CN101388412B - 自对准栅结构纳米场效应晶体管及其制备方法 - Google Patents

自对准栅结构纳米场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN101388412B
CN101388412B CN200810223905XA CN200810223905A CN101388412B CN 101388412 B CN101388412 B CN 101388412B CN 200810223905X A CN200810223905X A CN 200810223905XA CN 200810223905 A CN200810223905 A CN 200810223905A CN 101388412 B CN101388412 B CN 101388412B
Authority
CN
China
Prior art keywords
drain electrode
source
gate
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200810223905XA
Other languages
English (en)
Other versions
CN101388412A (zh
Inventor
彭练矛
张志勇
王胜
梁学磊
陈清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN200810223905XA priority Critical patent/CN101388412B/zh
Publication of CN101388412A publication Critical patent/CN101388412A/zh
Priority to US12/571,453 priority patent/US8063451B2/en
Application granted granted Critical
Publication of CN101388412B publication Critical patent/CN101388412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Abstract

本发明公开了一种自对准栅结构纳米场效应晶体管及其制备方法,以一维半导体纳米材料作为导电通道,其两端分别是源、漏电极;用原子层沉积方式生长栅介质层,覆盖在源、漏电极之间,以及源、漏电极相对面的侧壁和部分源、漏电极上;在栅介质层上再通过蒸发或溅射方法生长栅电极层,栅介质层和栅电极层的厚度之和小于源、漏电极的厚度,源漏电极之间导电通道上的栅电极通过栅介质侧墙与源、漏电极实现电学隔离。本发明的自对准结构制作工艺简单、稳定,自由度高,源漏之间的导电通道基本被栅电极覆盖,大大提高了栅对导电通道的控制能力,而且,对于栅介质层和栅电极层的材料无限制,从而可以自由调节器件的阈值电压,满足规模集成电路设计的需要。

