CN101351900B - LED semiconductor body and use of an lED semiconductor body - Google Patents

LED semiconductor body and use of an lED semiconductor body Download PDF

Info

Publication number
CN101351900B
CN101351900B CN200680050021.8A CN200680050021A CN101351900B CN 101351900 B CN101351900 B CN 101351900B CN 200680050021 A CN200680050021 A CN 200680050021A CN 101351900 B CN101351900 B CN 101351900B
Authority
CN
China
Prior art keywords
semiconductor body
led semiconductor
layer
active layer
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680050021.8A
Other languages
Chinese (zh)
Other versions
CN101351900A (en
Inventor
R·温迪什
G·格罗宁格
P·海德伯恩
C·琼
W·格莱特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of CN101351900A publication Critical patent/CN101351900A/en
Application granted granted Critical
Publication of CN101351900B publication Critical patent/CN101351900B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Abstract

A description is given of an LED semiconductor body comprising a first radiation-generating active layer and a second radiation-generating active layer, wherein the first and second active layer are arranged one above another in a vertical direction.

Description

The application of LED semiconductor body and LED semiconductor body
Technical field
The present invention relates to the application of a kind of LED semiconductor body and LED semiconductor body.
Background technology
Present patent application requires the priority of German patent application 102005063105.3 and German patent application 102006039369.4, and their disclosure is herein incorporated by reference.
Traditional LED semiconductor body has the layer structure that contains the pn knot usually.At the region memory of this pn knot active layer, when operation, in this active layer, produce ray at LED.The quantity of X-rays X that is produced depends on the current strength that drives this LED semiconductor body.
But the current density in the active layer should not surpass and depend on the maximum current density of each material system that is adopted, otherwise just exists excessive aging effect to shorten the danger in the life-span of LED semiconductor body.
Summary of the invention
The technical problem that the present invention will solve provides a kind of LED semiconductor body that has improved radiographic density.
This technical problem solves through LED semiconductor body of the present invention.
The present invention's technical problem that also will solve provides the application of the LED semiconductor body that has improved radiographic density in addition.
This technical problem solves through the semi-conductive application of LED of the present invention.
LED semiconductor body of the present invention has first active layer that produces ray and second active layer that produces ray, and wherein first active layer and second active layer are provided with in vertical direction overlappingly.Be integrated in the said semiconductor body, and first and second active layers produce the ray with identical wavelength respectively the first and second active layer monolithics.
At this, active layer is interpreted as producing the pn knot of ray.This pn knot can form these semiconductor layer direct neighbors by the semiconductor layer of a p conduction and a n conduction under the simplest situation.Preferably, between the active layer of the active layer of p conduction and n conduction, form the layer of real generation ray, for example to mix or the form of plain quantum layer.Quantum layer can form single quantum jar shape structure (SQW, Single Quantum Well, single quantum well) or volume jar shape structure (MQW, Multiple Quantum We11, MQW), or forms quantum connection or quantum-dot structure.
Preferably, in the LED of active layer semiconductor body, compare and provide two or more active layers to be used to produce ray simultaneously with the described traditional LED semiconductor body of beginning, thereby the total quantity of X-rays X that is produced improves or radiographic density improves with overlapping setting.
The possibility that is used to improve quantity of X-rays X with another kind is compared; Promptly compare with increasing LED semiconductor body cross-sectional area in a lateral direction, the LED semiconductor body with pn knot of overlapping accumulation is characterized in that the manufacturing cost that has advantageously reduced manufacturing expense and caused every LED semiconductor body thus reduces.On the contrary, the cross-sectional area of increase LED semiconductor body possibly cause the cost of much higher every LED semiconductor body.
