CN101356115B - 形成纳米尺寸簇群并由此建立有序结构的方法 - Google Patents

形成纳米尺寸簇群并由此建立有序结构的方法 Download PDF

Info

Publication number
CN101356115B
CN101356115B CN2005800524913A CN200580052491A CN101356115B CN 101356115 B CN101356115 B CN 101356115B CN 2005800524913 A CN2005800524913 A CN 2005800524913A CN 200580052491 A CN200580052491 A CN 200580052491A CN 101356115 B CN101356115 B CN 101356115B
Authority
CN
China
Prior art keywords
substrate
solution
nanoaperture
group
bunch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800524913A
Other languages
English (en)
Other versions
CN101356115A (zh
Inventor
塞尔吉·尼古拉耶维奇·马克西莫夫斯基
格里戈里耶·阿夫拉莫维奇·拉杜斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIGORE AVRAMOV LADUSIJI
SERGI NIKLAEVICH MAXIMOFSKV
Original Assignee
GRIGORE AVRAMOV LADUSIJI
SERGI NIKLAEVICH MAXIMOFSKV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIGORE AVRAMOV LADUSIJI, SERGI NIKLAEVICH MAXIMOFSKV filed Critical GRIGORE AVRAMOV LADUSIJI
Publication of CN101356115A publication Critical patent/CN101356115A/zh
Application granted granted Critical
Publication of CN101356115B publication Critical patent/CN101356115B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/712Integrated with dissimilar structures on a common substrate formed from plural layers of nanosized material, e.g. stacked structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • Y10S977/721On a silicon substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • Y10S977/722On a metal substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/723On an electrically insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/763Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less formed along or from crystallographic terraces or ridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/764Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less with specified packing density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/765Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less with specified cross-sectional profile, e.g. belt-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/776Ceramic powder or flake
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/777Metallic powder or flake

Abstract

形成纳米尺寸簇群的本发明方法包括:引入含簇群形成材料的溶液到基片材料中所含的天然或人造源的纳米孔隙中,并随后曝光所述溶液到激光辐射脉冲的作用下,其方式是,低温等离子体在其存在的区域中产生气态介质,其中在等离子体冷却的同时,利用它在液态基片上产生的结晶,簇群材料返回成纯材料,从而形成与基片材料连接的单晶量子圆点。所述方法可以形成二维和三维簇群栅格以及由不同材料互相连接的簇群。本发明还能在基片的纳米孔腔中制作不同材料的布线以及从玻璃上分布的有机材料的溶液微滴中制作量子圆点。

Description

形成纳米尺寸簇群并由此建立有序结构的方法
技术领域
本发明涉及电子学,尤其是涉及形成纳米尺寸簇群并由此建立用于信息信号的传输,转换,存储和产生的纳米电子结构的技术。
背景技术
一种用于形成纳米尺寸簇群并由此建立纳米电子结构的方法是已知的,该方法是把合适的物质引入到一些天然或人造材料的结构中存在的纳米尺寸空腔中(例如,见1999年3月22日至25日在Oxford举行的XI国际半导体材料会议上报告的文章中所列举的,V.N.Bogomolov:“A crystalline(amorphous)silicon 3-D bubble lattice ina synthetic opal matrix”)。
按照这个方法,利用碲的熔体或溶液在压力下填充到合成蛋白石中的孔隙,从而在蛋白石基岩中得到碲的纳米簇群栅格。
然而,由于存在互相连接这些纳米孔隙的通道的网络,利用这个方法确保建立孤立簇群的栅格是困难的。
利用这个方法,从基片的不同层中的纳米孔隙中排列的孤立簇群建立三维结构也是不可能的。
此外,这个方法产生的簇群是按照随机方式排列的,蛋白石体内的纳米尺寸空腔也是如此;因此,建立电学性质和光学性质是均匀的离散纳米单元并把它们组织成有序结构是不可能的。
在现有技术中已知一种形成纳米簇群的栅格并由此建立二维栅格的方法(例如,见RF Patent No.2214359,IPC7:B 8 2B 3/00)。
已知的方法允许形成大小尺寸是均匀的簇群,并安排它们在二维栅格的节点上具有相同的间距。
然而,这个方法在技术上是复杂的,具有低的效能,且不允许建立三维栅格。
此外,在现有技术中已知一种在薄片材料上形成预定拓扑的金属化图像的方法(例如,见PCT publication No.WO 01/38940 A2,IPC:G03F 7/26)。按照这个方法,金属粒子是从放置在薄片材料上方的玻璃板上的层中运动,并在激光辐射脉冲的作用下沉积下来。
然而,利用这种方法,不可能在薄片材料上形成与在其上面运动的大尺寸粒子相关的簇群或布线。
发明内容
本发明的目的是提供这样一种用于形成纳米尺寸簇群并由此建立有序结构的方法,该方法允许在基片的表面上和在预定深度的基片体内形成簇群,并从该簇群中建立三维结构。
因此,实现该目的是借助于一种用于形成纳米尺寸簇群并由此建立有序结构的方法,所述方法包括以下步骤:引入形成簇群的材料到具有预定物理参数的一些天然或人造材料的基片中,并产生具有可控性质的复合物,按照本发明,形成簇群的材料被引入到基片材料中作为溶液成分,在基片的预定点,该溶液曝光在激光辐射脉冲的作用下,因此,在激光光斑区内形成低温等离子体,从而在等离子体存在的区域内产生气态介质,等离子体用于减少簇群材料中的离子成为纯材料,因此,在等离子体冷却的同时,所述簇群形成与基片材料连接的单晶量子圆点和布线。
利用这种用于形成纳米尺寸簇群并由此建立结构的方法,就不需要复杂和昂贵的专用设备以及引入形成簇群的材料进入基片的特殊技术。
最好是,利用金属,非金属和半导体作为形成簇群的材料。
利用这种用于形成纳米尺寸簇群并由此建立结构的方法,可以提供用于形成簇群作为单晶的条件。
最好是,利用这样的材料制作基片,该材料对于所用波长的激光辐射是透明的,并且在其存在的温度下对溶液是化学惰性,而制成的溶液能够充分湿润基片材料,吸收预定波长的激光辐射,并且还能够在低温等离子体的作用下形成原子氢。
利用这种用于形成纳米尺寸簇群并由此建立结构的方法,可以在基片内形成它们。
最好是,在激光辐射作用到被引入基片材料中的溶液之前,利用对这种辐射是透明的材料覆盖该基片。
利用这种用于形成纳米尺寸簇群的方法,可以确保激光辐射对溶液的定向作用。
最好是,引入溶液到基片材料中的天然或人造的起源的多个纳米孔隙中,聚焦激光束到基片表面的预定区域上,并且诱发簇群形成在位于激光光斑区内的那些纳米孔隙的开孔中。
利用这种用于形成纳米尺寸簇群的方法,同时形成纳米尺寸簇群发生在位于激光光斑区内的所有纳米孔隙中。
最好是,聚焦激光束到基片体内一个相同层的不同点上,以使簇群形成在位于这层中的那些纳米孔隙的通道中。
利用这种用于形成纳米尺寸簇群的方法,可以把它们形成在纳米孔隙中的预定深度。
最好是,在多个基片层中从最低的一层开始,相继地形成簇群,从而从簇群建立三维结构,在相邻层中形成簇群的步骤之间,填充该溶液到基片的纳米孔隙中。
利用这种用于形成纳米尺寸簇群的方法,可以由此建立空间的三维结构。
最好是,在每个纳米孔隙中,利用不同的材料形成连接的簇群,并在从第一种材料形成簇群之后,利用含不同材料的溶液填充纳米孔隙。
利用这种用于形成纳米尺寸簇群的方法,可以从用不同材料形成的簇群中建立三维结构。
最好是,具有穿通的纳米孔隙的基片放置在薄片材料上,利用溶液填充那些纳米孔隙,激光辐射脉冲作用在该溶液上,从而在与纳米孔隙的出口开孔相对着的薄片材料的表面上形成簇群。
利用这种用于形成纳米尺寸簇群的方法,可以在薄片材料的表面上建立二维纳米簇群栅格。
最好是,在基片的表面上形成多个延伸的沟槽,每个沟槽有具有纳米尺寸凹口的预定拓扑,利用含产生簇群的材料的溶液填充该沟槽,激光辐射脉冲作用到沟槽的每个点上,从而在沟槽的凹口内形成布线。
利用这种用于形成纳米尺寸的有序结构的方法,可以形成与基片材料连接的任意拓扑的布线。
最好是,从基片的有机材料和溶液两者中产生精细分散的混合物,该混合物以均匀层施加到玻璃上,聚焦激光束到该层的预定区域,以使在激光光斑内形成簇群,施加到玻璃上的薄膜发生聚合作用,并形成金属-聚合物复合体。
利用这种用于形成纳米尺寸簇群的方法,可以简化制作用于信息显示的大屏幕的技术。
附图说明
参照附图详细地描述本发明,这些附图展示本发明的具体实施例,但不是对本发明的限制,其中:
图1说明本发明的方法,其中在人工的起源的纳米孔隙中建立二维簇群栅格;
图2说明本发明的方法,其中在人工的起源的纳米孔隙中建立三维簇群栅格;
图3说明本发明的方法,其中在从人工的起源的纳米孔隙的连接簇群中建立三维栅格;
图4和图5(图4中的截面A-A)说明本发明的方法,其中在基片的表面上形成预定拓扑的布线,为的是与它进行连接;
图6说明本发明的方法,其中在薄片材料的表面上建立二维纳米簇群栅格;
图7说明本发明的方法,其中在施加到玻璃上的有机材料层内形成纳米簇群;和
图8说明利用在液态基片上高速率结晶的由本发明方法产生的铜单晶。
具体实施方式
按照以下的方式完成用于形成纳米尺寸簇群(nano-dimensionalcluster)并由此建立有序结构的本发明方法。
在对所用波长的激光辐射2是透明的材料基片1上,利用任何已知的方法,尤其是利用纳米光刻法,制作二维栅格,因此,二维栅格是由相同横截面具有预定深度的纳米孔隙3构成,该纳米孔隙垂直于基片的表面4。
包含形成簇群5的材料的溶液,例如,这种材料的盐的形式,被引入到纳米孔隙3中。然后,从基片1的表面4上去除这种溶液的剩余部分,并利用对激光辐射是透明的材料,例如,利用玻璃6覆盖这个表面。
激光辐射2的脉冲被引导通过在纳米孔隙3的溶液中的玻璃6,该脉冲功率足以在位于激光光斑内的纳米孔隙3中填充的溶液中产生低温等离子体,以及在脉冲作用期间在它存在的区域内产生气态介质。
由于它在原子氢气氛中的液态基片上的结晶,簇群材料在这个介质中被恢复成纯材料。这种情况的发生是因为,溶液成分的选取考虑到在低温等离子体的作用下形成原子氢。
因此,簇群是在原子氢的保护气氛下发生结晶,这允许它在低浓度的混合物并且不存在其氧化过程的条件下达到高的结构完整性。
图8表示利用本发明方法产生的铜单晶,它是在原子氢的保护气氛下的液态基片上的高速率结晶。
类似的过程发生在建立三维簇群栅格的条件下(图2)。在这种情况下,簇群首先形成在基片的低层,然后,再次利用该溶液填充纳米孔隙,从而在基片的高层形成簇群。
本发明的方法允许在基片的体内从不同的材料形成连接的簇群(图3)。为此目的,在基片的低层中形成簇群之后,利用含不同材料的溶液填充纳米孔隙以形成簇群。
利用本发明的方法,也可以在薄片材料的光滑表面上建立二维簇群栅格(图6)。
为此目的,具有穿通的纳米孔隙3的基片1放置在薄片材料的表面上,溶液被引入到纳米孔隙中,利用玻璃6覆盖基片1,然后,重复以上描述的过程。
本发明的方法允许在基片的表面上得到任何预定拓扑的布线7(图4和5)。在这种情况下,溶液被引入到纳米尺寸沟槽中,然后,重复以上描述的过程。利用这个方法,也可以得到两种材料连接的布线,正如以上我们已描述过的从不同材料得到的连接的簇群。
利用本发明的方法,可以在施加到玻璃上的均匀层8内的有机材料内形成簇群(图7)。在这种情况下,首先从基片的有机材料中产生精细分散的混合物,然后,在玻璃上施加均匀层的溶液。当激光辐射脉冲作用到这层的预定部分时,该溶液的微小气泡与激光束相互作用。由于以上描述的过程,簇群形成在施加到玻璃上的层中。
工业应用
形成纳米尺寸簇群并由此建立有序结构的本发明方法允许从与基片材料连接的单晶量子圆点和布线中制成二维栅格和三维栅格。

Claims (10)

1.一种用于形成纳米尺寸簇群并由此建立有序结构的方法,所述方法包括以下步骤:引入形成簇群的材料到具有多个纳米孔隙的一些天然或人造材料的基片中,并产生具有可控性质的有序结构,其特征是,形成簇群的材料被引入到基片材料的纳米孔隙中作为溶液成分,然后,填充到纳米孔隙中的溶液被曝光在激光光斑区内的激光辐射脉冲的作用下,因此,在形成在溶液中的低温等离子体,从而在存在等离子体的区域内产生气态介质,用于减少簇群材料中的离子成为纯材料,因此,在等离子体冷却的同时,所述簇群形成与基片材料连接的单晶量子圆点和布线。
2.按照权利要求1的方法,其特征是,金属、非金属和半导体被用作形成簇群的材料。
3.按照权利要求1的方法,其特征是,基片是由这样的材料制成,该材料对于所用波长的激光辐射是透明的,并且在其存在的温度下对溶液是化学惰性的,且制成的溶液能够充分湿润基片材料、吸收预定波长的激光辐射,而且,还能够在低温等离子体的作用下形成原子氢。
4.按照权利要求3的方法,其特征是,在激光辐射作用到被引入到基片材料中的溶液上之前,利用对这种辐射是透明的材料覆盖该基片。
5.按照权利要求1的方法,其特征是,聚焦激光束到基片体内一个相同层的不同点上,以使簇群形成在位于这层个中的那些纳米孔隙的通道中。
6.按照权利要求5的方法,其特征是,在多个基片层中从最低的一层开始,相继地形成簇群,并且用不同基片层中的纳米孔隙中的簇群建立二维或三维结构。
7.按照权利要求6的方法,其特征是,在每个纳米孔隙中,利用不同的材料形成连接的簇群,并在用第一种材料形成簇群之后,利用含不同材料的溶液填充纳米孔隙。
8.按照权利要求1的方法,其特征是,具有穿通的纳米孔隙的基片放置在薄片材料上,利用溶液填充那些纳米孔隙,所述溶液曝光在激光辐射脉冲的作用下,从而使在与纳米孔隙的出口开孔相对着的薄片材料的表面上形成簇群。
9.按照权利要求4的方法,其特征是,在基片的表面上形成多个延伸的沟槽,每个沟槽有具有纳米尺寸凹口的预定拓扑,利用含产生簇群的材料的溶液填充所述沟槽,且沟槽中的每个点曝光在激光辐射脉冲的作用下,以使在沟槽的凹口内形成布线。
10.按照权利要求3的方法,其特征是,用基片的有机材料和溶液两者产生精细分散的混合物,所述混合物以均匀层施加到玻璃上,聚焦激光束到所述层的预定区域,以使在激光光斑的范围内形成簇群,因此,施加到玻璃上的薄膜发生聚合作用,并因此形成金属-聚合物复合体。
CN2005800524913A 2005-11-29 2005-11-29 形成纳米尺寸簇群并由此建立有序结构的方法 Expired - Fee Related CN101356115B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2005/000514 WO2007064237A1 (en) 2005-11-29 2005-11-29 Method for forming nano-dimensional clusters and setting ordered structures therefrom

Publications (2)

Publication Number Publication Date
CN101356115A CN101356115A (zh) 2009-01-28
CN101356115B true CN101356115B (zh) 2011-08-10

Family

ID=38092477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800524913A Expired - Fee Related CN101356115B (zh) 2005-11-29 2005-11-29 形成纳米尺寸簇群并由此建立有序结构的方法

Country Status (5)

Country Link
US (1) US8206505B2 (zh)
EP (1) EP1975121A4 (zh)
JP (1) JP2009521384A (zh)
CN (1) CN101356115B (zh)
WO (1) WO2007064237A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646441C1 (ru) * 2016-12-21 2018-03-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Способ упорядочения расположения наночастиц на поверхности подложки

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068800A (en) * 1995-09-07 2000-05-30 The Penn State Research Foundation Production of nano particles and tubes by laser liquid interaction
CN1671481A (zh) * 2002-05-21 2005-09-21 艾考斯公司 使碳纳米管涂层形成图案的方法和碳纳米管布线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891818A (ja) * 1994-09-16 1996-04-09 Sumitomo Osaka Cement Co Ltd 炭素クラスター含有硬質膜の製造方法
JP3142784B2 (ja) * 1996-11-19 2001-03-07 株式会社三菱総合研究所 半導体微粒子の製造
JP3241629B2 (ja) * 1997-03-31 2001-12-25 株式会社三菱総合研究所 半導体微粒子の製造
US6277740B1 (en) * 1998-08-14 2001-08-21 Avery N. Goldstein Integrated circuit trenched features and method of producing same
IL133115A0 (en) 1999-11-24 2001-03-19 Yeda Res & Dev Method for micropatterning of surfaces
DE10006905A1 (de) * 2000-02-16 2001-09-06 Boneberg Johannes Optisches Herstellungsverfahren für nanostrukturierte Oberflächen
TW447013B (en) * 2000-05-18 2001-07-21 Nat Science Council Manufacturing method for self-polymerized silicon quantum dots
US6419998B1 (en) * 2000-06-19 2002-07-16 Mcgrath Thomas Method for deposition of metal catalysts on inert supports
EP1223615A1 (en) * 2001-01-10 2002-07-17 Eidgenössische Technische Hochschule Zürich A method for producing a structure using nanoparticles
JP2003139951A (ja) * 2001-10-31 2003-05-14 Fuji Photo Film Co Ltd 光学異方性薄膜およびその製造方法
RU2214359C1 (ru) 2002-09-05 2003-10-20 Санкт-Петербургский государственный институт точной механики и оптики (технический университет) Способ формирования решетки нанокластеров кремния на структурированной подложке
CN1301212C (zh) * 2002-09-17 2007-02-21 清华大学 一维纳米材料方向及形状调整方法
RU2267408C2 (ru) * 2004-02-02 2006-01-10 Сергей Николаевич Максимовский Способ получения металлизированного изображения на листовом материале и устройство для его осуществления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068800A (en) * 1995-09-07 2000-05-30 The Penn State Research Foundation Production of nano particles and tubes by laser liquid interaction
CN1671481A (zh) * 2002-05-21 2005-09-21 艾考斯公司 使碳纳米管涂层形成图案的方法和碳纳米管布线

Also Published As

Publication number Publication date
EP1975121A4 (en) 2014-01-15
EP1975121A1 (en) 2008-10-01
US8206505B2 (en) 2012-06-26
WO2007064237A1 (en) 2007-06-07
US20090008833A1 (en) 2009-01-08
JP2009521384A (ja) 2009-06-04
CN101356115A (zh) 2009-01-28

Similar Documents

Publication Publication Date Title
US20030148088A1 (en) Light emitting photonic crystals
US6139626A (en) Three-dimensionally patterned materials and methods for manufacturing same using nanocrystals
US6319427B1 (en) Fast luminescent silicon
Liang et al. Metallodielectric Opals of Layer‐by‐Layer Processed Coated Colloids
US7247349B2 (en) Method of self-assembly and optical applications of crystalline colloidal patterns on substrates
US20050166837A1 (en) Synthetic opal and photonic crystal
CN102804285A (zh) 掺杂的石墨烯电子材料
US7394587B2 (en) Apparatus having a photonic crystal
TW200948708A (en) Method for implanting one-dimensional micro/nanostructure
CN101882751A (zh) 纳米激光
US20050221100A1 (en) Three dimensional periodic structure and method of producing the same
CN101356115B (zh) 形成纳米尺寸簇群并由此建立有序结构的方法
US20070289334A1 (en) Method For Producing A Photonic Crystal Comprised Of A Material With A High Refractive Index
Liu et al. Perovskite micro-/nanoarchitecture for photonic applications
RU2279400C2 (ru) Способ образования наноразмерных кластеров и создания из них упорядоченных структур
CN101633220A (zh) 微透镜及其模仁的制造方法以及发光装置
KR20080112190A (ko) 나노 크기의 클러스터 형성 및 그로부터 정렬구조를세팅하는 방법
Yu et al. Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly
RU2214359C1 (ru) Способ формирования решетки нанокластеров кремния на структурированной подложке
JP2001004859A (ja) 周期性を示す材料を含む物品を製造する方法
JP5334090B2 (ja) ナノオーダーサイズの三次元周期構造を有した三次元構造体
Bromley et al. Photocatalytically initiated electroless deposition of macroporous metal films onto insulating substrates
JP5334089B2 (ja) ナノオーダーサイズの三次元周期構造を有した三次元構造体
Shi et al. Nanostructures with long-range order in monolayer self-assembly
Para Optoelectronics-Recent Advances: Recent Advances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110810

Termination date: 20121129