RU2646441C1 - Способ упорядочения расположения наночастиц на поверхности подложки - Google Patents
Способ упорядочения расположения наночастиц на поверхности подложки Download PDFInfo
- Publication number
- RU2646441C1 RU2646441C1 RU2016150589A RU2016150589A RU2646441C1 RU 2646441 C1 RU2646441 C1 RU 2646441C1 RU 2016150589 A RU2016150589 A RU 2016150589A RU 2016150589 A RU2016150589 A RU 2016150589A RU 2646441 C1 RU2646441 C1 RU 2646441C1
- Authority
- RU
- Russia
- Prior art keywords
- nanoparticles
- substrate
- laser
- laser irradiation
- intensity
- Prior art date
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 66
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000005855 radiation Effects 0.000 claims abstract description 19
- 238000009826 distribution Methods 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000005755 formation reaction Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000011859 microparticle Substances 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- FNUPUYFWZXZMIE-UHFFFAOYSA-N Fustin Natural products O1C2=CC(O)=CC=C2C(=O)C(O)C1C1=CC=C(O)C(O)=C1 FNUPUYFWZXZMIE-UHFFFAOYSA-N 0.000 description 1
- 101100043469 Metarhizium anisopliae SSGA gene Proteins 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- FNUPUYFWZXZMIE-HUUCEWRRSA-N fustin Chemical compound C1([C@@H]2[C@@H](C(C3=CC=C(O)C=C3O2)=O)O)=CC=C(O)C(O)=C1 FNUPUYFWZXZMIE-HUUCEWRRSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- -1 leucosapphire Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Использование: для формирования на подложках структурных образований из микро- и наночастиц. Сущность изобретения заключается в том, что по способу упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного излучения, в соответствии с изобретением, подложки с наночастицами на поверхности облучают многократно импульсами лазерного пучка с распределением интенсивности по облучаемой области, повторяющим необходимое расположение наночастиц, причем интенсивность в максимумах достаточна для возбуждения в них импульса избыточного давления в среде. Технический результат: обеспечение возможности получения на поверхности диэлектрической или полупроводниковой подложки упорядоченного слоя наночастиц в виде одномерной решетки, составленной из рядов наночастиц. 4 з.п. ф-лы, 4 ил.
Description
Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований из микро- и наночастиц для создания приборов фотоники и микроэлектроники.
Известны различные способы формирования упорядоченных структур из наночастиц, то есть из образований с размерами в поперечнике несколько сотен нм и менее, на поверхности подложки.
Аналогом выбран способ лазерной очистки поверхностей от посторонних частиц[Чесноков, В.В. Лазерная очистка поверхностей от посторонних частиц / В.В. Чесноков // Изв. вузов. Сер. Приборостроение.- 1993.- №3.- С.81-83], при котором на подложку с частицей направляют импульс лазерного излучения с такой интенсивностью, при которой подложка и частица нагреваются до температуры десорбции с их поверхностей молекулярных слоев атмосферных газов и других летучих загрязнений, возникает реактивный импульс отдачи паров с освещенной стороны частицы и давление на частицу десорбированного с поверхности частицы газа, что приводит к перемещению частицы по поверхности.
Недостатком аналога является сложность адресации перемещения частицы в заданное место и возможность смещения при этом других частиц на подложке.
В качестве прототипа примем способ самосборки коллоидальных наночастиц в упорядоченные матрицы на плоской подложке [Ara´nzazudelCampo, Anne-SophieDuwez, Charles-Andre´ Fustin, UlrichJonas. Colloidal Micro- and Nanostructures Assembled on Patterned Surfaces/ Dekker Encyclopedia of Nanoscience and Nanotechnology.2004]. На поверхность подложки наносят очень тонкий слой жидкости, являющейся суспензией латексных монодисперсных шариков с весовой концентрацией порядка 1% и испаряют в контролируемых условиях. Упорядочение происходит, когда слой жидкости утоняется до размера наночастицы, капиллярные силы в краевом мениске слоя уплотняют наночастицы до компактной матрицы с расположением частиц по ее строкам и столбцам.
Недостатками способа являются необходимость иметь частицы с малым разбросом их размеров, необходимость проводить процесс в жидкой среде, а также невозможность формировать на поверхности заданный узор из наночастиц.
Задачей, решаемой предлагаемым изобретением, является создание способа расположения наночастиц на поверхности подложки по заданному узору.
Решение задачи достигается тем, что в известном способе упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного излучения, в соответствии с изобретением, подложки с наночастицами на поверхности облучают многократно импульсами лазерного пучка с распределением интенсивности по облучаемой области, повторяющим необходимое расположение наночастиц, причем интенсивность в максимумах достаточна для возбуждения в них импульса избыточного давления в среде.
Предлагается также, что лазерное облучение производят, формируя на поверхности подложки с наночастицами двухлучевую интерференционную картину.
Предлагается также, что лазерное облучение производят, располагая наночастицы в атмосфере газа или жидкости, химически инертной к материалам наночастиц и подложки.
Предлагается также, что лазерное облучение производят импульсами с длительностью, меньшей времени распространения звука или ударной волны в среде на расстояние между минимумами интенсивности излучения.
Предлагается также, что лазерное облучение производят через вспомогательную прозрачную плоскую пластину, наложенную на поверхность подложки с наночастицами с зазором, превышающим величину поперечника наночастиц.
Фигуры 1, 2, З и 4 иллюстрируют представленное изобретение.
На фиг. 1 показана последовательность этапов способа по изобретению. Верхний график показывает распределение интенсивности лазерного излучения по поверхности подложки. На поверхности беспорядочно расположены наночастицы, обозначенные кружками; -координатная ось. Средний график показывает распределение давления среды в момент лазерного импульса на поверхности подложки; стрелками на кружках показано направление действия сил, действующих на наночастицы вследствие возникновения градиента давления среды в местах расположения наночастиц. Нижний график показывает расположение наночастиц после окончания облучения подложки последовательностью лазерных импульсов. Величина - период интерференционной картины.
На фиг.2 показана схема облучения подложки при использовании вспомогательной пластины по изобретению. Здесь 1 – подложка с располагающимися на ее поверхности наночастицами 3, 2 – вспомогательная прозрачная плоская пластина, 4 – зазор между вспомогательной пластинй и подложкой; величина зазора должна быть достаточной для возможности свободного перемещения наночастиц в пространстве между подложкой и пластиной при локальном возбуждении лазерно-индуцированного избыточного давления. Предпочтительная величина зазора – не более нескольких поперечников наночастиц.
На фиг.3 показана картина расположения наночастиц на поверхности подложки, получившаяся в результате упорядочения их расположения по заявленному способу при использовании двухлучевой интерференции. Величина - период интерференционной картины. Частицы, обозначенные кружками, расположены параллельными рядами на поверхности.
На фиг.4 показана картина расположения наночастиц на поверхности подложки, получившаяся в результате упорядочения их расположения по заявленному способу в результате двукратного облучения в режиме двухлучевой интерференции после поворота подложки в своей плоскости после первого облучения. Частицы, обозначенные кружками, расположены в узлах квадратной сетки линий, совпадающих с положениями интерференционных минимумов при лазерном облучении.
Рассмотрим механизм упорядочения наночастиц на поверхности, используемый в настоящем изобретении.
Беспорядочно расположенные на поверхности наночастицы могут перемещаться и образовать необходимый узор под действием градиента давления в приповерхностном слое среды; градиент давления возникает при импульсном лазерном облучении поверхности, если интенсивность излучения в разных точках поверхности различна, и они нагреваются лазерным импульсом до разных температур. При наносекундной длительности импульса в области большей интенсивности возникает большее давление газа, и уравнивание давлений в этих областях происходит со скоростью звука в атмосфере. Кратковременно существует градиент давления, который и приводит в движение наночастицы. При увеличении интенсивности лазерного излучения в облучаемой среде может возникнуть ударная волн, давление в которой может достигать десятков атмосфер.[Анисимов С.И., и др. Действие излучения большой мощности на металлы.- М.: Наука. Гл. ред. физ.-мат.лит., 1976. – 272 с.].
При нормальном падении лазерного пучка на металлическую поверхность и гауссовском распределении интенсивности по сечению пучка температура поверхности в центре пятна за время импульса увеличивается на [Лазнева Э.Ф. Лазерная десорбция / Э.Ф.Лазнева. – Л.: Изд–во ЛГУ, 1990.]:
где – поглощательная способность поверхности; – плотность мощности падающего излучения; – длительность импульса излучения; , и – коэффициент теплопроводности, плотность и удельная теплоемкость подложки соответственно. Частицы, имеющие слабый тепловой контакт с поверхностью, нагреваются в большей степени.
Рассмотрим случай, когда находящиеся на поверхности частицы сцеплены с поверхностью подложки за счет сил Ван-дер-Ваальса, при этом ускорение, требующееся для отрыва частиц поперечником 3÷5 мкм, должно достигать [Зимон А.Д. Адгезия пыли и порошков / А.Д. Зимон. – М.: Химия, 1976].
Нагревание системы частиц на поверхности приводит к тепловой десорбции молекул атмосферных газов, адсорбированных на частицах. В зазоре между частицей и поверхностью возникает газовая или парогазовая подушка, давление в которой определяется выражением [Чесноков, В.В. Лазерные наносекундные микротехнологии /В.В.Чесноков, Е.Ф.Резникова, Д.В.Чесноков; под общ. ред. Д.В.Чеснокова.– Новосибирск: СГГА, 2003.– 300 с.], справедливым в случае воздушной среды при плотном расположении молекул воздуха в адсорбированном мономолекулярном слое
где – постоянная Больцмана; – сечение адсорбированной молекулы; – средняя величина зазора между частицей и поверхностью; – изменение температуры частицы. При К, м, м2 (для молекул воздуха) получим Па. За счет теплопроводности нагревается также среда, окружающая наночастицы, и локально увеличивается давление в среде; тепло среде передается от нагретой лазерным излучением подложки и наночастиц. В случае использования жидкой среды, например воды, при нагревании до критической температуры 374,2°С давление среды составляет 218,3 атм.
Ускорение, которое частица может приобрести под действием приложенного к ее поверхности, смежной с поверхностью подложки, давления газа, определяемое законом Ньютона, можно оценить формулой
и при поперечнике частицы м, ее плотности кг/м3, ускорение оказывается равным . Эта величина больше, чем величина сил адгезии частицы к подложке и направлена на «отрыв» частицы от подложки. Перемещения частицы вдоль поверхности подложки происходят под действием градиента давления в атмосфере вблизи поверхности подложки, обусловленного неравномерным распределением по поверхности интенсивности лазерного излучения. При наличии «седлообразного» распределения при многократном повторении лазерных импульсов наночастицы скапливаются в области минимума интенсивности.Возможно также удаление наночастиц с поверхности подложки в области максимума интенсивности излучения, что также приводит к упорядочению наночастиц на поверхности, их расположению в местах минимумов интенсивности.
Для получения узора из наночастиц на поверхности в виде периодических расположенных полосок, заполненных наночастицами, и промежутков между полосками без наночастиц предлагается, в соответствии с изобретением, лазерное облучение производить, формируя на поверхности подложки с наночастицами двухлучевую интерференционную картину. Может быть применен известный способ формирования интерференционной картины, когда на поверхность направляют под равными углами падения навстречу друг другу два когерентных монохроматических лазерных луча. На поверхности образуется периодическая интерференционная картина с периодом , где - угол падения, - длина волны лазерного излучения. Распределение интенсивности излучения в интерференционном поле описывается функцией , условно изображенной на верхнем графике фигуры 1 плавной линией. Для получения узора из наночастиц на подложке в виде двумерной периодической картины, когда частицы располагаются в узлах квадратной сетки, может быть применено двукратное лазерное облучение, когда подложку перед вторым облучением разворачивают в своей плоскости на 90°, или используют формирование интерференционной картины по четырехлучевой интерференционной схеме, когда используют две пары лазерных лучей, расположенных попарно в пересекающихся плоскостях, перпендикулярных поверхности подложки.
При лазерном нагревании наночастиц и подложки температура во время импульса может, по расчетам, быть порядка 1000°С, возможно химическое взаимодействие атмосферы и наночастиц. Во многих случаях такое взаимодействие не желательно, для предотвращения химического взаимодействия предпочтительно использовать инертные среды или проводить процесс облучения в вакууме; по расчетам, атмосферы десорбированного во время лазерного импульса с поверхностей наночастиц и подложки газа достаточно - в случае использования наночастиц с размерами порядка десятков нанометров – для упорядочения их расположения в периодический узор.
Выбор предпочтительной длительности лазерных импульсов обусловлен тем, что в момент локального возникновения избыточного давления возникает в среде звуковая волна, распространяющаяся со скоростью, существенно большей скорости перемещения наночастиц, что может уменьшить время воздействия на частицу градиента давления, обеспечивающего движение частиц. Звуковая волна, возникшая в одной области максимума интенсивности, может достигнуть соседней области максимума и создаст давление на поверхность наночастицы, противоположное по направлению давлению на частицу в этой соседней области. Если длительность лазерного импульса меньше времени распространения звука до соседней области максимума, как предлагается, то частицы получат механический импульс и начнут движение раньше, чем звуковая волна от области соседнего максимума их встретит.
Движение наночастиц под действием механического импульса, индуцированного лазерным импульсом, может быть направлено от подложки. Для предотвращения эффекта предлагается лазерное облучение производить через вспомогательную прозрачную плоскую пластину, наложенную на поверхность подложки с наночастицами с зазором, превышающим величину поперечника наночастиц. Вспомогательная пластина играет двоякую роль: является экраном, отражающим частицы к подложке, а также обеспечивает локализацию перемещений волны давления, индуцированной лазерным импульсом, в узкой щели между поверхностями подложки и пластины, усиливает градиент давления по направлению вдоль поверхности подложки. Величина зазора не должна препятствовать свободному перемещению частиц в зазоре, предпочтительная его величина не более нескольких поперечников частиц. Зазор можно получить, располагая между подложкой и пластиной прокладки нужной толщины по периметру области облучения; приемлемо накладывать вспомогательную пластину непосредственно на подложку, при этом зазор обеспечивается как не плоскостностью пластины, так и толщиной слоя наночастиц в точках подложки, где частицы расположены друг на друге. Плотность расположения частиц в местах их накапливания при использовании вспомогательной пластины определяется их средней концентрацией на поверхности перед импульсным облучением, так как частицы при облучении не теряются.
Пример реализации способа
В качестве наночастиц используются шарообразные частицы из тугоплавких металлов типа молибдена, никеля, титана диаметром порядка 10 - 300 нм, тугоплавких полупроводников и диэлектриков типа кремния, карбида кремния, из пьезокерамики. Подложкой могут быть полированные пластины из кремния, лейкосапфира, стекла и др. Пригодно излучение любых импульсных лазеров на длинах волн видимого и ИК-диапазонов, с длительностью импульсов 1 – 6 нс и меньше, с частотой следования импульсов десятки – тысячи Гц. Интенсивность излучения на поверхности подложки должна быть в диапазоне , при этом достигаются импульсные температуры наночастиц порядка . При использовании при образовании двухлучевой интерференционной картины лазерного излучения с длиной волны 530 нм и угле падения получим период одномерной решетки полосок 346 нм с шириной полосок, определяющейся поперечником наночастиц при выстраивании их в полоске в один ряд.
Таким образом, показано, что новые элементы в предложениях обеспечивают возникновение полезных эффектов; показана реализуемость изобретения, показана достижимость целей изобретения.
Техническим результатом изобретения является создание способа получения на поверхности диэлектрической или полупроводниковой подложки упорядоченного слоя наночастиц в виде одномерной решетки, составленной из рядов наночастиц.
Практическое применение изобретения может найти в фотонике и микро- и наноэлектронике как нелитографическая технология формирования наноточек с упорядоченным их расположением, в оптике и нанооптике при создании фотонных кристаллов, наноструктурированных оптических волноводов и сверхбыстродействующих приемников излучения и излучателей и др.
Claims (5)
1. Способ упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного облучения, отличающийся тем, что подложки с наночастицами на поверхности облучают многократно импульсами лазерного пучка с распределением интенсивности по облучаемой области, повторяющим необходимое расположение наночастиц, причём интенсивность в максимумах достаточна для возбуждения в них импульса избыточного давления в среде.
2. Способ по п. 1, отличающийся тем, что лазерное облучение производят, формируя на поверхности подложки с наночастицами двухлучевую интерференционную картину.
3. Способ по п. 1, отличающийся тем, что лазерное облучение производят, располагая наночастицы в атмосфере газа или жидкости, химически инертной к материалам наночастиц и подложки.
4. Способ по п. 1, отличающийся тем, что лазерное облучение производят импульсами с длительностью, меньшей времени распространения звука или ударной волны в среде на расстояние между минимумами интенсивности излучения.
5. Способ по п. 1, отличающийся тем, что лазерное облучение производят через вспомогательную прозрачную плоскую пластину, наложенную на поверхность подложки с наночастицами с зазором, превышающим величину поперечника наночастиц.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016150589A RU2646441C1 (ru) | 2016-12-21 | 2016-12-21 | Способ упорядочения расположения наночастиц на поверхности подложки |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016150589A RU2646441C1 (ru) | 2016-12-21 | 2016-12-21 | Способ упорядочения расположения наночастиц на поверхности подложки |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2646441C1 true RU2646441C1 (ru) | 2018-03-05 |
Family
ID=61568853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016150589A RU2646441C1 (ru) | 2016-12-21 | 2016-12-21 | Способ упорядочения расположения наночастиц на поверхности подложки |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2646441C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024278A1 (en) * | 1996-11-28 | 1998-06-04 | National Research Council Of Canada | Method and apparatus for manipulating molecules |
US20090008833A1 (en) * | 2005-11-29 | 2009-01-08 | Sergei Nikolaevich Maximovsky | Method for Forming Nano-Dimensional Clusters and Setting Ordered Structures Therefrom |
WO2009097480A2 (en) * | 2008-01-30 | 2009-08-06 | The Regents Of The University Of California | Near infra-red pulsed laser triggered drug release from hollow nanoshell disrupted vesicles and vesosomes |
EP2272945B1 (en) * | 2009-07-06 | 2014-09-10 | Gottfried Wilhelm Leibniz Universität Hannover | Method and system for the manipulation of cells |
RU2545497C1 (ru) * | 2014-01-09 | 2015-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") | Способ изготовления детекторов терагерцового диапазона |
-
2016
- 2016-12-21 RU RU2016150589A patent/RU2646441C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024278A1 (en) * | 1996-11-28 | 1998-06-04 | National Research Council Of Canada | Method and apparatus for manipulating molecules |
US20090008833A1 (en) * | 2005-11-29 | 2009-01-08 | Sergei Nikolaevich Maximovsky | Method for Forming Nano-Dimensional Clusters and Setting Ordered Structures Therefrom |
WO2009097480A2 (en) * | 2008-01-30 | 2009-08-06 | The Regents Of The University Of California | Near infra-red pulsed laser triggered drug release from hollow nanoshell disrupted vesicles and vesosomes |
EP2272945B1 (en) * | 2009-07-06 | 2014-09-10 | Gottfried Wilhelm Leibniz Universität Hannover | Method and system for the manipulation of cells |
RU2545497C1 (ru) * | 2014-01-09 | 2015-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") | Способ изготовления детекторов терагерцового диапазона |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Parallel laser micro/nano‐processing for functional device fabrication | |
Wang et al. | Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales | |
Mücklich et al. | Laser Interference Metallurgy–using interference as a tool for micro/nano structuring | |
WO2007084114A2 (en) | System and method for processing nanowires with holographic optical tweezers | |
US9945032B2 (en) | Systems and methods for enhancing mobility of atomic or molecular species on a substrate at reduced bulk temperature using acoustic waves, and structures formed using same | |
Ishino et al. | Observations of surface modifications induced by the multiple pulse irradiation using a soft picosecond x-ray laser beam | |
JP6942073B2 (ja) | 光学基板の平坦化 | |
Henley et al. | Laser implantation of plasmonic nanostructures into glass | |
JP4849375B2 (ja) | 微粒子配列体薄膜及びその製造方法、並びに、微粒子配列体薄膜製造装置 | |
CN111496384A (zh) | 一种脆性材料表面纳米孔阵列的加工装置及方法 | |
Tseng et al. | Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique | |
Rehman et al. | Fundamentals and advances in laser-induced transfer | |
Ivanova et al. | Removal of micrometer size particles from surfaces using laser-induced thermocapillary flow: Experimental results | |
RU2646441C1 (ru) | Способ упорядочения расположения наночастиц на поверхности подложки | |
KR100838344B1 (ko) | 펄스 레이저를 이용한 나노입자 패터닝 방법 | |
Hooper et al. | Efficiency studies of particle removal with pulsed-laser induced plasma | |
An et al. | Material removal on silicon towards atomic and close-to-atomic scale by infrared femtosecond laser | |
EP2342721B1 (en) | Optical manipulation of micro-particles | |
RU2444084C1 (ru) | Способ образования на подложке упорядоченного массива наноразмерных сфероидов | |
RU168081U1 (ru) | Устройство наноструктурирования поверхности диэлектрической подложки с помощью ближнепольной литографии | |
Helvajian | Process control in laser material processing for the micro and nanometer scale domains | |
RU2557677C1 (ru) | Способ наноструктурирования поверхности диэлектрической подложки с помощью ближнепольной литографии | |
Mills et al. | LIFT of Solid Films (Ceramics and Polymers) | |
Ulmeanu et al. | Periodic arrays of nanostructures in silicon and gallium arsenide by near-field enhanced laser irradiation in liquid precursors | |
Emel'yanov et al. | Theory of formation of an ensemble of nanoclusters on the surface of CdTe crystals irradiated by a laser pulse |