In addition, having the LED semiconductor body of the active layer of vertically superposed setting can be simply and predetermined supply power voltage such as 12V or 24V coupling.When active layer pn knot equidirectionally each other when arranging, the voltage drop when operation on the active layer increases, thus the quantity of the active layer through the LED semiconductor body can be mated predetermined supply power voltage such as 12V or 24V.
Preferably, be integrated in the semiconductor body the first and second active layer monolithics.Saved thus make that ground floor heap and the second layer pile for example by the step of connecting that combines (Bond).
At this, the LED semiconductor body is meant and is used for light-emitting diode, promptly launches the semiconductor body of the semiconductor device of irrelevant ray that wherein especially first and second active layers produce incoherent ray respectively.
In first distortion of this LED semiconductor body, the emission of first and second active layers has the ray of identical wavelength.Thereby advantageously improved quantity of X-rays X with respect to traditional LED semiconductor body, especially improved radiographic density with predetermined wavelength.
In second distortion of this LED semiconductor body, first and second active layers produce the ray of different wave length.This distortion has the following advantages: the emission spectrum of this LED semiconductor body has generally speaking been widened.This is particularly advantageous in the light that produces blend color, preferred white light.
In the favourable expansion of this LED semiconductor body, between first active layer and second active layer, form tunnel junction (Tunnel ü bergang).This tunnel junction is as the electrical connection between first and second active layers.For example, such tunnel junction can form by heavily doped layer with first conduction type and the heavily doped layer with second conduction type.Notice that these semiconductor layers not necessarily leave no choice but even doping because with the boundary face that is equipped with another semiconductor layer on highly dopedly just be enough to form tunnel junction.
Preferably, first and second active layers are provided with equidirectionally in this expansion, thereby their pn knot forms pn-pn structure or np-np structure, and wherein these pn knots in series are electrically connected by therebetween tunnel junction.Can 3 or more active layer be arranged in the LED semiconductor body vertically superposedly according to similar fashion within the scope of the invention, these active layers interconnect through being respectively formed at two tunnel junctions between the adjacent active layer in the corresponding way.
In addition; Can also form tunnel junction by first conductive layer of first conduction type and second conductive layer of second conduction type; Wherein between the ground floor and the second layer, the intermediate layer is set, this intermediate layer can undope, and is perhaps low-doped with first or second conduction type.
In addition, it is also conceivable that two intermediate layers are set wherein have the conduction type identical between the ground floor and the second layer, have the conduction type identical with the second layer with the intermediate layer that the second layer is bordered on ground floor with the intermediate layer that this ground floor is bordered on.
In another execution mode of LED semiconductor body, the articulamentum of first conduction type is set between first and second active layers, and respectively the layer of second conduction type is set on the face of the articulamentum dorsad of first and second active layers.
In this was out of shape, the pn of first and second active layers tied each other and oppositely constitutes, thereby formed pn-np structure or np-pn structure, and wherein two pn knots connect by the articulamentum that n conducts electricity or p conducts electricity.Preferably, by parallel circuits, forward voltage remains unchanged with respect to traditional LED.
Preferably, be provided with and form articulamentum, make and to be electrically connected with this articulamentum by contact (Kontakt).In order to form the electric parallel circuits of first and second active layers, can the layer of second conduction type of outside be electrically connected by contact preferred outside, that just be arranged on outside the semiconductor body.
Suitable, the LED semiconductor body is arranged on the carrier element.Preferably, adopt the carrier element of conduction for this reason.This makes can form vertical conductive devices, and wherein electric current flows basically in vertical direction.The characteristics of this device are that the CURRENT DISTRIBUTION in the LED semiconductor body is more even.In order to contact, suitable is is provided with back side contact on the face of the semiconductor body of LED dorsad of the carrier element of this conduction.
Replace or add, carrier element is transparent to the ray that is produced, thereby can realize that ray passes through the ejaculation of substrate.
The LED semiconductor body can extension ground growth on carrier element.Growth substrates is simultaneously as carrier element.For the growth of extension, can adopt known and fixed epitaxy technology, for example be used for the material system of AlGaAs or InAlGaAs.
Interchangeable, the LED semiconductor body is installed on the carrier element different with growth substrates, and wherein the preferred growth substrate removes from this semiconductor body.This semiconductor body can also be called thin film semiconductor's body thus.
The characteristic of thin film semiconductor's body especially is at least one of following characteristic features:
-the epitaxial loayer sequence that produces ray on first interarea of carrier element, lay or form the reflector, in this epitaxial loayer sequence of at least a portion reflected back of the electromagnetic radiation that this reflector will produce in this epitaxial loayer sequence;
-epitaxial loayer sequence has the thickness in 20 μ m or scope still less, the especially thickness in the scope of 10 μ m;
-epitaxial loayer sequence comprises that at least one has the semiconductor layer of at least one face; This at least one mask has the mixing structure; This mixing structure causes the approximate ergodic distribution of light in epitaxial epitaxial loayer sequence in the ideal case, and promptly this structure has ergodic as far as possible random scatter behavior.
The basic principle of thin-film light emitting diode chip is described in for example people's such as I.Schnitzer Appl.Phys.Lett.63 (16), and 18.Oktober 1993, and among the 2174-2176, its disclosure is herein incorporated by reference.
Thin-film light emitting diode chip is similar to youth uncle surface radiator very much, and is particularly suited in spotlight, using.
In being embodied as the LED semiconductor body of thin film semiconductor's body, the intensity that penetrates ray has obtained favourable raising.
According to the material different system can be mechanically, thermally or by the laser ablation method remove growth substrates.Thin film semiconductor's body is characterised in that little forward voltage and the high efficiency when producing ray.In addition, thin film semiconductor's body is selecting can not to be subject to the needed boundary condition of epitaxy aspect the carrier element, thereby this carrier element possibly be best with regard to its thermal conductance ability or its cost for example.Thin film semiconductor's body of the above-mentioned type is particularly useful for InGaAlP or InGaAln material system.
As semi-conducting material, for the LED semiconductor body and that be suitable for for the top carrier element that this semiconductor body is set in case of necessity is InAlGaAs (Al nGa mIn 1-n-mAs, 0≤n≤1,0≤m≤1 wherein, n+m≤1), InGaAlP (Al nGa mIB 1-n-mP, 0≤n≤1,0≤m≤1 wherein, n+m≤1) and/or InGaAlN (Al nGa mIn 1-n-mN, 0≤n≤1,0≤m≤1 wherein, n+m≤1), connect like GaAs AlGaAs, GaP, InP, GaAlP, GaN or InGaN comprising each binary and ternary.
At this, corresponding material needn't have the accurate relationship according to above-mentioned formula, but can have one or more dopants and additional composition, and these dopants and additional composition can not change the physical characteristic of this material basically.For the sake of simplicity, above-mentioned formula only contain the crystallization dot matrix main component (Al, Ga, In, P), even these component portions are replaced by a spot of other material.
Preferably, the LED semiconductor body is at when operation divergent-ray in vertical direction, and wherein the ray from the emission of first and second active layers typically mixes.
LED semiconductor body with active layer of overlapping setting can be used for general lighting.Through improving radiographic density, this semiconductor is particularly useful for general lighting.
In addition, this LED semiconductor body can be used for background illumination, for example the background illumination of display.
Preferably, the LED semiconductor body is used for projection application.
Description of drawings
Bright other characteristics, advantage and the suitable place of this law provides through the embodiment below in conjunction with description in the accompanying drawing 1 to 4.
Fig. 1 illustrates the schematic section of first embodiment of LED semiconductor body of the present invention,
Fig. 2 illustrates the schematic section of second embodiment of LED semiconductor body of the present invention,
Fig. 3 illustrates the current/power indicatrix of two of the present invention LED semiconductor body of divergent-ray in the visible region,
Fig. 4 illustrates two current/power indicatrixes at the LED of infrared light region divergent-ray semiconductor body of the present invention.
Identical or effect components identical is represented with identical Reference numeral in the accompanying drawings.
Embodiment
The LED semiconductor body 1 of first embodiment shown in Figure 1 has first active layer 2 and second active layer 3 that produces ray that produces ray, and wherein active layer just is provided with on perpendicular to the principal spread direction of active layer in vertical direction overlappingly.Form tunnel junction 4 at active layer 2, between 3, this tunnel junction is by first semiconductor layer 5 of first conduction type, like the semiconductor layer of n conduction and second semiconductor layer 6 of second conduction type, like the semiconductor layer formation of p conduction.Preferably, these two semiconductor layers 5,6 are embodied as highly doped, thereby when operation, form the tunnel junction more efficiently with little junction resistance.
Through two active layers are set in a LED semiconductor body, favourable raising the total quantity of X-rays X that is produced.Because the change that the size of this LED semiconductor body takes place with respect to the LED semiconductor body that only has a unique active layer is little; Especially the quantity of the cross section of this LED semiconductor body and active layer is irrelevant, has therefore also advantageously improved radiographic density.
Semiconductor body 1 is arranged on the carrier element 7.The surface towards carrier element 7 of semiconductor body 1 preferably has reflector 15.Especially preferred is that reflector 15 and carrier element 7 can conduct electricity.In addition, carrier element 7 has back side contact 8 on the face of its backside semiconductor body 1.Accordingly, on the face relative of LED semiconductor body 1, form and positively contact 9 with carrier element 7.Form the device of vertical conduction thus, the characteristics of this device are more uniform CURRENT DISTRIBUTION in the LED semiconductor body.
LED semiconductor body 1 is grown on the other growth substrates, and then for example by welding, combination or bonding being installed on the carrier element, wherein preferably growth substrates is melted away from the LED semiconductor body.Reflector 15 for example may be embodied as bragg mirror, metal level, TCO (transparent conductive oxide) layer, like the combination of ITO layer or ZnO layer or metal level and tco layer.The ray component of on the direction of carrier element 7, launching can be reflected on the direction that ray shoots is appeared thus.
On ray shoots was appeared, the LED semiconductor body had hacking (Aufrauhung), for example is used to reduce the device of ray shoots (always) reflection loss on appearing with the surface structuration of microprism form or other in order to improve the ray shoots output.
Embodiment shown in Figure 2 illustrates LED semiconductor body 1, its embodiment with Fig. 1 is the same have produce ray first active layer 2 with second active layer 3 that produces ray and be arranged on the carrier element 7, this carrier element 7 has back side contact 8.
Different with the embodiment of Fig. 1, between this first active layer 2 and second active layer 3, be provided with the articulamentum 12 of first conduction type, for example the semiconductor layer of p conduction.Tunnel junction to be formed on this be not necessarily to need.The semiconductor layer 13,14 of second conduction type is set, for example the semiconductor layer of n conduction respectively on the face of this articulamentum 12 dorsad of first active layer 2 and second active layer 3.Different with the embodiment of Fig. 1 is, the pn of active layer 2,3 knot rightabout ground is provided with in the LED of Fig. 2 semiconductor body 1, thus formation np-pn structure.
Certainly all conduction types can exchange each other within the scope of the invention, thus for example in the embodiment of Fig. 2 articulamentum 12 are n conductions, be arranged at outer layer the 13, the 14th, the p conduction, form the pn-np structure thus.
In order to form contact, in the semiconductor layer 13 of superincumbent second conduction type, as in the semiconductor layer of n conduction, forming depression, these depressions arrive articulamentum 12 always.Positive contact 9 is set in these depressions, can be electrically connected with articulamentum 12 through this front contact.
Being positioned at outside semiconductor layer 13,14 with respect to articulamentum 12 and connecting 10 of second conduction type through outside, the TCO coating through metallization or conduction for example, and through carrier element 7 and each other conduction connects, and be connected with back side contact 8.
Externally connect 10 and semiconductor body 1 between separator 11 is set.Can prevent that thus the outside from connecting 10 with active layer 2 and 3 short circuits.
Semiconductor body 1 grows on the carrier element 7.
On ray shoots was appeared, the LED semiconductor body had hacking (Aufrauhung) again, for example is used to reduce the device of ray shoots (always) reflection loss on appearing with the surface structuration of microprism form or other in order to improve the ray shoots output.
At first, second and indicatrix I, II and the III of the 3rd LED semiconductor body shown in Fig. 3.These semiconductor bodies are different at the active layer quantitative aspects.First semiconductor body with indicatrix I comprises an active layer.Second semiconductor body with indicatrix II comprises two active layers, between these two active layers, tunnel junction is set.The 3rd semiconductor body with indicatrix III comprises three active layers, and a tunnel junction is set respectively between two active layers.
Semiconductor body comprises InGaAlP, and is transmitted in the ray of visible region, preferably has wavelength X=630nm.
Find out that from figure the radiation power P of semiconductor body is along with the current strength If of input current increases and increases.It can also be seen that in addition the 3rd semiconductor body in the zone of If>10mA, has the radiation power bigger than first and second semiconductor bodies at least under the identical situation of current strength.Because semiconductor body has roughly the same size, so radiographic density is maximum in the 3rd semiconductor body.In addition, the radiographic density of second semiconductor body is greater than the radiographic density with first semiconductor body for referencial use.
Fig. 4 illustrates first, second and indicatrix IV, V and the VI of the 3rd LED semiconductor body.These semiconductor bodies are different at the active layer quantitative aspects.First semiconductor body with indicatrix IV comprises an active layer.Second semiconductor body with indicatrix V comprises two active layers, between these two active layers, tunnel junction is set.The 3rd semiconductor body with indicatrix VI comprises five active layers, and a tunnel junction is set respectively between two active layers.Semiconductor body is transmitted in the ray of infrared light region, especially has wavelength X=950nm.Preferably, active layer has the GaAs/A1GaAs heterojunction.Preferred especially, this semiconductor body is embodied as thin film semiconductor's body.
In addition, this semiconductor body is the high-current semiconductor body.
Corresponding to Fig. 3, find out that from sketch map shown in Figure 4 the radiation power P of semiconductor body is along with the current strength If of input current increases and increases.It can also be seen that in addition the 3rd semiconductor body in the zone of If>10mA, has the radiation power bigger than first and second semiconductor bodies at least under the identical situation of current strength.Because these semiconductor bodies have roughly the same size, so radiographic density is maximum in the 3rd semiconductor body.In addition, the radiographic density of second semiconductor body is greater than the radiographic density of first semiconductor body.
The invention is not restricted to specification by the embodiment description.Two active layers that produce ray not only can be set especially within the scope of the invention with vertically superposeing, three, four or more voluminous active layer of giving birth to ray can also vertically be set with superposeing, they preferably are electrically connected by tunnel junction or articulamentum respectively.
In addition, the present invention includes the combination in any of each new feature and these characteristics, each characteristics combination in the claim especially, even these characteristics or characteristics combination itself not in claims or embodiment dominance open.

Claims (22)

1. a LED semiconductor body has first active layer that produces ray and second active layer that produces ray, and wherein first active layer and second active layer are provided with in vertical direction overlappingly,
Wherein be integrated in the said semiconductor body the first and second active layer monolithics, and
First and second active layers produce the ray with identical wavelength respectively.
2. LED semiconductor body according to claim 1, wherein first and second active layers produce incoherent ray respectively.
3. according to each described LED semiconductor body in the claim 1 to 2, wherein between first active layer and second active layer, form tunnel junction.
4. LED semiconductor body according to claim 3, wherein said tunnel junction forms by heavily doped layer with first conduction type and the heavily doped layer with second conduction type.
5. LED semiconductor body according to claim 1 wherein is provided with the articulamentum of first conduction type between first and second active layers, and respectively the layer of second conduction type is set on the face of this articulamentum dorsad of first and second active layers.
6. LED semiconductor body according to claim 5 wherein can be electrically connected to said articulamentum by contact.
7. according to claim 5 or 6 described LED semiconductor bodies, wherein will be arranged at the layer electrical connection of the second peripheral conduction type by the contact of outside.
8. LED semiconductor body according to claim 1, wherein this LED semiconductor body is arranged on the carrier element.
9. LED semiconductor body according to claim 8, wherein said carrier element be the conduction and/or can be penetrated by the ray that is produced.
10. according to Claim 8 or 9 described LED semiconductor bodies, back side contact is set on the face of the LED dorsad of said carrier element semiconductor body wherein.
11. each described LED semiconductor body in 9 according to Claim 8, wherein said LED semiconductor body is grown on carrier element.
12. each described LED semiconductor body in 9 according to Claim 8, wherein the LED semiconductor body is grown on the growth substrates different with carrier element.
13. LED semiconductor body according to claim 12, wherein said growth substrates is removed from this semiconductor body.
14. according to each described LED semiconductor body in the claim 1 to 2, wherein this semiconductor body comprises InAlGaAs or InGaAlP.
15. LED semiconductor body according to claim 14, wherein one of two active layers or two active layers comprise InAlGaAs or InGaAlP.
16. according to each described LED semiconductor body in the claim 1 to 2, wherein this semiconductor body comprises InGaAlN.
17. LED semiconductor body according to claim 16, wherein one of two active layers or two active layers comprise InGaAlN.
18. according to each described LED semiconductor body in the claim 1 to 2, this LED semiconductor body divergent-ray in vertical direction wherein.
19. one kind according to each described LED semiconductor body application on general lighting in the claim 1 to 18.
20. one kind according to each described LED semiconductor body application in background illumination in the claim 1 to 18.
21. the application of LED semiconductor body according to claim 20 wherein is applied to the background illumination of display.
22. one kind according to each described LED semiconductor body application on projection application in the claim 1 to 18.
CN200680050021.8A 2005-12-30 2006-12-13 LED semiconductor body and use of an lED semiconductor body Active CN101351900B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102005063105.3 2005-12-30
DE102005063105 2005-12-30
DE102006039369.4 2006-08-22
DE102006039369A DE102006039369A1 (en) 2005-12-30 2006-08-22 LED semiconductor for e.g. multiple coach lighting, has two radiation-generating active layers, arranged one above another in vertical direction
PCT/DE2006/002228 WO2007076796A1 (en) 2005-12-30 2006-12-13 Led semiconductor body and use of an led semiconductor body

Publications (2)

Publication Number Publication Date
CN101351900A CN101351900A (en) 2009-01-21
CN101351900B true CN101351900B (en) 2012-10-03

Family

ID=37903977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680050021.8A Active CN101351900B (en) 2005-12-30 2006-12-13 LED semiconductor body and use of an lED semiconductor body

Country Status (8)

Country Link
US (1) US7932526B2 (en)
EP (1) EP1966836B1 (en)
JP (1) JP2009522755A (en)
KR (1) KR101356271B1 (en)
CN (1) CN101351900B (en)
DE (1) DE102006039369A1 (en)
TW (1) TWI393267B (en)
WO (1) WO2007076796A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035627A1 (en) * 2006-07-31 2008-02-07 Osram Opto Semiconductors Gmbh LED semiconductor body
DE102006051745B4 (en) * 2006-09-28 2024-02-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED semiconductor body and use of an LED semiconductor body
DE102007035896A1 (en) * 2007-07-31 2009-02-05 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor body for use in opto-electronic component, has active zone generating electromagnetic radiation that is emitted transverse to growth direction of semiconductor layer sequence
DE102008013030A1 (en) * 2007-12-14 2009-06-25 Osram Opto Semiconductors Gmbh Radiation-emitting device
DE102008014094A1 (en) 2008-03-13 2009-09-17 Osram Opto Semiconductors Gmbh Radiation emitting device for use in reflector bowl, has frame like contacts provided between semiconductor layer sequences and electrically connecting sequences, where sequences include active zone to produce electromagnetic radiation
DE102008047579B4 (en) 2008-09-17 2020-02-06 Osram Opto Semiconductors Gmbh Lamp
CN102064169B (en) * 2010-11-25 2012-05-23 山东华光光电子有限公司 Single-chip white-light LED and preparation method thereof
JP2012209451A (en) * 2011-03-30 2012-10-25 Dowa Holdings Co Ltd Semiconductor light emitting element
JP5755510B2 (en) * 2011-06-14 2015-07-29 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
JP5755511B2 (en) * 2011-06-14 2015-07-29 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
DE102012108763B4 (en) 2012-09-18 2023-02-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC SEMICONDUCTOR CHIP AND LIGHT SOURCE WITH THE OPTOELECTRONIC SEMICONDUCTOR CHIP
DE102013104954A1 (en) 2013-05-14 2014-11-20 Osram Opto Semiconductors Gmbh Optoelectronic component and method for its production
DE102015119817A1 (en) 2015-11-17 2017-05-18 Osram Opto Semiconductors Gmbh Semiconductor device
US9859470B2 (en) * 2016-03-10 2018-01-02 Epistar Corporation Light-emitting device with adjusting element
JP7122119B2 (en) 2017-05-25 2022-08-19 昭和電工光半導体株式会社 light emitting diode
US10439103B2 (en) 2017-05-25 2019-10-08 Showa Denko K. K. Light-emitting diode and method for manufacturing tunnel junction layer
US20190198709A1 (en) * 2017-12-22 2019-06-27 Lumileds Llc Iii-nitride multi-color on wafer micro-led enabled by tunnel junctions
DE102019110200A1 (en) * 2019-04-17 2020-10-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component
US20230076963A1 (en) * 2021-08-24 2023-03-09 Seoul Viosys Co., Ltd. Light emitting diode and light emitting device having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620643B1 (en) * 1999-08-05 2003-09-16 Toyoda Gosei Co., Ltd. Light-emitting device using group III nitride compound semiconductor
CN1490888A (en) * 2003-09-17 2004-04-21 �Ͼ���ҵ��ѧ High-efficiency high-brightness multiple active district tunnel reclaimed white light light emitting diodes
EP1475835A2 (en) * 2003-04-14 2004-11-10 Epitech Corporation, Ltd. Color mixing light emitting diode
CN1619846A (en) * 2004-02-26 2005-05-25 金芃 Power type high brightness white light combined semiconductor LED chip and technique of batch production

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024431B2 (en) * 1999-07-23 2007-12-19 株式会社東芝 Bidirectional semiconductor light emitting device and optical transmission device
KR100382481B1 (en) * 2000-06-09 2003-05-01 엘지전자 주식회사 White Light Emitting Diode and Fabricating Method for the same
KR100380536B1 (en) * 2000-09-14 2003-04-23 주식회사 옵토웰 III-Nitride compound semiconductor light emitting device having a tunnel junction structure
US6547249B2 (en) 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
TW546852B (en) 2002-04-15 2003-08-11 Epistar Corp Mixed-light type LED and the manufacturing method thereof
US6822991B2 (en) * 2002-09-30 2004-11-23 Lumileds Lighting U.S., Llc Light emitting devices including tunnel junctions
TW200410425A (en) * 2002-12-12 2004-06-16 South Epitaxy Corp Light emitting diode structure
US6878970B2 (en) * 2003-04-17 2005-04-12 Agilent Technologies, Inc. Light-emitting device having element(s) for increasing the effective carrier capture cross-section of quantum wells
JP2004327719A (en) * 2003-04-24 2004-11-18 Shin Etsu Handotai Co Ltd Light-emitting device
JP2005216917A (en) * 2004-01-27 2005-08-11 Seiko Epson Corp Light source device and projector
DE102004004765A1 (en) 2004-01-29 2005-09-01 Rwe Space Solar Power Gmbh Active Zones Semiconductor Structure
DE102004004781A1 (en) * 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component has first active zone for generating coherent radiation of first wavelength and second active zone for generating incoherent radiation of second wavelength
JP4577497B2 (en) * 2004-02-02 2010-11-10 サンケン電気株式会社 Composite semiconductor device of semiconductor light emitting element and protective element
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
DE102004015570A1 (en) * 2004-03-30 2005-11-10 J.S. Technology Co., Ltd. White light emitting diode arrangement, e.g. for liquid crystal display (LCD) module, combines known combinations of color light emitting diodes (LEDs) and luminescent materials, each emitting white light
US20050255884A1 (en) * 2004-05-11 2005-11-17 Yun-Ning Shih Method and apparatus for wireless transmission adaptation
DE102004026125A1 (en) * 2004-05-28 2005-12-22 Osram Opto Semiconductors Gmbh Optoelectronic component and method for its production
JP4653671B2 (en) * 2005-03-14 2011-03-16 株式会社東芝 Light emitting device
KR100818466B1 (en) * 2007-02-13 2008-04-02 삼성전기주식회사 Light emitting devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620643B1 (en) * 1999-08-05 2003-09-16 Toyoda Gosei Co., Ltd. Light-emitting device using group III nitride compound semiconductor
EP1475835A2 (en) * 2003-04-14 2004-11-10 Epitech Corporation, Ltd. Color mixing light emitting diode
CN1490888A (en) * 2003-09-17 2004-04-21 �Ͼ���ҵ��ѧ High-efficiency high-brightness multiple active district tunnel reclaimed white light light emitting diodes
CN1619846A (en) * 2004-02-26 2005-05-25 金芃 Power type high brightness white light combined semiconductor LED chip and technique of batch production

Also Published As

Publication number Publication date
DE102006039369A1 (en) 2007-07-05
WO2007076796A1 (en) 2007-07-12
US20090173961A1 (en) 2009-07-09
KR101356271B1 (en) 2014-01-28
KR20080085057A (en) 2008-09-22
TW200735421A (en) 2007-09-16
EP1966836A1 (en) 2008-09-10
US7932526B2 (en) 2011-04-26
JP2009522755A (en) 2009-06-11
TWI393267B (en) 2013-04-11
EP1966836B1 (en) 2019-02-06
CN101351900A (en) 2009-01-21

Similar Documents

Publication Publication Date Title
CN101351900B (en) LED semiconductor body and use of an lED semiconductor body
US8643034B2 (en) Monolithic, optoelectronic semiconductor body and method for the production thereof
CN102176461B (en) Led semiconductor element, and use thereof
US8779425B2 (en) Light emitting device, light emitting device package, and lighting system including the same
KR101423723B1 (en) Light emitting diode package
CN100411205C (en) Light-emitting-diode chip comprising sequence of gan-based epitaxial layers which emit radiation, and method for producing same
US7897981B2 (en) Light emitting device and method of manufacturing the same
US8283684B2 (en) LED semiconductor body and use of an LED semiconductor body
EP2455987B1 (en) Light emitting device and lighting system having the same
CN1663055B (en) Light-emitting diode with silicon carbide substrate
US8829559B2 (en) Nitride semiconductor light-emitting device and production method thereof
US8115219B2 (en) LED semiconductor body and use of an LED semiconductor body
JP2001148511A (en) Semiconductor light-emitting diode
KR20120138275A (en) Light emitting device
KR101547322B1 (en) Light emitting diode package
KR102007401B1 (en) Light emitting device
KR102059033B1 (en) Light emitting device
KR20120063953A (en) Light emitting device and light emitting device package having the same
Venugopalan et al. Fabrication of high-lumen InGaN flip chip LEDs
KR102554517B1 (en) Uv light emitting device and lighting system
KR102249647B1 (en) Light emitting device and lighting system
KR102237119B1 (en) Light emitting device and lighting system
KR20200044467A (en) Semiconductor devie

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant