technique in the invention realizes high gain and has the advantages of low power consumption, small compensation capacitance, big driving, strong load capacity and the like.

Description

一种嵌套式密勒有源电容频率补偿电路 In a nested Miller Active frequency compensation capacitor

[0001] 技术领域 [0001] Technical Field

[0002] 本发明属于集成电路技术领域,具体涉及一种用于三级运算放大器的嵌套式密勒有源电容频率补偿电路。 [0002] The present invention belongs to the field of integrated circuit technology, particularly relates to the active capacitance Nested Miller frequency compensation circuit for a three stage operational amplifier.

[0003] 背景技术 [0003] BACKGROUND OF THE INVENTION

[0004] 当今,随着集成电路工艺的发展,MOS管的特征尺寸越来越小并且电源电压也越来越低。 [0004] Nowadays, with the development of integrated circuit technology, the MOS transistor feature size getting smaller and smaller and more and more low voltage power supply. 在这种情况下,对于放大器而言传统的共源共栅技术已经不再适用。 In this case, for a conventional amplifier, cascode technique is no longer applicable. 要得到高增益就必须级联三级或者三级以上的单级放大器。 To obtain a high gain must be Grade 3 or more cascaded single-stage amplifier. 在输出端有大负载电容的情况下,发展出既节省面积(补偿电容小),又消耗极低功耗(偏置电流小)的三级运算放大器频率补偿技术,这一直是人们的研究热点[1-3]。 The large load capacitance at the output, the developed area saving (low capacitance compensation), and very low power consumption (a small bias current) of the three operational amplifier frequency compensation technique, which has been one hotspot [1-3].

[0005] 总体而言,有两大类频率补偿方法,分别为嵌套式密勒电容补偿(NMC)[4-8]和反嵌套式密勒电容补偿(RNMC)[9],两者结构如图1和图2所示。 [0005] In general, there are two frequency compensation method, respectively nested Miller capacitance compensation (NMC) [4-8] and trans nested Miller compensation capacitor (RNMC) [9], both structure shown in Figure 1 and 2. 其中,NMC技术中较典型的有跨导及电容反馈频率补偿(TCFC)[8],它将一个有源电容引入到了传统的NMC结构当中,得以在频率响应中产生一个右半平面的零点从而提高相位裕度;RNMC技术中较典型的有反有源反馈频率补偿(RAFFC)[9],它将一个有源电容引入到了传统的RNMC结构当中,同样得以在频率响应中产生一个右半平面的零点。 Wherein, NMC art are more typical feedback transconductance and the frequency compensation capacitor (TCFC) [8], it is introduced into a conventional active capacitance structure among the NMC, to produce a right-half-plane zero in the frequency response so that increase the phase margin; RNMC art are more typical active anti-feedback frequency compensation (RAFFC) [9], it is introduced into an active capacitance RNMC traditional structure which, similarly to generate a frequency response in the right half plane zero. 在基于NMC和RNMC的设计当中,它们都取得了各自最好的带宽功耗比以及压摆率功耗比。 Based on the design of NMC and RNMC them, they have made their best bandwidth and slew rate watt power consumption ratio.

[0006] 然而,这两类电路都存在一定的问题。 [0006] However, these two types of circuits are some problems. RNMC相对于NMC结构的优势在于它只有一个补偿电容负载在输出端。 RNMC advantages relative NMC structure is that it is only a compensation capacitor load at the output. 但是通常情况下三级放大器的第三级总是比前两级需要更大的跨导即更大的偏置电流。 However, the third stage is always greater than the previous two transconductance amplifiers three normally required, i.e. greater bias current. RNMC采用了一个正相放大的第三级,而正相放大需要两路电流分支,如图3所示。 RNMC amplification using a normal phase of the third stage, and the positive phase current amplification requires two branches, as shown in FIG. 这就意味着它需要两路更大电流的分支,这消耗了很多的功耗。 This means it needs more current two-way branch, which consumes a lot of power. 另一方面,虽然NMC结构只需要一个反相放大的第三级即一路电流分支(如图4所示),但是,它的两个补偿电容都负载在输出端上。 On the other hand, although only the structure of NMC a third inverting amplifying stage i.e. one current branch (Figure 4), but its two compensation capacitors are supported on the output terminal. 因此,发展出仅消耗RNMC结构一半的第三级电流,同时又仅有一个补偿电容负载在输出端的电路,具有一定现实意义,符合技术发展潮流。 Therefore, the development of a half of the third-class current consumption of only RNMC structure, while only a compensation capacitor load at the output of the circuit, has a certain practical significance, in line with the trend of technological development.

参考文献 references

[1]Leung K N,Mok P K T.Nested Miller compensation in low-power CMOS design.IEEETrans.Circuits Syst.II,Analog.Digit.Signal Process.2001,48(4),388 [1] Leung K N, Mok P K T.Nested Miller compensation in low-power CMOS design.IEEETrans.Circuits Syst.II, Analog.Digit.Signal Process.2001,48 (4), 388

[2]Leung K N,Mok P K T.Analysis of multistage amplifier-frequency compensation.IEEETrans.Circuits Syst.I,Fundam.Theory Appl.,2001,48(9):1041 [2] Leung K N, Mok P K T.Analysis of multistage amplifier-frequency compensation.IEEETrans.Circuits Syst.I, Fundam.Theory Appl, 2001,48 (9):. 1041

[3]Leung K N,Mok P K T,Ki W H,et al.Three-stage large capacitive load amplifier withdamping-factor-control frequency compensation.IEEE J.Solid-State Circuits,2000,35(2):221 [3] Leung K N, Mok P K T, Ki W H, et al.Three-stage large capacitive load amplifier withdamping-factor-control frequency compensation.IEEE J.Solid-State Circuits, 2000,35 (2): 221

[4]Lee H,Mok P K T.Active-feedback frequency-compensation technique for low-powermultistage amplifiers.IEEE J.Solid-State Circuits,2003,38(3):511 [4] Lee H, Mok P K T.Active-feedback frequency-compensation technique for low-powermultistage amplifiers.IEEE J.Solid-State Circuits, 2003,38 (3): 511

[5]Lee H,Mok P K T.Advances in active-feedback frequency compensation with poweroptimization and transient improvement.IEEE Trans.Circuits Syst.I,2004,51(9):1690 [5] Lee H, Mok P K T.Advances in active-feedback frequency compensation with poweroptimization and transient improvement.IEEE Trans.Circuits Syst.I, 2004,51 (9): 1690

[6]Lee H,Leung K N,Mok P K TA dual-path bandwidth extension amplifier topology withdual-loop parallel compensation.IEEE J.Solid-State Circuits,2003,38(10):1739 [6] Lee H, Leung K N, Mok P K TA dual-path bandwidth extension amplifier topology withdual-loop parallel compensation.IEEE J.Solid-State Circuits, 2003,38 (10): 1739

[7]Peng X,Sansen W.AC boosting compensation scheme for low-power multistage amplifiers.IEEE J.Solid-State Circuits,2004,39(11):2074 [7] Peng X, Sansen W.AC boosting compensation scheme for low-power multistage amplifiers.IEEE J.Solid-State Circuits, 2004,39 (11): 2074

[8]Peng X,Sansen W.Transconductance with capacitances feed-back compensation formultistage amplifiers.IEEE J.Solid-State Circuits,2005,40(7):1515 [8] Peng X, Sansen W.Transconductance with capacitances feed-back compensation formultistage amplifiers.IEEE J.Solid-State Circuits, 2005,40 (7): 1515

[9]Grasso A D,Palumbo G,Pennisi S.Advances in reversed nested Miller compensation.IEEE Trans.Circuits Syst.I,2007,54(7):1459 [9] Grasso A D, Palumbo G, Pennisi S.Advances in reversed nested Miller compensation.IEEE Trans.Circuits Syst.I, 2007,54 (7): 1459

[10]Fan X,Mishra C,Sanchez-Sinencio E.Single Miller capacitor frequency compensationtechnique for low-power multistage amplifiers.IEEE J.Solid-State Circuits,2003,38(10):1735 [10] Fan X, Mishra C, Sanchez-Sinencio E.Single Miller capacitor frequency compensationtechnique for low-power multistage amplifiers.IEEE J.Solid-State Circuits, 2003,38 (10): 1735

[11]Rincon-Mora G A.Active capacitor multiplier in miller-compensated circuits.IEEE J.Solid-State Circuits,2000,35(1):26 [11] Rincon-Mora G A.Active capacitor multiplier in miller-compensated circuits.IEEE J.Solid-State Circuits, 2000,35 (1): 26

[0019] 发明内容 [0019] SUMMARY OF THE INVENTION

[0020] 本发明的目的在于提出了一种用于三级运算放大器的嵌套式密勒有源电容频率补偿电路,以克服现有的基于NMC以及RNMC技术的缺点,从而实现更好的带宽功耗比以及压摆率功耗比。 [0020] The object of the present invention is to provide a nested Miller active capacitance compensation circuit for a frequency for three operational amplifiers, in order to overcome the existing technology based on NMC RNMC and disadvantages, thereby achieving better bandwidth watt and slew rate watt.

[0021] 为了实现上述目的,本发明的技术内容为:一种嵌套式密勒有源电容频率补偿电路,它由三级放大器(1、2、3),补偿电容(4、5),基于正相放大器的电流缓冲器(6),基于反相放大器的电流缓冲器(7)构成;所述三级放大器(1、2、3)依次串联,以实现信号的放大;所述正相电流缓冲器(6)的输出端与反相电流缓冲器(7)的输出端共点并接至放大器(1)的输出端;所述补偿电容(4)连接在放大器(3)的输出端和正相电流缓冲器(6)的输入端之间,从而实现有源密勒补偿;所述补偿电容(5)连接在放大器(2)的输出端与正相电流缓冲器(7)的输入端之间从而实现嵌套式有源密勒补偿。 [0021] In order to achieve the above object, the present invention is: in a nested Miller Active frequency capacitance compensation circuit, which consists of three-stage amplifier (1,2,3), a compensation capacitor (4, 5), positive-phase current buffer amplifier (6) based on the current buffer inverting amplifier (7) based on configuration; the three amplifiers (2,3) in series, in order to achieve an amplified signal; said positive phase a current buffer (6) output terminal and the inverting current buffer (7) and an output terminal connected to the common point of the output terminal of the amplifier (1); said compensation capacitor (4) connected between the output terminal of the amplifier (3) between the positive phase input terminal and a current buffer (6) in order to achieve active Miller compensation; the compensation capacitor (5) connected between the output terminal of the amplifier (2) and the positive phase current buffer (7) of the input terminal thereby achieving active between nested Miller compensation. 在放大器(1)的输出端和放大器(3)的输出端之间设置了一个前馈跨导级放大器gmf,以提高大信号特性。 At the output of the amplifier and the amplifier (1) is provided feeding large signal transconductance characteristic gmf a pre-amplifier, to improve (3) output.

[0022] 本发明嵌套式密勒有源电容频率补偿电路所构建出的三级放大器在频率响应特性中非主极点可扩展到很高的频率,同时,还引入了一个左半平面的零点,这增加了相位裕度并节省了功耗。 [0022] The present invention Nested Miller frequency compensation circuit is the active capacitance of the three-stage amplifier constructed in Africa dominant pole frequency response can be extended to very high frequencies, while also introducing a left half-plane zero this increases the phase margin and power savings. 因此本发明在实现高增益的同时具有功耗低、补偿电容小、驱动大负载能力强等优点。 Therefore, the present invention has low power consumption, small compensation capacitor, drive load capacity while achieving the advantages of high-gain.

[0023] 附图说明 [0023] BRIEF DESCRIPTION OF DRAWINGS

[0024] 图1是典型的NMC频率补偿技术的结构示意图; [0024] FIG. 1 is a schematic view of a typical frequency compensation of NMC;

[0025] 图2是典型的RNMC频率补偿技术的结构示意图; [0025] FIG. 2 is a schematic view of a typical RNMC frequency compensation technique;

[0026] 图3是正相放大器结构示意图; [0026] FIG. 3 is a schematic view of the positive-phase amplifier configuration;

[0027] 图4是反相放大器结构示意图; [0027] FIG. 4 is a schematic view of the inverting amplifier configuration;

[0028] 图5是典型的基于反相放大器的电流缓冲器结构示意图; [0028] FIG. 5 is a typical inverting amplifier configuration based on the current buffer schematic;

[0029] 图6是基于正相放大器的电流缓冲器结构示意图; [0029] FIG. 6 is a schematic view of a current structure of the buffer amplifier based on normal phase;

[0030] 图7是基于正相放大器的电流缓冲器的晶体管级实现电气原理图; [0030] FIG 7 is implemented on an electrical schematic diagram of a transistor level positive phase current buffer amplifier;

[0031] 图8是本发明嵌套式密勒有源电容频率补偿电路的结构示意图; [0031] FIG. 8 is a schematic view of the present invention is nested active capacitance Miller frequency compensation circuit;

[0032] 图9是本发明嵌套式密勒有源电容频率补偿电路的晶体管级实现原理图。 [0032] FIG. 9 is a transistor-level nested Miller active capacitance of the present invention to achieve frequency compensation circuit diagram.

[0033] 标号说明:1、2、3表示框图形式的放大器的级数,4、5、11、12为补偿电容,6为正相的电流缓冲器,7为反相的电流缓冲器,8、9、10分别为1、2、3的晶体管级实现,13为正相的电流缓冲器的晶体管级实现,14为反相的电流缓冲器的晶体管级实现。 [0033] Reference numeral DESCRIPTION: 1,2,3 series in the form of a block diagram of the amplifier, the compensation capacitor is 4,5,11,12, 6 positive phase current buffer, the current buffer inverter 7, 8 , stages 1, 2, 9, 10 implemented as a transistor, the transistor stage 13 to achieve a positive-phase current buffer, the current buffer 14 to the inverting transistor-level implementation.

[0034] 具体实施措施 [0034] specific implementation measures

[0035] 下面结合附图进一步描述本发明嵌套式密勒有源电容频率补偿电路。 [0035] Next, the present invention is further described Nested Miller frequency compensation circuit is active capacitance in conjunction with the accompanying drawings.

[0036] 电流缓冲器(图5)已经在很多场合被使用以提高性能,例如三级放大器[4-6,8,9]以及低压差线形稳压器[11]。 [0036] Current buffer (FIG. 5) has been used to improve performance, for example, three amplifiers [4-6,8,9] and a linear low-dropout regulator [11] In many occasions. 但是通常情况下,一个反相的放大器是需要的。 In general, however, an inverting amplifier is needed. 事实上,当一个正相的放大器存在的时候,我们也是可以构造电流缓冲器的,这种构造方法如图6所示,图7是它的晶体管级实现原理图。 In fact, when there is a positive-phase amplifier, we can construct a current buffer are of such a construction method shown in FIG. 6, FIG. 7 is its schematic transistor-level implementation.

[0037] 基于以上电流缓冲器的构造,本发明的三级放大器嵌套密勒有源电容补偿电路的框图如图8所示,三个放大器1、2、3依次串联起来,这样构成三个放大级从而可以得到高增益。 [0037] Based on the above configuration of the current buffer, three-stage amplifier of the present invention, the active capacitance nested Miller compensation circuit block diagram shown in Figure 8, three amplifiers together in series 1,2,3, configured so that three amplification stage high gain can be obtained. 在实现三级放大器的频率补偿的时候,补偿电容4、5分别通过正相的电流缓冲器6、反相的电流缓冲器7接至第一级放大器的输出端,这样构成了本发明提出的嵌套式密勒有源电容补偿。 When implementing a three-stage amplifier frequency compensation, compensation capacitor 4 and 5 respectively positive-phase current buffer 6, 7 to the first stage output of the amplifier inverting current buffer, so that the configuration proposed according to the present invention nested Miller compensation active capacitance. Cp1,2代表各级的寄生电容,CL则代表负载电容。 Cp1,2 representatives at all levels of parasitic capacitance, CL represents a load capacitance. 除此之外,加入了一个前馈跨导级放大器gmf以提高大信号特性。 In addition, we are adding a large signal characteristics of feed transconductance amplifier gmf a front to improve. 假设各级的增益远大于1,同时Ca,Cb,Cp1以及Cp2远小于CL,系统的传输函数为, Assumed much greater than the gain levels 1, while Ca, Cb, Cp1 and Cp2 CL is much smaller than the transfer function, for the system,

[0038] [0038]

[0039] 其中 [0039] in which

[0040] [0040]

[0041] [0041]

[0042] [0042]

[0043] [0043]

[0044] [0044]

[0045] ka=gmaRa (7) [0045] ka = gmaRa (7)

[0046] kb=gmbRb (8) [0046] kb = gmbRb (8)

[0047] 本发明的晶体管级的实现在图9中给出,两个嵌套密勒有源电容由MB1,2,M1A,B以及Ca,Cb实现;其中,第一级8为采用折叠式共源共栅的放大级,第二级9为正相放大级,第三级10为反相放大级;电流缓冲器的晶体管级实现13、14既是第一级的偏置电路,同时可以利用它们来实现正相和反相的电流缓冲器。 [0047] The transistor-level realization of the present invention is given in FIG. 9, two nested Miller active capacitance is realized by MB1,2, M1A, B and Ca, Cb; wherein a first folding stage 8 is employed common-gate common-source amplifier stage, the second stage amplifier stage 9 is positive relative to the third stage 10 of the inverting amplifier stage; current buffer stage transistors 13 and 14 both achieved a bias circuit of the first stage, while the use of they achieved positive phase and inverted current buffer. 补偿电容11、12通过电流缓冲器13、14构成嵌套式密勒有源电容补偿电路。 11 and 12 through compensation capacitor constituting a current buffer Nested Miller compensation circuit 13, the active capacitance.

[0048] 本发明中这样构建出的三级放大器电路在频率响应特性中非主极点可扩展到很高的频率,如式(4)、(5)所示。 [0048] The present invention is constructed in such a three-stage amplifier circuit in the frequency response characteristic of Africa dominant pole can be extended to very high frequencies, such as the formula (4), (5). 同时,还引入了一个左半平面的零点,如式(1)所示,这增加了相位裕度并节省了功耗。 Meanwhile, also it introduces a left half-plane zero, the formula (1), which increases the phase margin and power savings. 这一类电路在实现高增益的同时具有功耗低、补偿电容小、驱动大负载能力强等优点,具有极好的应用前景。 This type of circuit has low power consumption, small compensation capacitor, drive load capacity while achieving the advantages of high gain, excellent prospects.

Claims (2)

1.一种嵌套式密勒有源电容频率补偿电路,其特征在于:它由三级放大器(1、2、3),补偿电容(4、5),基于正相放大器的电流缓冲器(6),基于反相放大器的电流缓冲器(7)构成;所述三级放大器(1、2、3)依次串联;所述正相电流缓冲器(6)的输出端与反相电流缓冲器(7)的输出端共点并接至放大器(1)的输出端;补偿电容(4)连接在放大器(3)的输出端和正相电流缓冲器(6)的输入端之间;补偿电容(5)连接在放大器(2)的输出端与正相电流缓冲器(7)的输入端之间。 An active capacitance nested Miller frequency compensation circuit, characterized in that: it is a three-stage amplifier (1,2,3), a compensation capacitor (4, 5), based on the current of the buffer amplifier positive ( 6), based on a current buffer inverting amplifier (7) is composed; the three amplifiers (2,3) in series; said positive phase current buffer (6) output terminal and the inverting current buffer (7) a common point and an output terminal connected to the output terminal of the amplifier (1); and a compensation capacitor (4) connected between the output terminal of the amplifier (3) and the positive phase current buffer (6) an input terminal; compensation capacitor ( 5) connected between the output terminals of the amplifier (2) and the positive phase current buffer (7) input.
2.如权利要求1所述的嵌套式密勒有源电容频率补偿电路,其特征在于:在放大器(1)的输出端和放大器(3)的输出端之间设置了一个前馈跨导级放大器gmf。 2. Nested Miller frequency compensation circuit of the active capacitance according to claim 1, wherein: the output terminal of the amplifier and the amplifier (1) is provided between (3) the output of a transconductance before feeding stage amplifier gmf.
CN 200810201177 2008-10-14 2008-10-14 Nested type Miller active capacitor frequency compensation circuit CN101388650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810201177 CN101388650A (en) 2008-10-14 2008-10-14 Nested type Miller active capacitor frequency compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810201177 CN101388650A (en) 2008-10-14 2008-10-14 Nested type Miller active capacitor frequency compensation circuit

Publications (1)

Publication Number Publication Date
CN101388650A true CN101388650A (en) 2009-03-18

Family

ID=40477874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810201177 CN101388650A (en) 2008-10-14 2008-10-14 Nested type Miller active capacitor frequency compensation circuit

Country Status (1)

Country Link
CN (1) CN101388650A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917169A (en) * 2010-08-05 2010-12-15 复旦大学 High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier
CN101986236A (en) * 2010-10-27 2011-03-16 华为技术有限公司 Frequency compensation circuit for voltage regulator
CN101677230B (en) * 2008-09-15 2012-07-04 联发科技(新加坡)私人有限公司 Three-stage frequency-compensated operational amplifier
CN101534094B (en) * 2009-04-14 2013-11-06 无锡中星微电子有限公司 Compensating circuit
CN103780213A (en) * 2013-12-24 2014-05-07 南京中科微电子有限公司 Multistage operational amplifier
CN104393846A (en) * 2014-11-17 2015-03-04 上海华虹宏力半导体制造有限公司 Operational amplifier
CN104391533A (en) * 2014-11-12 2015-03-04 记忆科技(深圳)有限公司 High-PSRR (power supply rejection ratio) LDO (low dropout regulator) circuit
CN104601123A (en) * 2014-12-24 2015-05-06 天津大学 Low-power consumption three-level operational amplifier for driving large-load capacitor
CN104949664A (en) * 2015-06-11 2015-09-30 工业和信息化部电子第五研究所 Micromechanical gyroscope electric coupling suppression circuit and method
CN105406826A (en) * 2015-08-06 2016-03-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Three-stage operational amplifier suitable for wide capacitive load range
CN105932971A (en) * 2016-04-14 2016-09-07 中国电子科技集团公司第二十四研究所 Three-level operation amplifier driving wide-range capacitive loads
CN105978496A (en) * 2015-10-28 2016-09-28 温州墨熵微电子有限公司 Frequency compensation technology for optimizing conversion speeds of operational amplifiers
CN107085138A (en) * 2017-04-25 2017-08-22 电子科技大学 A kind of high-resolution negative level detects circuit
US9893689B2 (en) 2016-06-24 2018-02-13 Stmicroelectronics S.R.L. System and method for a multistage operational amplifier

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677230B (en) * 2008-09-15 2012-07-04 联发科技(新加坡)私人有限公司 Three-stage frequency-compensated operational amplifier
CN101534094B (en) * 2009-04-14 2013-11-06 无锡中星微电子有限公司 Compensating circuit
CN101917169B (en) * 2010-08-05 2013-02-27 复旦大学 High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier
CN101917169A (en) * 2010-08-05 2010-12-15 复旦大学 High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier
US8847678B2 (en) 2010-10-27 2014-09-30 Huawei Technologies Co., Ltd. Frequency compensation circuit for voltage regulator
CN101986236A (en) * 2010-10-27 2011-03-16 华为技术有限公司 Frequency compensation circuit for voltage regulator
CN103780213A (en) * 2013-12-24 2014-05-07 南京中科微电子有限公司 Multistage operational amplifier
CN103780213B (en) * 2013-12-24 2017-02-01 南京中科微电子有限公司 Multistage operational amplifier
CN104391533A (en) * 2014-11-12 2015-03-04 记忆科技(深圳)有限公司 High-PSRR (power supply rejection ratio) LDO (low dropout regulator) circuit
CN104393846A (en) * 2014-11-17 2015-03-04 上海华虹宏力半导体制造有限公司 Operational amplifier
CN104393846B (en) * 2014-11-17 2018-02-06 上海华虹宏力半导体制造有限公司 Operational amplifier
CN104601123A (en) * 2014-12-24 2015-05-06 天津大学 Low-power consumption three-level operational amplifier for driving large-load capacitor
CN104949664A (en) * 2015-06-11 2015-09-30 工业和信息化部电子第五研究所 Micromechanical gyroscope electric coupling suppression circuit and method
CN105406826A (en) * 2015-08-06 2016-03-16 广东顺德中山大学卡内基梅隆大学国际联合研究院 Three-stage operational amplifier suitable for wide capacitive load range
CN105978496A (en) * 2015-10-28 2016-09-28 温州墨熵微电子有限公司 Frequency compensation technology for optimizing conversion speeds of operational amplifiers
CN105932971A (en) * 2016-04-14 2016-09-07 中国电子科技集团公司第二十四研究所 Three-level operation amplifier driving wide-range capacitive loads
CN105932971B (en) * 2016-04-14 2019-02-22 中国电子科技集团公司第二十四研究所 A kind of three-stage operational amplifier driving wide scope capacitive load
US9893689B2 (en) 2016-06-24 2018-02-13 Stmicroelectronics S.R.L. System and method for a multistage operational amplifier
CN107085138A (en) * 2017-04-25 2017-08-22 电子科技大学 A kind of high-resolution negative level detects circuit
CN107085138B (en) * 2017-04-25 2019-05-21 电子科技大学 A kind of high-resolution negative level detection circuit

Similar Documents

Publication Publication Date Title
CN102331807B (en) Low-dropout (LDO) linear regulator of integrated slew rate enhancing circuit
KR100674913B1 (en) Differential amplifier having cascode class AB control stage
Galan et al. Super class-AB OTAs with adaptive biasing and dynamic output current scaling
Chowdhury et al. A single-chip highly linear 2.4 GHz 30dBm power amplifier in 90nm CMOS
Grasso et al. Advances in reversed nested Miller compensation
Leung et al. Nested Miller compensation in low-power CMOS design
US7973605B2 (en) Three-stage frequency-compensated operational amplifier for driving large capacitive loads
CN102566634B (en) Linear voltage stabilizing circuit
EP2736168B1 (en) Class AB amplifiers
CN102707757A (en) Dynamic discharge circuit and LDO integrated with same
US6833760B1 (en) Low power differential amplifier powered by multiple unequal power supply voltages
CN104656733B (en) Self-adaptation exports the low pressure difference linear voltage regulator of ultra low quiescent current
CN103219961B (en) The operation amplifier circuit that a kind of bandwidth is adjustable
US9628035B2 (en) Operational amplifier circuits
CN105141265B (en) A kind of operation transconductance amplifier of gain lifting
US8890610B2 (en) Compensation circuitry and method for amplifiers driving large capacitive loads
US7884671B2 (en) Low power operational amplifier
CN102045035A (en) Low-power consumption broadband high-gain high-swing rate single-level operation transconductance amplifier
CN101917169B (en) High-bandwidth low-power consumption frequency-compensation three-stage operational amplifier
CN103036517A (en) Data bit (dB) linear variable gain amplifier
US8305143B2 (en) Amplifier circuit and transceiver
US20120161880A1 (en) TECHNIQUES ON INPUT TRANSFORMER TO PUSH THE OP1dB HIGHER IN POWER AMPLIFIER DESIGN
KR20100021938A (en) Folded cascode operational amplifier having improved phase margin
US20040178843A1 (en) [slew rate enhancement circuit via dynamic output stage]
CN101339443A (en) Broad output current scope low pressure difference linear manostat

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C20 Patent right deemed to be abandoned