Description

自对准栅结构纳米场效应晶体管及其制备方法
发明领域
本发明涉及场效应晶体管,特别的,涉及基于一维半导体纳米材料构建的自对准场效应晶体管。
背景技术
以半导体纳米碳管为基础的纳米电子学具有巨大的应用前景,被认为是最有可能取代目前以硅为基础的微电子集成电路工艺的技术。通过近十年的研究,人们认识到基于半导体纳米碳管构建的许多纳米电子器件,特别是场效应晶体管,在功耗、速度和集成度等主要性能指标方面显示出了明显优于硅基MOSFET的特征。另外,由于碳纳米管场效应晶体管的极性取决于其源漏电极金属的性质,人们发现,采用金属钯可以与半导体碳管形成对空穴的欧姆接触,形成高性能的空穴型(p型)场效应晶体管【A.Javey,J.Guo,Q.Wang,M.Lundstrom,H.Dai,Nature,424,654(2003)】,而采用金属钪与半导体碳管形成对空穴的欧姆接触,形成高性能的电子型(n型)场效应晶体管【Zhang,Z.Y.;Liang,X.L.;Wang,S.;Yao,K.;Hu,Y.F.;Zhu,Y.Z.;Chen,Q.;Zhou,W.W.;Li,Y.;Yao,Y.G.;Zhang,J.;Peng,L.M.NanoLett.,7,3603(2007)】,因此基于碳纳米管场效应晶体管的集成电路的制造工艺及其简单,整个过程无需高温和掺杂工艺,这样大大降低了工艺的成本,而工艺成本的急速增加,正是阻碍当前硅基CMOS工艺进一步发展的重要障碍。
晶体管的导电沟道长度(栅长)是一个重要的特征参数,在当前的硅基CMOS工艺中,正是由于栅长的不断缩减,使得器件和电路的速度、集成度不断提高。对碳纳米管场效应晶体管,也存在同样的问题,即要提高晶体管的速度、减小其面积,就要不断的缩减其沟道长度,也就是源漏间距和栅长不断缩减,这使得栅电极和源漏电极之间的光刻套准极为重要,这种套准要求栅电极正好位于源漏之间,最大限度的覆盖导电沟道,使栅电极对导电通道的控制效率最大,但又不要与源漏电极有交叠,因为这种交叠会引起较大的寄生电容,从而导致晶体管工作速度降低,在光刻过程中的套准很难满足这种要求,会大大增加工艺的难度,降低成品率。因此,采用自对准栅结构是非常有必要的。目前硅基CMOS都是采用的自对准栅结构,而自对准结构的采用也是硅基CMOS电极能够发展到目前规模的一个极为重要的因素。同样,要不断缩减碳纳米管场效应晶体管的尺寸,提高集成度,采用自对准栅结构也是非常有必要的。
美国Stanford大学的Dai H J教授研究组发明了一种自对准结构的碳纳米管场效应晶体管【Javey,A.;Guo,J.;Farmer,D.B.;Wang,Q.;Wang,D.W.;Gordon,R.G.;Lundstrom,M.;Dai,H.J.Nano Lett.,4,447(2004)】,他们利用原子层沉积(ALD)生长的氧化铪层作为栅介质层,采用铝作为栅电极,通过加热氧化在铝栅电极侧面形成氧化铝的侧墙,从而将栅电极和源漏电极隔离开。但是该结构存在着明显的缺点,首先,该结构中源漏电极必须很薄(典型的小于10纳米),这使得源漏的接触电阻明显增大,最重要的是,该结构对栅电极材料有所限制,就是必须选择能够被氧化生成致密氧化层的金属,就是某些低功函数的金属。这种限制实际上制约了我们调节晶体管的阈值电压。场效应晶体管的阈值电压也是一个非常重要的参数,由于碳纳米管场效应晶体管不掺杂,因此我们无法象硅基CMOS器件那样通过改变沟道的掺杂浓度来调节器件的阈值电压,这样,唯一有效的途径就是通过改变栅电极的功函数来调节阈值电压,就是说我们可以通过选择不同的金属栅电极来调节晶体管的阈值电压。但是,Dai的自对准结构使其无法自由选择不同功函数的金属作为栅电极材料。因此,一种新型的、更稳定、自由度更高、工艺更简单的自对准结构对纳米电子器件和集成电路的进一步发展有着极为重要的意义。
发明内容
本发明的目的在于提供一种自对准栅结构纳米场效应晶体管及其制备技术,其中,导电通道为一维半导体纳米材料,栅电极几乎完全覆盖源漏电极之间全部导电通道,并与源漏电极实现电学隔离。
上述目的是通过如下技术方案实现的:
一种自对准栅结构纳米场效应晶体管,其导电通道是一维半导体纳米材料;导电通道两端分别是源、漏电极;栅介质层为原子层沉积(ALD)方式生长的氧化物层,覆盖在源、漏电极之间,以及源、漏电极相对面的侧壁和部分源、漏电极上;而栅电极层是在栅介质层上通过电子束蒸发或者热蒸发或者磁控溅射的方法生长的一层导电薄膜,栅介质层和栅电极层的厚度之和小于源、漏电极的厚度,位于源漏电极之间导电通道上的栅电极通过氧化物侧墙与源、漏电极实现电学隔离。
上述一维半导体纳米材料最常用的是碳纳米管,采用高功函数金属(例如钯)作为与碳纳米管连接的源、漏电极可形成p型场效应晶体管,而采用低功函数金属(例如钪)作为与碳纳米管连接的源、漏电极可形成n型场效应晶体管。
上述源、漏电极的厚度以50~80纳米为宜,而栅介质层的厚度一般在5~15纳米,栅电极层的厚度在5~15纳米。
对栅介质层和栅电极层的材料无特殊要求。栅介质层可以是氧化铪、氧化铝、氧化锆、氧化硅等等任何绝缘层。栅电极层可以根据需要选择任何可通过蒸发或者溅射方式生长的金属或者其它导电材料,例如金属Ti,形成金属单质薄膜或其它导电薄膜。
本发明提出的自对准栅结构中,源漏电极要求较陡的侧壁和较大的厚度,可以通过剥离或者刻蚀的方法制备得到,栅介质层为原子层沉积(ALD)生长的氧化物层,而栅电极是通过电子束蒸发或者热蒸发或者磁控溅射的方法生长的导电薄膜。图1为本发明的自对准栅纳米场效应晶体管的典型结构图,其中,1为一维半导体材料,2和3分别是源和漏电极,在制作栅堆垛层时,本发明针对一维纳米材料的几何特性,利用原子层沉积和蒸发(或溅射)两种薄膜生长方式的差别,制备了这种纳米场效应晶体管。栅介质层4是通过原子层沉积的方式生长的,因此会在所有裸露的表面(包括源漏电极的侧壁)上生长一层厚度均匀的氧化层;而栅电极层通过蒸发(或溅射)的方式生长,该生长方式只能在向上的平面上生长金属层或其它导电薄膜,因此栅电极在源漏侧墙处自动断开,使得源漏之间的部分5与源漏电极之上的部分6、7实际上是断开的,这样大大减小栅和源漏电极的寄生电容,从而增加了晶体管的开关速度。
本发明提供的自对准栅结构纳米场效应晶体管的制备方法包括如下步骤:
1.在一维半导体纳米材料上制作源、漏电极;
2.光刻形成栅极形状,其中,栅要覆盖住一部分源、漏电极;
3.通过原子层沉积(ALD)方式生长一层氧化物层作为栅介质层;
4.通过电子束蒸发或者热蒸发或者测控溅射的方法生长一层导电薄膜作为栅电极层,其中栅介质层和栅电极层的厚度之和小于源、漏电极的厚度;
5.将样品进行剥离,制备出栅极。
上述步骤1制作源漏电极的方法一般是,先在一维半导体纳米材料上通过光刻形成源、漏电极的形状,然后分别蒸镀一层厚的金属层作为源、漏电极层,再通过剥离或刻蚀的方法去除不需要的金属部分,得到源、漏电极。源、漏电极的厚度优选为50~80纳米,它们相对一面的侧壁要求较为陡峭,最好是垂直于一维半导体纳米材料。而所述一维半导体纳米材料通常选用碳纳米管。
上述步骤3中所述氧化物层厚度优选为5~15纳米,可以是氧化铪、氧化铝、氧化锆、氧化硅等等可通过ADL生长的任何绝缘层。
上述步骤4中的导电薄膜厚度优选为5~15纳米,所有材料可以是可通过蒸发或者溅射方式生长成薄膜的的金属或者其它导电材料。
本发明的核心在于提出一种基于一维纳米材料场效应晶体管的自对准栅结构,这种自对准结构的制作工艺简单、稳定,自由度高,其要点在于:
1.源、漏电极厚度要大于栅介质层和栅电极层厚度之和,而且它们相对一面的侧壁要非常陡峭,以保证栅电极能够在侧壁处断开;
2.栅堆垛层的范围要大于源漏电极之间的区域,栅极要与源、漏电极都有足够的交叠,从而保证能够容忍一定的光刻套准偏差;
3.栅介质层为原子层沉积(ALD)生长的氧化物层,而栅电极是通过电子束蒸发或者热蒸发或者磁控溅射的方法生长的导电薄膜。
在本发明的器件结构中,如果源漏电极之间的间距(即图1中源电极2与漏电极3之间长度)为L,栅介质层4的厚度为d,那么有效栅长Lg=L-2d,由于d为原子层沉积方式生长的薄膜厚度,可以很小,典型可小于10纳米,因此,Lg很接近L,这就意味着源漏之间的导电通道基本被栅电极覆盖,大大提高了栅对导电通道的控制能力,即器件的跨导。另外,本发明中的器件结构只是对栅介质层和栅电极层的生长方式有所要求,对其材料并无限制,因此,栅电极可以选择任何金属或者其它导电薄膜,从而可以自由调节器件的阈值电压,满足电路设计的需要。
附图说明
图1是基于单根碳纳米管的自对准栅场效应晶体管的结构示意图。
图2a是实施例1制备的n型自对准栅纳米场效应晶体管的转移特性(Ids-Vgs)曲线,
图2b是实施例1制备的n型自对准栅纳米场效应晶体管的输出特性(Ids-Vds)曲线,其中,Vgs自上而下从2V到—1V,每条曲线减少0.2V。
具体实施方式
下面结合附图,通过实施例进一步详细说明本发明,但不以任何方式限制本发明。实施例1:
如图1所示的以金属钪为源漏电极,HfO2为栅介质、金属Ti为栅电极的n型自对准碳纳米管场效应晶体管。分布绝缘基底8上的碳纳米管1上的两个Sc电极分别为源电极2和漏电极3,栅介质层为ALD生长的氧化铪薄膜4,栅电极层为蒸发或者溅射生长的金属薄膜,源漏之间的部分5与源漏电极之上的部分6、7是断开的。具体制备步骤如下:
1.在半导体碳纳米管上通过光刻形成源、漏电极的形状,分别蒸镀一层80纳米厚的Sc金属层作为源漏电极层,然后将样品放进丙酮中剥离,去除不需要的金属层即得到源漏金属电极;
2.光刻形成栅极形状,其中,栅要覆盖住一部分源漏电极;
3.通过原子层沉积(ALD)方式生长一层10纳米左右的HfO2作为栅介质层;
4.通过电子束蒸发或者热蒸发或者测控溅射的方法蒸镀一层8纳米厚的金属Ti作为栅电极;
5.将样品放进丙酮中剥离,制备出栅极。
所制备出来的n型纳米场效应晶体管通过实验测量得到的转移特性曲线和输出特性曲线,分别如图2a和2b所示。
本发明的原理和实施例都是通过碳纳米管为导电通道的器件结构来阐述的,但是本发明方法并不仅限于碳纳米管器件,可以用于制备基于其它半导体纳米线、管、条带的场效应晶体管,基本的工作原理对于其他基于一维半导体纳米材料的场效应晶体管同样适用。任何基于本发明的自对准栅结构精髓对各部分材料、厚度等参数或者制备方式加以修改的场效应晶体管都属于本发明的范畴。

Claims (10)

1.一种自对准栅结构纳米场效应晶体管,其导电通道是一维半导体纳米材料;导电通道两端分别是源、漏电极;栅介质层为原子层沉积方式生长的氧化物层,覆盖在源、漏电极之间,以及源、漏电极相对面的侧壁和部分源、漏电极上;而栅电极层是在栅介质层上通过电子束蒸发或者热蒸发或者磁控溅射的方法生长的一层导电薄膜,栅介质层和栅电极层的厚度之和小于源、漏电极的厚度,位于源漏电极之间导电通道上的栅电极通过氧化物侧墙与源、漏电极实现电学隔离。
2.如权利要求1所述的自对准栅结构纳米场效应晶体管,其特征在于:所述一维半导体纳米材料是碳纳米管。
3.如权利要求1所述的自对准栅结构纳米场效应晶体管,其特征在于:所述源、漏电极的厚度是50~80纳米,栅介质层的厚度是5~15纳米,栅电极层的厚度是5~15纳米。
4.如权利要求1所述的自对准栅结构纳米场效应晶体管,其特征在于:所述栅介质层是氧化铪、氧化铝、氧化锆或氧化硅。
5.如权利要求1所述的自对准栅结构纳米场效应晶体管,其特征在于:所述栅电极层是金属单质薄膜。
6.一种自对准栅结构纳米场效应晶体管的制备方法,包括如下步骤:
1)在一维半导体纳米材料上制作源、漏电极;
2)光刻形成栅极形状,其中,栅要覆盖住一部分源、漏电极;
3)通过原子层沉积方式生长一层氧化物层作为栅介质层,所述栅介质层覆盖在源、漏电极之间,以及源、漏电极相对面的侧壁和部分源、漏电极上;
4)通过电子束蒸发或者热蒸发或者测控溅射的方法生长一层导电薄膜作为栅电极层,其中栅介质层和栅电极层的厚度之和小于源、漏电极的厚度;
5)将样品进行剥离,制备出栅极。
7.如权利要求6所述的方法,其特征在于:所述步骤1)具体是,先在一维半导体纳米材料上通过光刻形成源、漏电极的形状,然后分别蒸镀一层厚的金属层作为源、漏电极层,再通过剥离或刻蚀的方法去除不需要的金属部分,得到源、漏电极。
8.如权利要求6或7所述的方法,其特征在于:步骤1)中所述的一维半导体纳米材料是碳纳米管。
9.如权利要求6或7所述的方法,其特征在于:所述步骤1)源、漏电极的厚度控制在50~80纳米;步骤3)栅介质层的厚度控制在5~15纳米;步骤4)栅电极层的厚度控制在5~15纳米。
10.如权利要求6或7所述的方法,其特征在于:步骤3)中所述氧化物是氧化铪、氧化铝、氧化锆或氧化硅;步骤4)中所述导电薄膜是金属单质薄膜。
CN200810223905XA 2008-10-09 2008-10-09 自对准栅结构纳米场效应晶体管及其制备方法 Active CN101388412B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200810223905XA CN101388412B (zh) 2008-10-09 2008-10-09 自对准栅结构纳米场效应晶体管及其制备方法
US12/571,453 US8063451B2 (en) 2008-10-09 2009-10-01 Self-aligned nano field-effect transistor and its fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810223905XA CN101388412B (zh) 2008-10-09 2008-10-09 自对准栅结构纳米场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN101388412A CN101388412A (zh) 2009-03-18
CN101388412B true CN101388412B (zh) 2010-11-10

Family

ID=40477693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810223905XA Active CN101388412B (zh) 2008-10-09 2008-10-09 自对准栅结构纳米场效应晶体管及其制备方法

Country Status (2)

Country Link
US (1) US8063451B2 (zh)
CN (1) CN101388412B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354291B2 (en) 2008-11-24 2013-01-15 University Of Southern California Integrated circuits based on aligned nanotubes
US20120326119A1 (en) * 2010-03-08 2012-12-27 Kyonggi University Industry & Academia Cooperation Foundation Light emitting display device having nanowire
CN102386116B (zh) * 2010-09-01 2013-06-12 上海宏力半导体制造有限公司 一种提取有效栅极长度的方法
US8692230B2 (en) * 2011-03-29 2014-04-08 University Of Southern California High performance field-effect transistors
TWI479547B (zh) * 2011-05-04 2015-04-01 Univ Nat Cheng Kung 薄膜電晶體之製備方法及頂閘極式薄膜電晶體
US8569121B2 (en) * 2011-11-01 2013-10-29 International Business Machines Corporation Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same
CN104362176B (zh) * 2014-09-30 2017-05-17 北京大学 高开关比的自对准双栅小带隙半导体晶体管及制备方法
US9379327B1 (en) 2014-12-16 2016-06-28 Carbonics Inc. Photolithography based fabrication of 3D structures
CN104979402B (zh) * 2015-05-14 2018-05-29 北京大学 碳纳米管三维鳍状场效应晶体管及其制备方法
CN104992890B (zh) * 2015-05-15 2017-09-15 北京大学 一种电子发射体功函数可调的阴极及其阵列
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
US9543535B1 (en) * 2015-06-29 2017-01-10 International Business Machines Corporation Self-aligned carbon nanotube transistor including source/drain extensions and top gate
WO2017024049A1 (en) * 2015-08-06 2017-02-09 Pacific Biosciences Of California, Inc. Single-molecule nanofet sequencing systems and methods
CN105870245B (zh) * 2016-04-13 2018-05-25 国家纳米科学中心 一种顶栅结构的超薄硫化铪光电晶体管及其制备方法
CN108352326A (zh) * 2016-07-11 2018-07-31 华为技术有限公司 场效应晶体管及其制作方法
US10665799B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10468492B2 (en) * 2016-10-12 2019-11-05 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and display apparatus having the same, and fabricating method thereof
US10243156B2 (en) * 2017-03-16 2019-03-26 International Business Machines Corporation Placement of carbon nanotube guided by DSA patterning
US10141528B1 (en) * 2017-05-23 2018-11-27 International Business Machines Corporation Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors
CN106991956A (zh) * 2017-06-05 2017-07-28 京东方科技集团股份有限公司 一种像素电路及其驱动方法和其制备方法、显示装置
CN113644112B (zh) * 2020-05-11 2022-07-15 北京华碳元芯电子科技有限责任公司 晶体管及制作方法
CN112505108B (zh) * 2020-12-18 2021-07-06 联合微电子中心有限责任公司 气体检测系统和方法
CN112782558A (zh) * 2020-12-29 2021-05-11 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 集成电路失效率获取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080063566A1 (en) * 2004-09-03 2008-03-13 Mitsubishi Chemical Corporation Sensor Unit and Reaction Field Cell Unit and Analyzer

Also Published As

Publication number Publication date
US8063451B2 (en) 2011-11-22
CN101388412A (zh) 2009-03-18
US20100090293A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
CN101388412B (zh) 自对准栅结构纳米场效应晶体管及其制备方法
CN106356405B (zh) 异质结碳纳米管场效应晶体管及其制备方法
Black Self-aligned self assembly of multi-nanowire silicon field effect transistors
Johansson et al. High-frequency gate-all-around vertical InAs nanowire MOSFETs on Si substrates
Jackson et al. High-performance flexible zinc tin oxide field-effect transistors
CN100459161C (zh) 多栅晶体管及其制造方法
Biswas et al. Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs
Rewari et al. Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications
CN104766888A (zh) 高介电常数栅介质复合沟道场效应晶体管及其制备方法
CN101777580B (zh) 一种隧穿场效应晶体管及其制造方法
CN102157548A (zh) 一种基于石墨烯层的晶体管
US20200328283A1 (en) Field effect transistor, method of fabricating field effect transistor, and electronic device
Trivedi et al. Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement
CN102569066B (zh) 栅控二极管半导体器件的制备方法
Kumar et al. Hafnium based high-k dielectric gate-stacked (GS) gate material engineered (GME) junctionless nanotube MOSFET for digital applications
CN102543723A (zh) 一种栅控二极管半导体器件的制造方法
Kumar et al. Reduction of Drain Induced Barrier Lowering in DM‐HD‐NA GAAFET for RF Applications
CN101267021A (zh) 有机双极型薄膜晶体管及其制造方法
JP5739732B2 (ja) 半導体装置
CN103840005A (zh) 具有SiGeSn源漏的鳍式场效应晶体管及其形成方法
CN105789323A (zh) 场效应晶体管以及制备方法
CN107342320B (zh) 无结型隧穿场效应晶体管及制备方法
Chandan et al. A fair comparison of the performance of charge plasma and electrostatic tunnel FETs for low-power high-frequency applications
CN103762229A (zh) 具有复合栅介质的横向功率器件
WO2019114408A1 (en) Field effect transistor, method of fabricating field effect transistor, and electronic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant