CN101314495A - 金属固载催化剂降解水中有机卤化物的方法 - Google Patents

金属固载催化剂降解水中有机卤化物的方法 Download PDF

Info

Publication number
CN101314495A
CN101314495A CNA2008100586366A CN200810058636A CN101314495A CN 101314495 A CN101314495 A CN 101314495A CN A2008100586366 A CNA2008100586366 A CN A2008100586366A CN 200810058636 A CN200810058636 A CN 200810058636A CN 101314495 A CN101314495 A CN 101314495A
Authority
CN
China
Prior art keywords
water
hydrogen donor
metal
catalyst
organohalogen compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100586366A
Other languages
English (en)
Other versions
CN101314495B (zh
Inventor
宁平
张春敏
李子燕
张洪彬
赵静峰
邱莉
周德群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN2008100586366A priority Critical patent/CN101314495B/zh
Publication of CN101314495A publication Critical patent/CN101314495A/zh
Application granted granted Critical
Publication of CN101314495B publication Critical patent/CN101314495B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种金属固载催化剂降解水中有机卤化物的方法,包括使用硅胶固载咪唑类配体金属(钯或镍)催化剂,其特征是:采用所说的催化剂,加入氢供体的条件下,对水中有机卤化物进行多相催化还原反应,反应温度为10~90℃,反应压力为常压,反应时间为2~10小时,即可有效地降解水中有机卤化物。实验表明,本发明方法在较温和的条件下催化水中有机卤化物如溴苯、多氯联苯等,去除率可以达到90%以上。

Description

金属固载催化剂降解水中有机卤化物的方法
技术领域:
本发明属于水处理及水污染防治领域。特别涉及用一种新合成的金属催化剂对水中有机卤化物进行降解。
背景技术:
含卤有机污染物是环境中典型的有机污染物。其主要来源于氯代芳香化合物的生产(氯代苯、氯代苯酚、PCBs等)、农药、染料、氯代溶剂生产(三氯乙烯、四氯化碳)、PVC塑料原料的生产(氯代乙烯、二氯乙烯)、生产的废物、排放的污水、废水处理的污泥、脂肪族有机氯化物生产等。这些有机卤化物大多毒性强、难降解,而且一些有机卤化物在痕量的条件下就具有“致癌,致畸,致突变”的“三致效应”。因此研究有效的、不产生二次污染的有机卤化物的降解技术,已日益引起了国内外化学界和环境化学界的高度重视。
传统的降解方法有催化氧化法及近一二十年发展的光催化氧化法等。如光化学氧化法、Fenton类氧化技术、超声辐射降解法、辐照法、超临界水氧化法等。光化学氧化法是近20多年来发展迅速的一种高级氧化技术(AOP’S),1976年Carey等首次提出多氯联苯可被UV/TiO2光催化降解以来,利用多相光催化降解各类污染物的研究已有大量报导。但其量子效率低。难以处理量大且浓度高的废气和废水;太阳能利用率低,只能吸收利用紫外光或太阳光中的紫外线部分;多相光催化氧化机理尚不十分明确,使得新型高效光催化剂的研制缺乏理论指导。Fenton类氧化技术具有设备简单、反应条件温和、操作方便、高效等优点,在处理有毒有害难生物降解有机废水中极具应用潜力。该法实际应用的主要问题是处理费用高,只适于低浓度、少量废水的处理。超临界水氧化(Supercritical Water Oxidation,简称SCWO)技术其条件比较苛刻,要求在高温高压的条件下才能达到反应要求,无法在在工业上得到很好的应用。而且在超临界水这样剧烈的环境中,催化剂的稳定性和活性也是一个值得研究的问题。辐照法是水在高能辐射的作用下产生OH、H2O2、HO2等高活性粒子,这些高活性粒子诱发反应,使有害物质降解。辐照法对有机物的处理效率高、操作简便。但是由于产生高能粒子的装置昂贵、技术要求高,而且能耗大、能量利用率较低;此外,辐射对人体也会造成危害。
氧化法在降解卤代烃,有时会产生复杂的有机中间产物,甚至是高毒性的产物和二次污染物,如光气、二恶英、氯气等。面对这些问题国内许多人将视线转移到将催化剂连接到固载剂上的新型还原催化剂:如有人把金属Pd固载到Al2O3上形成固载催化剂,在实验处理CH2F2有很好的脱卤效果以及很高的选择性。也有人用金属Pd固载到二氧化硅上面,并且具有很好的氢化脱卤活性。但是在催化过程中使用到氢气。有人合成双金属催化剂进行脱卤反应,也达到了很好的脱卤效果。如有人把聚乙二醇键合到蒙脱土上为固相载体,制成双负载双金属水相脱卤催化剂[PVP(聚乙烯吡咯烷酮)-PdCl2-SnCl4/MontK10(蒙脱土)-PEG400(聚乙二醇)],成功地用于难溶于水的芳香卤化物的脱卤,特别是对芳香氯化物脱氯具有良好的效能,几乎达到100%的脱卤。
这些新的技术脱卤方法避免这些二次污染物,而且在保持催化活性的条件下解决了大量使用贵金属催化剂,节约了成本。但大部分用氢气作为氢源,其操作条件不易控制,安全稳定性差,且需要用氢气作为氢供体不方便,还有一些载体的性能不够稳定。无法满足实际的应用。
发明内容:
本发明的目的是,克服现有技术的不足,提供一种新的降解水中有机卤化物的方法。本发明方法操作简单,效率高,处理成本低。
本发明金属固载催化剂降解水中有机卤化物的方法,包括使用下述结构式
(1)的金属固载催化剂,
Figure A20081005863600041
式中左边的基团为硅胶固载剂,R选自H原子、甲基,R’选自芳基、苄基,M选自金属钯或镍,其特征是:采用所说的结构式(1)的金属固载催化剂,加入氢供体的条件下,对水中有机卤化物进行多相催化还原反应,反应温度为10~90℃,反应压力为常压,反应时间为2~10小时,所说的氢供体与有机卤化物的摩尔比为1∶1~1∶8,催化剂的加入量为0.1~5.0g/200mL溶液,所说的结构式(1)的金属固载催化剂中活性组分金属含量占催化剂总质量的1~8%。
本发明所说的金属固载剂为柱层析硅胶,其粒度为200~300目,所降解的水中有机卤化物为多氯联苯和溴苯;优先推荐的催化还原反应温度为40~70℃,氢供体与有机卤化物的摩尔比为1∶1~1∶5,催化剂的加入量为0.2~3.0g/200mL溶液。
本发明所说的氢供体选自甲酸、甲酸钠、甲酸铵、水合肼中的任1种;还可以选择添加乙醇作为氢供体,与甲酸、甲酸钠、甲酸铵、水合肼中的任1种组成复合氢供体。
本发明金属固载催化剂的制备方法如下:先将活化硅胶与偶联剂r-氯丙基三甲氧基硅烷反应接合在一起,过滤并清洗,晾干得到产物SiR,再与咪唑反应,使咪唑接在SiR上,然后加入卤代烃,使其形成卡宾配体SiRM,产物SiRM在醋酸钯或氯化镍存在下,与金属钯或镍形成固相载体催化剂,即得到结构式(1)所示的催化剂。
同现有技术相比,本发明的有如下优点或积极效果。
1.本发明在较温和的条件下对水中有机卤化物进行催化还原脱卤,以甲酸,甲酸盐,水合肼等作为氢供体,采用高活性的过度金属固载催化剂,脱去有机卤化物的卤原子,效率高,不产生高毒性产物,使水中有机卤化物的毒性大大降低,从而达到消除有机卤化物对水的污染。
2.反应条件温和,本发明反应在水溶液中进行,在常压下,反应温度在40~70℃,采用甲酸,甲酸盐,水合肼等作为氢供体以替代常用的氢气,安全且易于控制操作,降低了能耗。
3.本发明所用催化剂为咪唑类配体金属催化剂,钯及镍与咪唑卡宾类配体形成配合物,可以提高这些金属的活性及催化性能,载体的存在能够降低金属组分的晶粒度,使活性组分分散均匀,增加了活性组分的表面积,减少其使用量,进而降低了经济成本,提供了活性中心,同时还提高了催化剂的稳定性。
具体实施方式
下面用实施例对本发明作进一步说明。
实施例1
按照上述金属固载催化剂的制备方法,先制备出结构式(2)的金属固载催化剂,以多氯联苯为污染物,浓度为200mg/L,污水体积为150ml,加入2%钯固催化剂0.50g,加入氢供体甲酸钠
Figure A20081005863600051
10mg,1mL乙醇,在60℃及常压下搅拌反应7小时,过滤后测定水中多氯联苯浓度为17.4mg/L,去除率达到91.3%。
实施例2
使用实施例1所制备的金属固载催化剂,以多氯联苯为污染物,浓度为200mg/L,污水体积为200ml,加入2%钯固载催化剂0.50g,加入氢供体甲酸10ml,在40℃及常压下搅拌反应10小时,过滤后测定水中多氯联苯浓度为23mg/L,去除率达到80.5%。
实施例3
与实施例1的情况基本相同,只是加入的为固载催化剂为7%钯固载催化剂0.25g,加入的氢供体为甲酸钠12mg,其他情况和实施例1的情况相同,去除率达到93%。
实施例4
按照上述金属固载催化剂的制备方法,先制备出结构式(3)的金属固载催化剂,以多氯联苯
Figure A20081005863600061
为污染物,浓度为200mg/L,污水体积为150ml,加入2%镍固载催化剂0.60g,氢供体甲酸钠10mg,1mL乙醇,在20℃及常压下搅拌反应7小时,过滤后测定水中多氯联苯浓度为53mg/L,去除率达到73.5%。
实施例5
与实施例4的情况基本相同,只是加入的为固载催化剂为7%镍固载催化剂0.5g,加入的氢供体为甲酸铵10mg,其他情况和实施例4的情况相同,去除率达到90.1%。
实施例6
使用实施例1所制备的金属固载催化剂,以多氯联苯为污染物,浓度为200mg/L,污水体积为150ml,加入3%钯固载催化0.40g,加入氢供体水合肼2mL,1mL乙醇,在60℃及常压下搅拌反应9小时,过滤后测定水中多氯联苯浓度为9.4mg/L,去除率达到95.3%。
实施例7
按照上述金属固载催化剂的制备方法,先制备出结构式(4)的金属固载催化剂,以溴苯为污
Figure A20081005863600071
染物,浓度为200mg/L,污水体积为200ml,加入2%钯同载催化剂1g,氢供体水合肼5ml,乙醇1ml,在60℃及常压下搅拌反应5小时,过滤后测定水中多氯联苯浓度为2.8mg/L,去除率达到98.6%。
实施例8
使用实施例5所制备的金属固载催化剂,活性中心金属为镍,以溴苯为污染物,浓度为
150mg/L,污水体积为200ml,加入5%镍固载催化剂0.20g,氢供体甲酸铵10mg,乙醇2ml,在60℃及常压下搅拌反应6小时,过滤后测定水中多氯联苯浓度为8.25mg/L,去除率达到94.5%。
实施例9
根据上述所述的催化剂制备方法,制备得到结构式(5)的钯催化剂,以多氯联苯为污染物,
Figure A20081005863600073
浓度为150mg/L,污水体积为150ml,加入5%钯固载催化剂0.4g,氢供体水合肼5ml,在70℃及常压下搅拌反应5小时,过滤后测定水中多氯联苯浓度为1.35mg/L,去除率达到99.1%。
实施例10
根据上述所述的催化剂制备方法,制备得到结构式(6)的金属钯催化剂,
Figure A20081005863600074
以多氯联苯为污染物,浓度为200mg/L,污水体积为300ml,加入5%钯固载催化剂3.5g,氢供体水合肼6ml,乙醇1ml,在70℃及常压下搅拌反应9小时,过滤后测定水中多氯联苯浓度为5mg/L,去除率达到97.5%。

Claims (4)

1、一种金属固载催化剂降解水中有机卤化物的方法,包括使用下述结构式(1)的金属固载催化剂,
Figure A2008100586360002C1
式中左边的基团为硅胶固载剂,R选自H原子、甲基,R’选自芳基、苄基,M选自金属钯或镍,其特征是:采用所说的结构式(1)的金属固载催化剂,加入氢供体的条件下,对水中有机卤化物进行多相催化还原反应,反应温度为10~90℃,反应压力为常压,反应时间为2~10小时,所说的氢供体与有机卤化物的摩尔比为1∶1~1∶8,催化剂的加入量为0.1~5.0g/200mL溶液,所说的结构式(1)的金属固载催化剂中活性组分金属含量占催化剂总质量的1~8%。
2、根据权利要求1的方法,其特征在于:所说的金属固载剂为柱层析硅胶,其粒度为200~300目,所降解的水中有机卤化物为多氯联苯和溴苯,所说的催化还原反应温度为40~70℃,所说的氢供体与有机卤化物的摩尔比为1∶1~1∶5,催化剂的加入量为0.2~3.0g/200mL溶液。
3、根据权利要求1或2的方法,其特征在于:所说的氢供体选自甲酸、甲酸钠、甲酸铵、水合肼中的任1种。
4、根据权利要求3的方法,其特征在于:可以选择添加乙醇作为氢供体,与甲酸、甲酸钠、甲酸铵、水合肼中的任1种组成复合氢供体。
CN2008100586366A 2008-07-04 2008-07-04 金属固载催化剂降解水中有机卤化物的方法 Expired - Fee Related CN101314495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100586366A CN101314495B (zh) 2008-07-04 2008-07-04 金属固载催化剂降解水中有机卤化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100586366A CN101314495B (zh) 2008-07-04 2008-07-04 金属固载催化剂降解水中有机卤化物的方法

Publications (2)

Publication Number Publication Date
CN101314495A true CN101314495A (zh) 2008-12-03
CN101314495B CN101314495B (zh) 2010-10-13

Family

ID=40105655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100586366A Expired - Fee Related CN101314495B (zh) 2008-07-04 2008-07-04 金属固载催化剂降解水中有机卤化物的方法

Country Status (1)

Country Link
CN (1) CN101314495B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188783A (zh) * 2010-03-01 2011-09-21 中国科学院生态环境研究中心 一种降解氯代芳烃的铁铈金属氧化物及制法和应用
CN102513157A (zh) * 2011-12-23 2012-06-27 渤海大学 一种基于双吡啶双酰胺有机配体和Keggin型多酸的铜配合物及其合成方法和应用
CN102583392A (zh) * 2011-12-24 2012-07-18 江苏中能硅业科技发展有限公司 含硅卤化物脱卤加氢的方法
CN102701391A (zh) * 2012-05-08 2012-10-03 江苏腾龙生物药业有限公司 一种用于降解有机废水的镍铝催化剂的增效且循环使用方法
CN108355617A (zh) * 2018-05-03 2018-08-03 丽水学院 一种沸石咪唑骨架材料杂化硅球的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188783A (zh) * 2010-03-01 2011-09-21 中国科学院生态环境研究中心 一种降解氯代芳烃的铁铈金属氧化物及制法和应用
CN102188783B (zh) * 2010-03-01 2012-07-25 中国科学院生态环境研究中心 一种降解氯代芳烃的铁铈金属氧化物及制法和应用
CN102513157A (zh) * 2011-12-23 2012-06-27 渤海大学 一种基于双吡啶双酰胺有机配体和Keggin型多酸的铜配合物及其合成方法和应用
CN102513157B (zh) * 2011-12-23 2013-06-05 渤海大学 一种基于双吡啶双酰胺有机配体和Keggin型多酸的铜配合物及其合成方法和应用
CN102583392A (zh) * 2011-12-24 2012-07-18 江苏中能硅业科技发展有限公司 含硅卤化物脱卤加氢的方法
CN102701391A (zh) * 2012-05-08 2012-10-03 江苏腾龙生物药业有限公司 一种用于降解有机废水的镍铝催化剂的增效且循环使用方法
CN102701391B (zh) * 2012-05-08 2013-12-18 江苏腾龙生物药业有限公司 一种用于降解有机废水的镍铝催化剂的增效且循环使用方法
CN108355617A (zh) * 2018-05-03 2018-08-03 丽水学院 一种沸石咪唑骨架材料杂化硅球的制备方法

Also Published As

Publication number Publication date
CN101314495B (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
Heck et al. Catalytic converters for water treatment
Torres-Pinto et al. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds
Sampaio et al. Ag-loaded ZnO materials for photocatalytic water treatment
Fan et al. Rapid synthesis of Ag/AgCl@ ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light
Xie et al. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation
Abazari et al. Preparation of amine functionalized g-C3N4@ H/SMOF NCs with visible light photocatalytic characteristic for 4-nitrophenol degradation from aqueous solution
Borges et al. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment
Barrabés et al. Catalytic nitrate removal from water, past, present and future perspectives
Kabra et al. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review
Dias et al. Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field
Romão et al. Substrate specificity in photocatalytic degradation of mixtures of organic contaminants in water
Herrmann Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants
Cavalcante et al. Photocatalytic treatment of metoprolol with B-doped TiO2: Effect of water matrix, toxicological evaluation and identification of intermediates
Qourzal et al. Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: Identification of intermediates and the reaction pathway
Altomare et al. Effects of metal nanoparticles deposition on the photocatalytic oxidation of ammonia in TiO2 aqueous suspensions
CN101314495B (zh) 金属固载催化剂降解水中有机卤化物的方法
Long et al. Ultrafine Pd nanoparticles@ g-C3N4 for highly efficient dehalogenation of chlorinated environmental pollutant: Structure, efficacy and mechanisms
Herrmann Water treatment by heterogeneous photocatalysis
Tian et al. Synergistic photocatalytic degradation of phenol using precious metal supported titanium dioxide with hydrogen peroxide
Chen et al. Dependence of kinetics and pathway of acetaminophen photocatalytic degradation on irradiation photon energy and TiO2 crystalline
Wang et al. Simultaneous removal of tetracycline and Cu (II) in hybrid wastewater through formic-acid-assisted TiO2 photocatalysis
CN101385981A (zh) 一种同时光催化降解苯和硝酸盐的催化剂
Compagnoni et al. Photocatalytic processes for the abatement of N-containing pollutants from waste water. Part 1: Inorganic pollutants
Song et al. Construction of Ag/g-C3N4 composites with uniform-sized Ag nanoparticles and the application for sulfisoxazole degradation in the presence of visible radiation
Wang et al. Metronidazole photodegradation under solar light with UiO-66-NH2 photocatalyst: mechanisms, pathway, and toxicity assessment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101013

Termination date: 20130704