CN101305261B - 空间信息检测装置及适用于其的光电检测器 - Google Patents

空间信息检测装置及适用于其的光电检测器 Download PDF

Info

Publication number
CN101305261B
CN101305261B CN2006800421023A CN200680042102A CN101305261B CN 101305261 B CN101305261 B CN 101305261B CN 2006800421023 A CN2006800421023 A CN 2006800421023A CN 200680042102 A CN200680042102 A CN 200680042102A CN 101305261 B CN101305261 B CN 101305261B
Authority
CN
China
Prior art keywords
electric charge
charge
electrode
photoelectric conversion
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800421023A
Other languages
English (en)
Other versions
CN101305261A (zh
Inventor
桥本裕介
高田裕司
今井宪次
常定扶美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Publication of CN101305261A publication Critical patent/CN101305261A/zh
Application granted granted Critical
Publication of CN101305261B publication Critical patent/CN101305261B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/621Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming
    • H04N25/622Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming by controlling anti-blooming drains

Abstract

提供一种空间信息检测装置,其能够减小环境光的影响所导致的饱和现象的可能性。该装置包括:光电转换部分,用于接收来自对象空间的信号光以生成电荷;电荷分离部分,用于从光电转换部分生成的电荷中分离出对应于恒定量的偏置成分的电荷作为不需要的电荷;电荷累积部分,用于累积残留电荷作为反映信号光的波动成分的有效电荷;垒控制电极,用于在电荷分离部分和电荷累积部分之间形成势垒;以及电荷取出部分,用于输出有效电荷作为接收光输出。通过控制对垒控制电极施加的电压以改变势垒的高度,有可能调节通过势垒从电荷分离部分流入电荷累积部分的电荷的量。

Description

空间信息检测装置及适用于其的光电检测器
技术领域
本发明涉及空间信息检测装置以及适用于该装置的光电检测器。
背景技术
在用于生成与从对象空间接收的光量相对应的电荷并取出该对象空间的信息作为接收光输出的传统光电检测器中,接收光输出的最大值通常受到用于取出所生成的电荷的部分的尺寸的限制。
为了扩展用于取出所生成的电荷的通道的动态范围,例如,在日本特开平7-22436号公报和日本特开平7-22437号公报中提出了通过使用CCD去除除了电荷转移通道中的信息信号以外的不需要的电荷,并使用其余电荷作为有效电荷。根据该配置,由于不转移不需要的电荷,所以可通过减少电荷转移量来减小电荷转移通道的尺寸。
然而,在该配置中,由于去除不需要的电荷是在电荷转移通道中进行的,所以当通过接收来自对象空间的光生成的不需要的电荷超过光电转换能力时会发生所谓的饱和现象。在此情况下,有可能出现在电荷转移通道之前要检测的信息丢失的情况。
因此,根据上述现有技术的配置,可减小电荷转移通道的尺寸。然而,存在不能减小用于接收来自对象空间的光以生成电荷的光电转换部分的问题。
发明内容
考虑到上述问题,本发明的主要方面是提供一种具有高操作可靠性的空间信息检测装置,该装置能够减小光电转换部分的尺寸,并且即使当通过接收来自对象空间的光生成大量不需要的电荷时该装置也能够防止饱和现象。
也就是说,本发明的空间信息检测装置包括:发光源,被配置成将由调制信号进行强度调制的信号光投射到对象空间;光电检测部分,被配置成在与调制信号同步的定时从对应于从对象空间检测的接收光量的电荷分离出恒定量的偏置成分,从而提供反映信号光的波动成分的接收光输出;以及信号处理部分,被配置成通过使用接收光输出来检测对象空间的空间信息。光电检测部分包括:光电转换部分,被配置成接收来自对象空间的光以生成电荷;电荷分离部分,被配置成从由光电转换部分生成的电荷中分离出对应于偏置成分的规定的恒定量的不需要的电荷,其中光电转换部分生成的电荷对应于不依赖于信号光的波动的恒定量的偏置成分和根据信号光的波动变化的波动成分的总和;电荷累积部分,被配置成累积通过从光电转换部分生成的电荷中分离出不需要的电荷而获得的残留电荷作为有效电荷;以及电荷取出部分,被配置成取出在电荷累积部分中累积的有效电荷作为接收光输出。
根据本发明,由于分离出对应于偏置成分的恒定量的电荷作为不需要的电荷,并且输出对应于波动成分的残留电荷作为有效电荷,所以饱和的出现可通过减小电荷的总量来减少,同时反映出由光电转换部分生成的电荷的增加或减少。换句话说,即使当通过接收来自对象空间的光生成的电荷包含大量偏置成分时,也有可能有效取出有效电荷,同时通过只去除偏置成分防止饱和现象的出现。结果,可以得到紧凑的光电转换部分。
在传统配置中,关于作为接收光输出取出的电荷确定作为不需要的电荷分离出的电荷的量。另一方面,在本发明中,关于从光电转换部分提供给电荷取出部分的电荷确定不需要的电荷的量。因此,有可能通过分离出不需要的电荷显著减小饱和的可能性。在这点上,当通过使用电子快门的溢漏(overflow drain)来防止饱和时,以恒定的比率减少对应于接收光量的电荷。这意味着波动成分被完全压缩,并导致对应于波动成分的电荷的减少。相反,在本发明中,由于分离出偏置成分作为不需要的电荷,所以可以保持对应于波动成分的电荷不变。
另外,通过将通过接收来自对象空间的环境光在光电转换部分生成的电荷作为不需要的电荷去除,有可能增加从发光源投射的光和接收光输出的贡献比率。因此,当根据从发光源投射的光和在光电检测部分处接收的光之间的关系检测空间信息时,有可能灵敏地检测从发光源投射的光的变化,并提高空间信息的检测准确度。
在本发明中,对应于偏置成分的恒定量的电荷是指以下情况中的电荷。首先,关于光电转换部分在预期时间段中生成的电荷,偏置成分是指在该预期时间段中基本不随时间变化的成分或者在该预期时间段中基本不随位置变化的成分。也就是说,偏置成分是指不依赖于时间或空间的稳定成分。例如,当与用于投射信号光的发光源相结合地形成有源型传感器时,该偏置成分包含在对应于除信号光以外的环境光的接收光量的电荷中。第二,偏置成分是指与对应于环境光的接收光量的电荷量一致的成分。第三,偏置成分是指小于对应于环境光的接收光量的电荷量的成分。第四,当信号光的强度被调制,且信号光的最小接收光量不为零时,偏置成分是指等于或小于对应于环境光的接收光量和信号光的最小接收光量的总和的电荷量的成分。也就是说,偏置成分在大多数情况下由如存在于对象空间中的环境光的信号光以外的光来提供。另一方面,如在使用强度调制的信号光的情况中,存在偏置成分中包含随信号光波动的成分的情况。此外,在偏置成分中可能包含补偿电流(offset current)或暗电流(dark current)。假定波动成分主要随时间变化。然而,当多个光电转换部分工作时,存在波动成分是指在相邻的光电转换部分之间的接收光量的差的情况。
在上述发明中,有利地,电荷分离部分和电荷累积部分是在半导体衬底中形成的势阱,且光电检测部分还包括电荷量调节装置,该电荷量调节装置被配置成在电荷分离部分和电荷累积部分之间形成势垒,并调节通过势垒从电荷分离部分流入电荷累积部分的电荷的量。电荷量调节装置有利地包括:垒控制电极,布置在半导体衬底上以在电荷分离部分和电荷累积部分之间形成势垒;以及控制部分,被配置成控制对垒控制电极施加的电压以改变势垒的高度。可替代地,电荷量调节装置可包括:分离电极,布置在与半导体衬底上的电荷分离部分相对应的位置处;以及控制部分,被配置成控制对分离电极施加的电压以改变电荷分离部分的势阱的深度。
在该配置中,该电荷量调节装置可通过利用传统的半导体加工技术在半导体衬底的主表面上形成电极来容易地实现。另外,不需要的电荷的量可通过控制对垒控制电极或分离电极施加的电压以改变势垒的高度或用作电荷分离部分的势阱的深度来容易地调节。结果,可以累积通过在电荷分离部分和电荷累积部分之间形成的势垒流入电荷累积部分中的电荷作为有效电荷。
另外,有利地空间信息检测装置还包括定时控制部分,被配置成与光电转换部分通过接收来自强度调制的光照射到的对象空间的光生成电荷的光接收时间段和通过使用电荷分离部分和电荷累积部分从光电转换部分生成的电荷中分离出不需要的电荷的称量时间段相关联地确定光电转换部分、电荷分离部分和电荷累积部分的操作定时。根据该配置,有可在称量时间段中从在光接收时间段中生成的电荷中分离出不需要的电荷的效果。
根据本发明优选实施例的空间信息检测装置还包括第一导电类型的半导体层;第二导电类型的阱,形成在半导体层的主表面;排放部分,不需要的电荷从电荷分离部分排放到排放部分;多个电极,布置在阱的主表面上;以及控制部分,控制部分被配置成与光电转换部分通过接收来自强度调制的光照射到的对象空间的光生成电荷的光接收时间段和从光电转换部分生成的电荷中分离出不需要的电荷的称量时间段相关联地控制对电极施加的电压。电极包括:分离电极,用于在阱中形成势阱作为电荷分离部分;累积电极,用于在阱中形成势阱作为电荷累积部分;以及垒控制电极,用于在电荷分离部分和电荷累积部分之间形成势垒。根据该配置,在称量时间段中从光接收时间段中生成的电荷分离出不需要的电荷的操作可通过使用该半导体衬底容易地实现。通过排放部分从电荷分离部分排放出从光接收时间段中生成的电荷中去除的不需要的电荷。另外,通过控制电压施加定时可以容易地实现光接收时间段和称量时间段。另外,由于通过使用分离电极和累积电极形成作为电荷分离部分和电荷累积部分的势阱,且通过使用垒控制电极形成势垒,所以得到具有这些控制电极的设置的精炼的结构。
特别有利地,控制部分控制对分离电极和垒控制电极中的至少一个施加的电压以改变势垒的高度和作为电荷分离部分形成的势阱的深度中的至少一个,从而调节越过势垒从电荷分离部分流到电荷累积部分的电荷的量。
在上述空间信息检测装置中,有利地,发光源向对象空间照射由调制信号进行强度调制的光,以具有从发光源向对象空间投射该强度调制的光的发光时间段和不向对象空间投射该强度调制的光的暂停时间段,且光电检测部分包括电荷量调节装置,该电荷量调节装置被配置成根据光电转换部分在暂停时间段中生成的电荷量调节从对应于在发光时间段中获得的接收光量的电荷中分离出的作为不需要的电荷的电荷的量。在这种情况下,特别有利地,当在暂停时间段中光电转换部分生成的电荷量增加时,电荷量调节装置增加从对应于在发光时间段中获得的接收光量的电荷中分离出的不需要的电荷的量。
根据该配置,由于根据通过在暂停时间段中接收环境光生成的电荷量来自动确定要分离的不需要的电荷的量,所以有可能减少环境光的影响,并且容易通过从发光源投射的光来检测对象空间的信息。
另外,作为本发明的优选实施例,电荷分离部分和电荷累积部分是在半导体衬底中形成的势阱,在电荷分离部分和电荷累积部分之间布置垒控制电极以形成势垒。电荷量调节装置根据光电转换部分在暂停时间段中生成的电荷量控制对垒控制电极施加的电压,以改变势垒的高度,从而调节通过势垒从电荷分离部分流入电荷累积部分的电荷的量。可替代地,有利地,还在半导体衬底上对应于电荷分离部分的位置处布置分离电极,且电荷量调节装置根据光电转换部分在暂停时间段生成的电荷量控制对分离电极施加的电压以改变作为电荷分离部分形成的势阱的深度,从而调节通过势垒从电荷分离部分流入电荷累积部分的电荷的量。
根据该配置,由于根据在暂停时间段接收到的环境光的接收光量自动调节势垒的高度,并通过使用该势垒从在发光时间段中生成的电荷中去除不需要的电荷,所以有可能减少环境光的影响,因此容易通过从发光源投射的光来检测对象空间的空间信息。此外,由于光电检测部分自动确定势垒的适当高度,所以与光电检测部分相结合地使用的外部电路可以由相对简单的电路配置形成。
在改变势垒高度的情况下,有利地,电荷量调节装置具有电荷保持部分,该电荷保持部分是在半导体衬底中形成的势阱,以保持光电转换部分在暂停时间段中生成的电荷,以及电荷量调节装置对垒控制电极施加根据电荷保持部分保持的电荷量确定的电压。在这种情况下,进一步有利地,电荷量调节装置包括通过绝缘层在半导体衬底上对应于电荷保持部分的位置处形成的并且电连接到垒控制电极的保持电极。可替代地,垒控制电极电连接到与作为电荷保持部分形成的电荷保持阱相对应的半导体衬底的部分也是有利的。
另一方面,在改变作为电荷分离部分形成的势阱的深度的情况下,有利地,电荷量调节装置具有电荷保持部分,该电荷保持部分是在半导体衬底中形成的势阱,以保持光电转换部分在暂停时间段中生成的电荷,且电荷量调节装置对分离电极施加根据电荷保持部分保持的电荷量确定的电压。
在改变势垒高度或势阱深度的任一情况下,有利地,在光电转换部分和电荷保持部分之间的半导体衬底的主表面上形成栅电极,并且该栅电极被配置成控制将光电转换部分生成的电荷转移到电荷保持部分的定时。根据该配置,由于通过栅电极控制将电荷从光电转换部分转移到电荷保持部分的定时,所以有可能在期望的定时将该电荷转移到电荷保持部分。
在上述空间信息检测装置中,当在发光时间段中生成的电荷量达到预定的饱和水平时,信号处理部分增加在下一个发光时间段中分离出的不需要的电荷的量也是有利的。根据该配置,即使当接收光输出达到饱和水平时,在下一发光时间段也难以引起饱和。因此,有可能提高空间信息的检测可能性。
在根据本发明的进一步优选实施例的空间信息检测装置中,光电检测部分具有多个光电检测单元,每个光电检测单元对应于一个像素。每个光电检测单元包括:第一导电类型的半导体层;第二导电类型的阱,形成在半导体层的主表面中;光电转换部分,包括通过绝缘层在阱的规定区域上形成的多个灵敏度控制电极的阵列;分离电极,用于在阱中形成作为电荷分离部分的势阱;垒控制电极,用于在阱中形成势垒;累积电极,用于在阱中形成作为电荷累积部分的势阱;以及排放部分,不需要的电荷从电荷分离部分排放到排放部分。其中电荷量调节装置具有电荷保持部分,该电荷保持部分是用于保持光电转换部分在暂停时间段中生成的电荷的势阱。电荷量调节装置根据电荷保持部分保持的电荷量对垒控制电极和分离电极中的至少一个施加电压。
在这种情况下,进一步有利地,在灵敏度控制电极的阵列中形成分离电极、垒控制电极和累积电极,并且在垂直于灵敏度控制电极的阵列的方向上相邻地形成电荷保持部分。通过以相等的间隔设置灵敏度控制电极,具有可以容易地控制沿着灵敏度控制电极转移电荷的操作的效果。可替代地,有利地,在与所述灵敏度控制电极的所述阵列相邻的列中在所述灵敏度控制电极的阵列方向上布置所述分离电极、所述垒控制电极、所述累积电极和所述电荷保持部分。由于可以在与沿着灵敏度控制电极转移电荷的方向相同的方向上分离不需要的电荷,所以不需要的电荷的分离效率变得更高。另外,还具有减少在与灵敏度控制电极的阵列方向不同的方向上转移电荷的操作以及实现控制配线和控制操作简化的其它效果。
本发明的另一方面是提供特征在于包括以下配置的空间信息检测装置。也就是说,该空间信息检测装置包括:发光源,被配置成向对象空间照射由调制信号进行强度调制的光;光电检测部分,被配置成根据从对象空间接收的光提供电输出;以及信号处理部分,被配置成通过使用电输出检测对象空间的空间信息。光电检测部分包括:光电转换部分,被配置成接收来自对象空间的光以生成电荷;电荷分离部分,被配置成从光电转换部分在调制信号的具有不同相位范围的两个区间中的一个生成的电荷中分离出根据光电转换部分在另一区间中生成的电荷量确定的量的不需要的电荷;电荷累积部分,被配置成累积通过从光电转换部分在调制信号的具有不同相位的两个区间中的一个中生成的电荷中分离出不需要的电荷而获得的残留电荷作为有效电荷;以及电荷取出部分,被配置成输出在电荷累积部分中累积的有效电荷作为电输出。
根据该配置,由于与调制信号的具有不同相位范围的两个区间同步获得的接收光量之差被确定,所以有可能通过使用该差来有效减少环境光的影响,因此通过从发光源投射的光可以容易地检测对象空间的空间信息。此外,通过在调制信号的具有不同相位范围的两个区间中的一个获得的接收光量来确定不需要的电荷的量,并且有效电荷的量对应于这两个区间之间电荷量的差。也就是说,有可能获得对应于这两个区间之间接收光量的差的接收光输出。
作为上述空间信息检测装置的优选实施例,电荷分离部分和电荷累积部分是在半导体衬底中形成的势阱,空间信息检测装置具有:垒控制电极,布置在半导体衬底上以在电荷分离部分和电荷累积部分之间形成势垒;以及电荷保持部分,被配置成保持光电转换部分在调制信号的具有不同相位范围的两个区间中的另一区间中生成的电荷,根据电荷保持部分保持的电荷量对垒控制电极施加电压以确定不需要的电荷的量,以及通过电荷分离部分从光电转换部分在调制信号的具有不同相位范围的两个区间中的一个生成的电荷中分离出所述量的不需要的电荷。根据该配置,通过在调制信号的具有不同相位范围的两个区间中的一个获得的接收光量来自动确定不需要的电荷的量,且有效电荷的量对应于这两个区间之间电荷量的差。也就是说,有可能获得对应于这两个区间之间接收光量的差的接收光输出。
本发明的另一方面是提供一种适于用作上述空间信息检测装置的光电检测部分的光电检测器。也就是说,该光电检测器特征在于包括:光电转换部分,被配置成接收来自对象空间的光以生成电荷;电荷分离部分,被配置成从光电转换部分生成的电荷分离出对应于偏置成分的规定的恒定量的不需要的电荷,光电转换部分生成的电荷对应于恒定量的偏置成分和随接收光量的增加或减少而变化的波动成分的总和;电荷累积部分,被配置成累积通过从光电转换部分生成的电荷分离出不需要的电荷而获得的残留电荷作为有效电荷;以及电荷取出部分,被配置成取出累积在电荷累积部分中的有效电荷作为接收光输出。该光电检测器有利地包括装置形成层,由第一导电类型的半导体制成的;第二导电类型的阱,形成在所述装置形成层的主表面上;排放部分,所述不需要的电荷从所述电荷分离部分排放到所述排放部分;以及多个电极,布置在所述阱的所述主表面上。电极包括:分离电极,用于在所述阱中形成作为所述电荷分离部分的势阱;累积电极,用于在所述阱中形成作为所述电荷累积部分的势阱;以及垒控制电极,用于在所述电荷分离部分和所述电荷累积部分之间形成势垒。
附图说明
图1是示出本发明第一实施例的截面图;
图2A-2E是示出本实施例中的势能关系的操作说明图;
图3A-3C是示出本实施例中的电压关系的操作说明图;
图4是示出根据本实施例的空间信息检测装置的示意性配置的框图;
图5A和5B是本实施例中操作例子的说明图;
图6A和6B是本实施例中另一操作例子的说明图;
图7A和7B是本实施例中进一步的操作例子的说明图;
图8是本实施例中另一操作例子的说明图;
图9A是示出第二实施例的截面图,图9B是示出第二实施例的变形的截面图;
图10A-10D是示出本实施例中的势能关系的操作说明图;
图11A-11C是示出本实施例中的电压关系的操作说明图;
图12A是示出第三实施例的平面图,图12B是沿图12A中的线X-X所取的截面图,图12C是沿图12A中的线Y-Y所取的截面图;
图13是示出第四实施例的平面图;
图14是用于说明本实施例中的操作的流程图;
图15是示出第五实施例的平面图;
图16是示出第六实施例的截面图;
图17A-17H是示出本实施例中的势能关系的操作说明图;
图18是示出第七实施例的截面图;
图19A-19O是示出本实施例中的势能关系的操作说明图;
图20是示出第八实施例的截面图;
图21是示出第九实施例的截面图;
图22A-22E是示出本实施例中的势能关系的操作说明图;以及
图23A和23B是示出本实施例中的电压关系的操作说明图。
具体实施方式
下面根据优选实施例详细说明本发明。
(第一实施例)
本实施例的空间信息检测装置包括:发光源,其用于将由调制信号进行强度调制的光作为信号光投射到对象空间;光电检测部分,被配置成通过在与调制信号同步的定时从对应于从对象空间检测到的接收光量的电荷中分离出恒定量的偏置成分来提供反映信号光的波动成分的接收光输出;以及信号处理部分,被配置成通过使用接收光输出来检测对象空间的空间信息(例如,与对象空间中的物体的距离)。在以下实施例中,光电检测部分由光电检测器提供。另外,为了避免本发明的说明变得复杂,在某些情况下只说明光电检测器的最小单位单元及其操作。通过布置多个单位单元,有可能获得作为该光电检测器的图像传感器。
如图1中所示,在每个单元1中,在衬底10上形成的装置形成层11是第一导电类型(例如p型)的半导体(例如硅),在装置形成层11的主表面形成的阱12是第二导电类型(例如n型)的半导体。在阱12的主表面上,通过绝缘层13(例如氧化硅或氮化硅)布置分离电极14a、累积电极14b和垒控制电极14c。垒控制电极14c和分离电极14a用作调节不需要的电荷量的装置。对垒控制电极14c和分离电极14a施加的电压由控制部分(未示出)确定。衬底10具有第二导电类型。分离电极14a、累积电极14b和垒控制电极14c具有半透明性。在本实施例中,关于通过接收来自对象空间的光而生成的电荷是电子的情况进行说明。可替代地,通过使半导体的导电类型相反和稍后说明的电压的极性相反,空穴可用作电荷。
在图1中,分离电极14a、累积电极14b和垒控制电极14c被设计为具有彼此不同的宽度,使得累积电极14b具有比分离电极14a和垒控制电极14c更大的宽度。可替代地,可以布置具有相同宽度的多个电极。在这种情况下,通过将相同的电压施加到彼此相邻地连续布置的多个电极,该多个电极可等同地用作具有大宽度的单个电极。例如,当分离电极14a由彼此相邻地布置的两个电极提供,累积电极14b由彼此相邻地连续布置的三个电极提供,且垒控制电极14c由单个电极提供时,分离电极14a、累积电极14b和垒控制电极14c的功能可通过使用具有相同宽度的这六个电极来实现。
n型阱12由p型装置形成层11围绕。因此,当没有电压施加到分离电极14a、累积电极14b和垒控制电极14c时,关于电子,阱12的势能低于装置形成层11的势能。也就是说,对应于阱12的区域对电子形成了势阱。在图1中,阴影区表示电子。阱12的势能可通过对分离电极14a、累积电极14b和垒控制电极14c施加电压来控制。
在此,关于在阱12处于空电荷状态时照射光的情况进行说明。为了获得阱12的空状态,通过与阱12相邻地形成的漏极(未示出)来排放电子。可替代地,阱12中的电子可通过电荷取出部分(未示出)作为接收光输出取出到外部。该电荷取出部分可具有与传统CCD图像传感器的垂直转移部分或水平转移部分相同的配置。
如图3A-3C中的时间段Ta所示,当在不对分离电极14a、累积电极14b和垒控制电极14c施加电压的情况下从对象空间接收光时,在包括阱12的装置形成层11中生成电子和空穴。如图2A中所示,所生成的电子聚集在阱12中。也就是说,阱12用作光电转换部分D1。当对分离电极14a、累积电极14b和垒控制电极14c中的任何一个施加具有比装置形成层11的基准电位更高的电位的电压(即正电压)时,有可能获得具有更大深度的势阱,并提高电子的聚集效率。
在电子聚集到光电转换部分D1中后,通过如图3A-3C中的时间段Tb所示对垒控制电极14c施加负电压,如图2B所示在阱12中形成势垒B1。势垒B1将阱12的势阱分成两个势阱:电荷分离部分D2和电荷累积部分D3,其中,电荷分离部分D2是与分离电极14a相对应的区域,电荷累积部分D3是与累积电极14b相对应的区域。
在形成势垒B1以分离电荷分离部分D2和电荷累积部分D3的情况下,当通过靠近阱12形成的漏极(未示出)排放电荷分离部分D2中的电子时,电子只留在电荷累积部分D3中,如图2C所示。电荷累积部分D3中的残留电子量对应于在图3A-3C中所示的时间段Ta中获得的接收光的量。为了排放电荷,在漏极和电荷分离部分D2之间形成栅极是有利的,并且打开栅极以将电荷从电荷分离部分D2排放到漏极。栅极和漏极结构可以具有与传统MOSFET或CCD结构相同的配置。
接下来,如图3A-3C中的时间段Td所示,对分离电极14a施加正电压,并去除对垒控制电极施加的电压。此时,如图2D所示,电荷分离部分D2变成具有比电荷累积部分D3更大的深度的势阱。此外,由于电荷分离部分D2和电荷累积部分D3之间的势垒B1被消除,聚集在电荷累积部分D3中的所有电子都流入电荷分离部分D2中。也就是说,聚集在电荷累积部分D3中的所有电子都转移到电荷分离部分D2。
在阱12中的所有电子都移到电荷分离部分D2中后,如图3A-3C中的时间段Te所示,对垒控制电极14c施加预定的负恒定电压,并去除对分离电极14a施加的电压。也就是说,如图2E中所示,再次形成势垒B1以将势阱12分成电荷分离部分D2和电荷累积部分D3。此时,电荷分离部分D2的势阱被形成为具有浅的深度。此外,电荷分离部分D2的容量(容积)由势垒B1的高度确定。也就是说,根据对垒控制电极14c施加的电压来确定电荷分离部分D2的容量。对垒控制电极14c施加的电压被设置成使得势垒B1的势能不超过装置形成层11的势能。
当在图2D的状态中流入电荷分离部分D2中的电子的量在图2E的状态中超过电荷分离部分D2的容量时,一部分电子通过(越过)势垒B1从电荷分离部分D2流入电荷累积部分D3。由于在图2D的状态中流入电荷分离部分D2中的电子的量对应于由光照生成的电子的量(实际上是图2C中电子的量),所以在图2E的状态中流入电荷累积部分D3中的电子的量等于从由光照生成的电子中减去与在图2E的状态中设置的电荷分离部分D2的容量相对应的电子所确定的量。
在以下说明中,将电荷分离部分D2分离出的电子称为不需要的电荷,而将流入电荷累积部分D3中的电子称为有效电荷。一般来说,不需要的电荷被排放,而有效电荷被取出作为接收光输出。也就是说,可将光电转换部分D1生成的电子看作是如环境光的恒定量的偏置成分和基于接收光量的增加或减少而波动的包括要检测的信息的波动成分的总和。由于该偏置成分不包含要检测的信息,所以将其作为不需要的电荷排放掉。另一方面,所获得的有效电荷对应于通过简单地从对应于接收光量的量的电子中去除恒定量的电子而获得的电荷。因此,接收光量的波动成分保持在有效电荷中,并且在接收光量中所包含的信息量中没有变化。
另外,在图2A-2E中所示的时间段,在阱12中电子移动期间接收光,并且所生成的电子连续地聚集在阱12中。因此,与在图2A中所示的时间段中由光电转换部分D1生成的电子的量相比,需要将在图2B-2E中所示的时间段中生成的电子的量减小到趋于零。为了使出现的误差最小化,例如,在毫秒(ms)量级设置图2A的时间段,在微秒(μs)级设置图2B-2E的时间段是有利的。
在本实施例中,如上所述,利用电荷分离部分D2从在光电转换部分D1处通过接收来自对象空间的光而生成的电子中分离出规定的恒定量电子,然后将残留电子作为有效电荷转移到电荷累积部分D3。在这种情况下,在电荷累积部分D3中累积的有效电荷的量变得小于对应于接收光量(=接收到的光通量的时间积分)的电子的量。然而,包含在接收光量中的信息量反映在有效电荷上。因此,即使当接收光量增加时,也难以出现饱和,因为通过电荷分离部分D2将恒定量的所生成的电荷作为不需要的电荷去除。
在本实施例中,光电转换部分D1形成在阱12中。可替代地,光电转换部分可形成在与阱12不同的位置。将光电转换部分生成的电子转移到阱12,然后按照上述过程分离出一部分电子。在这种情况下,由于可以对阱12进行光屏蔽,所以有可能减少在图2A-2E中所示的时间段中生成的电荷导致的误差。
此外,在以上说明中,在图2D的时间段中,在不改变电荷累积部分D3的势能的情况下降低电荷分离部分D2和势垒B1的势能。可替代地,在不改变电荷累积部分D2的势能的情况下,通过降低势垒B1的势能使得高于图2E的势垒B1,并增加电荷累积部分D3的势能使得不小于势垒B1,可以将电子从电荷累积部分D3移到电荷分离部分D2。
另外,为了在图2E的状态中通过电荷分离部分D2分离出恒定量的电子作为不需要的电荷,需要越过势垒B1移动的所有电子都流入电荷累积部分D3中。当移动到电荷累积部分D3中的电子的量超过电荷累积部分D3的容量时,不能由电荷分离部分D2分离出恒定量的不需要的电荷。为了解决这个问题,在增加电荷累积部分D3的容量而不改变电荷累积部分D3的深度时,增加阱12相对于装置形成层11的占用面积。结果,这导致光电检测器尺寸的增加。因此,为了解决上述问题,使用调节电荷累积部分D3的深度的技术是有利的。
电荷累积部分D3的深度取决于势垒B1的高度。不需要的电荷的量由势垒B1与电荷分离部分D2的底部的势能的相对高度确定。因此,通过调节电荷分离部分D2的底部的势能而不改变势垒B1的高度,即使接收光量增加或减少,也有可能通过电荷分离部分D2来测量和分离出恒定量的不需要的电荷。
为了适当地设置电荷分离部分D2的底部的使能,需要估计接收光量。在接收光量的估计中,将聚集在光电转换部分D1中的电子移到光电检测器的外部,然后由光电检测器的外部电路来估计是有利的。在这种情况下,从外部电路提供的估计结果反映在对分离电极14a施加的电压上。响应于接收光量的估计结果,存在不需要由电荷分离部分D2分离不需要的电荷的情况。在这种情况下,在图2C的状态中留在电荷累积部分D3中的电子被取出作为接收光输出。
具体地,对分离电极14a、累积电极14b和垒控制电极14c施加的电压由作为控制部分的外部电路(未示出)控制,使得光电检测器进行两个操作:取出用于估计接收光量的接收光输出和在分离出不需要的电荷之后取出接收光输出。在获得用于估计接收光量的接收光输出的时间段中,直接取出聚集在光电转换部分D1中的电荷。通过使用该接收光输出,确定对分离电极14a、累积电极14b和垒控制电极14c施加的电压以调节势垒B1的高度和电荷累积部分D3的深度中的一个。接下来,关于对应于接收光量的电荷,根据上述过程分离出不需要的电荷,从而残留电子被取出作为接收光输出。
另外,通过分离出不需要的电荷而获得的接收光输出必须保持包含在接收光量中的信息。因此,在没有发光源的无源传感器的情况下,通过将要分离的不需要的电荷的量保持恒定,接收光量的波动成分可反映在接收光输出上。另一方面,在使用发光源的有源型传感器的情况下,设置发光源发光的时间段(以下称为“发光时间段”)和发光源关闭的时间段(以下称为“暂停时间段”)。在估计出暂停时间段中获得的接收光量之后,从发光时间段中获得的电荷中去除不需要的电荷。根据该操作,有可能从在发光时间段获得的电荷中去除根据如自然光和照明光的环境光确定的不需要的电荷的量,并从实质上改善关于从发光源投射的光的动态范围。
在以上操作中,假定进行一次分离不需要的电荷的操作,并通过只调节势垒B1的高度来确定不需要的电荷的量。可替代地,不需要的电荷的量可通过改变分离不需要的电荷的操作的次数来调节。在这种情况下,电荷分离部分D2的容量保持恒定。在图2E的状态中通过电荷分离部分D2分离出不需要的电荷之后,从电荷分离部分D2排放不需要的电荷。然后,再现图2D的状态,使电荷从电荷累积部分D3返回到电荷分离部分D2,在图2E的状态中再次通过电荷分离部分D2分离出不需要的电荷。通过将以上过程重复需要的次数,可以调节不需要的电荷的量。
在图中所示的操作中,在将电荷移到电荷分离部分D2以分离出不需要的电荷之后,调节对垒控制电极14c施加的电压或者对分离电极14a施加的电压。可替代地,在通过调节对垒控制电极14c施加的电压或对分离电极14a施加的电压确定出电荷分离部分D2的容量之后,可以将电荷移到电荷分离部分D2中。
在以下说明中,如图4所示,光从发光源2投射到对象空间,使得来自对象空间的作为结果的光作为信号光由光电检测器(即光电检测部分)1接收。在该配置中,假定由光电检测器1接收的光包含环境光,如自然光和照明光,并且通过减少环境光成分来获得接收光输出。因此,确定作为不需要的电荷分离出的电子的量以反映环境光的接收光量。光电检测器1的接收光输出被发送到接收光处理电路3以从接收光输出提取想要的信息。光电检测器1、发光源2和接收光处理电路3的操作根据从定时控制电路4输出的定时信号控制。
也就是说,由定时控制电路4控制对用作调节作为不需要的电荷分离出的电荷量的装置的垒控制电极14c和分离电极14a施加的电压。另外,定时控制电路4将定时信号输出到发光源2,使得发光时间段和暂停时间段交替重复。定时控制电路4还向光电检测器1和接收光处理电路3提供定时信号,使得在发光时间段和暂停时间段中进行稍后说明的操作。也就是说,在图中所示的配置中,信号处理部分包括接收光处理电路3和定时控制电路4。信号处理部分可以由用于执行适当程序的微处理器来配置。
在以下说明中,通过多次进行电荷称量操作(charge weighingoperation)来分离出期望量的不需要的电荷。也就是说,当要排放的不需要的电荷的量是Qg时,可以通过重复“k”次(k是正整数)电荷称量操作来将其排放。因此,每次电荷称量操作所排放的不需要的电荷的量被表示为Qg/k。为了排放不需要的电荷,存在以预定的时间间隔多次重复电荷称量操作的方法,以及连续重复多次电荷称量操作的方法。在以下说明中,这两种方法以混合的方式进行。
也就是说,定义连续重复“m”次(m是大于等于2的正整数)分离和排放不需要的电荷的操作的称量时间段,并且在发光时间段中重复“n”次(n是大于等于1的正整数)该称量时间段。该关系在图5A和5B中示出。在图5A和5B的每一个中,示出一个暂停时间段“Pd”和一个发光时间段“Pb”。实际上,暂停时间段“Pd”和发光时间段“Pb”交替重复多次。在图5A所示的操作中,在发光时间段“Pb”中进行“n”次(该图中为2次)称量时间段“Pt”,并且在每个称量时间段中重复“m”次(该图中为5次)分离和排放不需要的电荷的操作(在下文中称为称量操作“W”)。也就是说,在发光时间段“Pb”中进行的称量操作“W”的次数被表示为“n”דm”。在每个称量时间段“Pt”中,将不需要的电荷排放,使得只留下对应于信号光的接收光量的电子量。因此,通过将在称量时间段“Pt”中排放的不需要的电荷的量除以正整数“m”来确定每次称量操作“W”排放的不需要的电荷的量。另外,根据在暂停时间段“Pd”中获得的接收光量来设置每次称量操作“W”排放的不需要的电荷的量。也就是说,在以下说明的操作中,“k”=“m”。
首先说明与通过单次称量操作一次分离不需要的电荷的情况相比,通过多次称量操作逐步分离不需要的电荷的情况的优点。一般来说,响应于光电检测器的接收光量累积的电荷量“Q”(电子的量)与光电转换部分D1(电荷累积部分D3)的面积“S”和光接收时间“t”成比例。当每单位时间和单位面积累积的电荷量为“q”时,“Q”=“q”דS”דt”。在本说明中,由于势垒B1的高度根据在暂停时间段“Pd”中累积的电荷量来确定,所以势垒B1的高度ΔV可表示为在暂停时间段“Pd”中累积的电荷量“Q”的函数。例如,可以从关系式ΔV(Q)=“α”דq”דS”דt”来计算,其中“α”是用于将电荷量“Q”转换为势垒B1的高度ΔV(Q)的系数。每次称量操作所排放的不需要的电荷量可通过改变势垒B1的高度ΔV(Q)来调节。
势垒B1的高度ΔV(Q)可通过改变上述四个变量中的任何一个来调节。如上所述,在毫秒(ms)级设置时间“t”,而在微秒(μm)级设置称量操作所需的时间。因此,通过减少用于确定不需要的电荷的量的时间“t”,有可能缩短暂停时间段“Pd”,并相对地增加收集空间信息所用的时间。然而,随着时间“t”缩短,每次称量操作排放的电荷量Q减少。因此,增加称量操作的次数以排放期望量的不需要的电荷。
为了缩短时间“t”而不减少每次称量操作排放的电荷量Q,考虑增大系数“α”、电荷量“q”以及面积“S”中的至少一个。然而,随着系数“α”变大,如散粒噪声(shot noise)的噪声成分增加。结果,导致测量误差增加。另外,由于电荷量“q”依赖于光电检测器的规格和接收光强度,因而难以调整电荷量“q”。另一方面,随着面积“S”变大,装置尺寸的增加成为问题。因此,不改变系数“α”、电荷量“q”和面积“S”。
如上所述,每次称量操作“W”排放的不需要的电荷的量由暂停时间段“Pd”中累积的电荷量来确定。该电荷量被表示为环境光的接收光强度和暂停时间段“Pd”的长度(时间“t”)的函数。也就是说,将每次称量操作“W”所排放的不需要的电荷的量定义为随着暂停时间段“Pd”变长而变大。实际上,其是通过一次函数或三次函数定义的。因此,如上所述,当称量时间段“Pt”中排放的不需要的电荷量是“Qg”,且每次称量操作“W”排放的不需要的电荷的量被表示为“Qg/m”时,一次称量操作所需的暂停时间段“Pd”的长度是一次排放电荷量“Qg”所需的暂停时间段的长度的1/m。简而言之,由于重复“m”次称量操作“W”,所以用于排放不需要的电荷的一次称量操作所需的暂停时间段“Pd”的长度可减小到1/m。
在上述操作中,暂停时间段“Pd”被缩短,另一方面需要与称量操作“W”的重复次数相对应的时间以完成排放不需要的电荷。由于暂停时间段的时间级别是毫秒(ms)级,而称量操作“W”的时间级别是微秒(μm)级,所以与一次排放不需要的电荷的情况相比可以缩短暂停时间段“Pd”和发光时间段“Pb”所需的总时间。例如,当在一次排放不需要的电荷的情况下暂停时间段需要7毫秒(ms)时,在通过重复称量操作“W”7次来排放不需要的电荷的情况下暂停时间段所需的时间可缩短到1毫秒。也就是说,即使当需要100微秒(μm)来进行每个称量操作“W”时,暂停时间段“Pd”和发光时间段“Pb”的总时间也小于2毫秒。因此,可实现显著的时间缩短。
因此,信号处理部分根据在暂停时间段获得的接收光量来确定从与在规定的恒定发光时间段获得的接收光量相对应的电荷中分离的不需要的电荷的量。另外,信号处理部分控制光电检测器,使得通过重复多次称量操作来排放不需要的电荷。每次称量操作排放的不需要的电荷的量越大,暂停时间段的持续时间变得越长。因此,与一次排放不需要的电荷相比,有可能缩短暂停时间段的持续时间。也就是说,由于称量操作所需的时间比暂停时间段短两个或三个数量级,所以可通过缩短暂停时间段来有效地缩短对应于暂停时间段和发光时间段的总时间的处理时间。结果,有可能高效收集发光时间段中信号光的信息,并增加每个单位时间收集的空间信息的量。
如上所述,与一次去除不需要的电荷的情况相比,取出接收光输出所需的时间可通过缩短暂停时间段“Pd”和通过重复多次称量操作“W”来去除不需要的电荷来缩短。另外,即使在暂停时间段“Pd”中接收的环境光的强度相对增加时,也有可能通过缩短暂停时间段“Pd”来减少在光电转换部分D1处生成的电子的量,从而防止光电检测器1饱和。
在上述操作中,在称量时间段“Pt”中进行“m”次称量操作“W”,并且在发光时间段“Pb”中进行“n”次称量时间段“Pt”。在这种情况下,每次发光时间段“Pb”是恒定的。通过在每个称量时间段“Pt”进行多次称量操作“W”,缩短暂停时间段“Pd”的效果变得更高。可以适当地确定在发光时间段“Pb”中进行的称量操作“W”的次数。例如,在发光时间段“Pb”中可以设置进行所需次数的称量操作“W”的单个称量时间段“Pt”。可替代地,可以在每个称量时间段“Pt”中进行单个称量操作“W”。
从环境光的接收光强度的观点看,在发光时间段“Pb”中设置多个称量时间段“Pt”是有利的。特别地,当在暂停时间段“Pd”中获得大的接收光量时,换句话说,当环境光的接收光强度增大时,需要增加发光时间段“Pb”中称量时间段“Pt”的次数。参照图6A和6B说明其原因。
例如,当在发光时间段“Pb”中将称量时间段“Pt”的次数设置为4次时,如图6A中所示,在时间“t0”和时间“t2”之间的发光时间段“Pb”中,通过四个称量时间段“Pt”来排放恒定量的不需要的电荷。在这种情况下,尽管每个称量时间段“Pt”去除该不需要的电荷,但是在电荷累积部分D3中累积的电子作为整体逐渐增加。
在以上操作中,当适当地设置了通过一个称量时间段“Pt”排放的不需要的电荷的量和称量时间段“Pt”的次数时,在电荷累积部分D3中累积的电子的量不超过光电检测器1的饱和水平L1。然而,当环境光大于最初假定时,在结束之前,即在发光时间段“Pb”的时间“t2”之前,可能发生在电荷累积部分D3中累积的电子的量超过饱和水平L1的现象。在图6A中,在时间“t3”电荷量超过饱和水平L1。在这种情况下,从光电检测器1取出的接收光输出中丢失一部分信号光的信息。
由于该原因,需要在发光时间段“Pb”中检测电荷量是否已达到饱和水平L1。为了检测出电荷量已达到饱和水平L1,例如,将称量时间段“Pt”设置成使得发光时间段“Pb”从发光时间段“Pb”中的最后称量时间段“Pt”经过恒定时间段之后结束是有利的。将最后称量时间段“Pt”和发光时间段“Pb”的末尾之间的时间段设置成等于相邻称量时间段“Pt”之间的时间间隔。
在此假定在一个发光时间段“Pb”中设置了四个称量时间段“Pt”,并且在第三称量时间段“Pt”和第四称量时间段“Pt”之间发生饱和。在此情况下,由于通过第四称量时间段“Pt”排放不需要的电荷,使得电荷量低于饱和水平L1,所以在最后(第四)称量时间段“Pt”结束取出接收光输出时不能检测到饱和。另一方面,如上所述,当发光时间段“Pb”从最后称量时间段“Pt”结束经过恒定的时间段之后结束,且然后取出接收光输出时,有可能在发光时间段“Pb”中检测到饱和,因为接收光输出再次到达饱和水平L1。
另外,即使在时间“t2”之前在电荷累积部分D3中累积的电子的量超过饱和水平L1时,也存在通过增加称量时间段“Pt”的次数而不改变发光时间段“Pb”来控制电荷量使得不超过饱和水平L1的情况。例如,如图6A中所示,假定在时间“t1”和时间“t2”之间的发光时间段“Pb”中设置了四个称量时间段“Pt”,并且在第四称量时间段“Pt”之前即刻在电荷累积部分D3中累积的电子的量超过饱和水平L1,则如图6B中所示,通过将发光时间段“Pb”中的称量时间段“Pt”的次数从4次增加到5次有可能防止在电荷累积部分D3中累积的电子的量在时间“t2”之前超过饱和水平L1。换句话说,当将每个称量时间段“Pt”设置得相对短时,可以在光电检测器1饱和之前排放不需要的电荷。结果,即使在更大量的环境光下也有可能增加与接收光输出中的信号光相对应的电子的比率。也就是说,即使当环境光的接收光强度增加时,也可以获得具有信号光的信息的接收光输出。
通过使用至少在暂停时间段“Pd”从光电检测器1获得的接收光输出来确定发光时间段“Pb”中的称量时间段“Pt”的次数。如果需要,还可以使用在暂停时间段“Pd”中获得的接收光量。下面说明用于确定称量时间段“Pt”的次数的过程。由于在称量时间段“Pt”中进行多次称量操作,所以可以将每个称量时间段“Pt”看作用于排放不需要的电荷的操作。另外,当在发光时间段“Pb”中进行多次称量时间段“Pt”使得在相邻称量时间段“Pt”之间设置了时间间隔时,这意味着以时间间隔进行多次用于排放不需要的电荷的称量操作。
由于环境光的接收光强度反映在暂停时间段“Pd”中获得的接收光量上,所以在发光时间段“Pb”中累积的不需要的电荷的量可以从在暂停时间段“Pd”中获得的接收光量来估计。另外,每个称量时间段“Pt”排放的电荷量由在暂停时间段“Pd”中获得的接收光量来确定。因此,通过确定暂停时间段“Pd”的接收光量,有可能识别出在发光时间段“Pb”中累积的电子的量随时间变化的趋势。此时,对应于信号光的电子的量不清楚。然而,可以认为对应于信号光的电子的量在发光时间段“Pb”中几乎均匀增加。因此,有可能考虑饱和水平L1估计要排放的不需要的电荷的量,并确定称量时间段“Pt”次数的候选值。
在确定候选值后,通过接收光处理电路3监视使用该候选值的情况下获得的接收光输出的大小来估计称量时间段“Pt”的次数是否合适。为进行该估计,设置上限值和下限值,并通过将接收光输出与该上限值和下限值相比较来调节称量时间段“Pt”的次数。
例如,当接收光量超过上限值时,通过将称量时间段“Pt”次数的候选值加“1”来准备新的候选值。另一方面,当接收光量小于下限值时,通过从称量时间段“Pt”次数的候选值减“1”来预备另一新的候选值。通过重复该处理,可以将接收光量维持在上限值和下限值之间的适当值。当接收光输出不在上限值和下限值之间时,不被采用。也就是说,用另一时间段的接收光输出来插值或代替该时间段的接收光输出。
代替根据在暂停时间段“Pd”中获得的接收光量来确定称量时间段“Pt”的次数的候选值,可以使用预定的默认值作为该候选值。在这种情况下,仅使用暂停时间段“Pd”的接收光量来确定在一个称量操作“W”中排放的不需要的电荷的量。不改变一个称量时间段“Pt”中称量操作“W”的次数。
为了确定发光时间段“Pb”中称量时间段“Pt”的次数,接收光处理电路3根据在暂停时间段“Pd”中获得的接收光量和接收光输出来执行上述处理,且定时控制电路4响应于由接收光处理电路3确定的称量时间段“Pt”的次数控制光电检测器1的操作。不是每个发光时间段“Pb”都需要用于调节称量时间段“Pt”的次数使得接收光输出位于上限值和下限值之间的处理。根据使用环境,每适当次数的发光时间段“Pb”执行该处理就足够了。例如,可以设置标准频率作为默认值。当环境光变化大时,将频率增大到高于标准频率。相反,当环境光变化小时,将频率减小到低于标准频率。
当在发光时间段“Pb”中接收光输出已达到饱和水平时,不能使用在该发光时间段“Pb”中获得的接收光输出来检测空间信息。因此,该接收光输出被排放,并改变在下一个发光时间段“Pb”中分离出的不需要的电荷的量以在下一个或之后的发光时间段“Pb”中获得适当的接收光输出。如上所述,作为用于改变不需要的电荷的量的技术,优选改变称量时间段“Pt”的次数。可替代地,随着暂停时间段“Pd”扩展,在称量时间段“Pt”中排放的电荷量增加。另外,如稍后所述,当形成多个灵敏度控制电极17a-17h(图12)时,光接收面积可通过改变灵敏度控制电极的个数来从实质上得到控制,对该灵敏度控制电极施加电压以形成作为暂停时间段“Pd”中的光电转换部分D1的用于收集电荷的势阱。因此,通过增加暂停时间段“Pd”中的光接收面积,有可能增加在一个称量时间段“Pt”中排放的电荷量。
从上述原理可以理解,从进行称量操作“W”以使接收光输出不超过饱和水平L1的观点来看,与在称量时间段“Pt”中总地进行称量操作“W”的情况相比,在发光时间段“Pb”中均匀分布称量操作“W”是有利的。也就是说,如图5B所示,在发光时间段“Pb”中在相邻称量操作“W”之间设置时间间隔是有利的。另外,在暂停时间段“Pd”中获得的接收光输出变得更大时,将该时间间隔设置得更短是有利的。根据该技术,因为所累积的电荷量难以达到饱和水平L1,有可能减少在电荷累积部分D3中累积的电荷量的增加速率,并改进防止电荷累积部分D3饱和的效果。
另外,计算在一个称量时间段“Pt”中排放的不需要的电荷的量以保持由信号光生成的所有电子。然而,由于在一个称量时间段“Pt”中多次进行称量操作“W”,并且在一个称量操作“W”中排放的不需要的电荷的量由暂停时间段“Pd”的接收光量来确定,所以可能难以仅保持对应于信号光的所有电子。因此,实际上,保持了略大于对应于信号光的所有电子的电子量。在这种情况下,为了扩大关于信号光的动态范围,期望最小化电子的超出量。
在一个称量操作“W”中排放的不需要的电荷的量由暂停时间段“Pd”的接收光量确定,并且该接收光量被表示为暂停时间段“Pd”的长度(持续时间)的函数。因此,当计算出在一个称量时间段“Pt”中排放的不需要的电荷的总量时,有可能确定在一个称量操作“W”中排放的不需要的电荷的量,使得电子的超出量通过改变暂停时间段“Pd”的长度变得最小。
另外,由于在一个称量操作“W”中排放的不需要的电荷的量随着暂停时间段“Pd”变短而减少,所以可减少电子的超出量。可替代地,还有可能通过扩大暂停时间段“Pd”来减少电子的超出量,使得在一个称量时间段“Pt”中进行一次称量操作“W”。然而,在前者情况中,由于称量操作“W”的次数的增加,在发光时间段“Pb”中称量操作“W”的处理比率变大。在后者情况中,暂停时间段“Pd”被延长。因此,在这些情况中,在每单位时间从信号光获得的信息量减少。
另外,优选关于一个称量时间段“Pt”中的称量操作“W”的次数设置上限和下限,并且关于暂停时间段“Pd”的长度设置上限和下限。在这种情况下,确定在一个称量操作“W”中排放的不需要的电荷的量和在一个称量时间段“Pt”中称量操作“W”的次数中的每一个,使得在所述上下限之间的范围内电子的超出量变得最小。结果,有可能对称量时间段“Pt”设置条件以防止称量操作“W”的次数极度增加,同时相对缩短暂停时间段“Pd”。
另外,计算在称量时间段“Pt”中排放的不需要的电荷的量作为在称量时间段“Pt”中的称量操作“W”的次数和在一次称量操作“W”中排放的不需要的电荷的量的乘积。一次称量操作“W”中排放的不需要的电荷的量由暂停时间段“Pt”的接收光量确定。此外,暂停时间段“Pt”的接收光量由暂停时间段“Pt”的长度(持续时间)和环境光的接收光强度来确定。
为了对称量时间段“Pt”设置条件,关于暂停时间段“Pd”的长度设置默认值。通过使用在具有默认值的时间长度的暂停时间段“Pd”中获得的接收光量来估计环境光的接收光强度,然后确定每个称量时间段“Pt”排放的不需要的电荷的总量。另外,通过使用具有默认值的时间长度的暂停时间段“Pd”的接收光量来确定在一次称量操作“W”中排放的不需要的电荷的量。
接下来,将每个称量时间段“Pt”排放的不需要的电荷的总量除以在一次称量操作“W”中排放的不需要的电荷的量来获得商和余数。当商在称量时间段“Pt”的称量操作“W”的次数的上限和下限之间时,确定在一次称量操作“W”中排放的不需要的电荷的量以减小余数。根据该量,反算暂停时间段“Pd”的长度。当从该反算获得的暂停时间段“Pd”的长度在上限和下限之间时,将暂停时间段“Pd”设置为由该反算确定的长度。
当暂停时间段“Pd”的长度或者称量操作“W”的次数偏离上限和下限之间的范围时,在其间的范围内调节该次数或长度。
在具有多个光电转换部分D1的图像传感器中,当在每个光电转换部分D1中进行上述处理时,处理负荷增加。因此,将暂停时间段“Pd”设置得短,同时将称量操作“W”的次数设置得大是有利的,使得由一次称量操作“W”分离出的不需要的电荷的量小于关于所有光电转换部分D1的预定值。随着通过一次称量操作“W”排放的不需要的电荷的量变小,称量操作“W”的次数增加。然而,一次称量操作“W”所需的时间非常短。因此,光电转换部分D1接收光、排放不需要的电荷、然后取出接收光输出所需要的总时间的增加小。另一方面,由于暂停时间段“Pd”被缩短,因此有可能相对地增加用于在发光时间段“Pb”中检测空间信息的时间。
在具有多个光电转换部分D1的图像传感器中,为了简单地根据定时控制电路4的输出控制操作定时,关于所有光电转换部分D1设置相同次数的称量操作“W”是有利的。因此,如上所述,为了减少由一次称量操作“W”分离出的不需要的电荷的量,期望将称量时间段“Pt”中的称量操作“W”的次数设置得尽可能大。
因此,关于所有像素,信号处理部分减少由一次称量操作“W”分离出的不需要的电荷的量,并且还通过缩短暂停时间段来增加称量操作“W”的次数,使得通过除以由一次称量操作“W”分离出的不需要的电荷的量而获得的余数小于规定值。根据该配置,当通过进行多次称量操作分离出不需要的电荷时,暂停时间段被缩短,并且称量操作的次数被增加。结果,尽管关于光电检测器的每个光电转换部分重复相同次数的称量操作,但是没有从每个光电转换部分生成的电荷中分离出的留下的不需要的电荷的量变得小。因此,有可能减少混合在作为接收光输出取出的电荷中的除了信号光成分以外的不需要的成分的量。
另外,如上所述,当不需要的电荷被分离并排放时,大部分接收光输出对应于信号光成分。然而,当信号光的接收光强度增加时,光电检测器1可能饱和。另一方面,当信号光的接收光强度降低时,由于如散粒噪声的内部噪声的影响,S/N比可能恶化。在以上操作例子中,在恒定长度的发光时间段“Pb”下调节不需要的电荷的量。在光接收侧调节信号光的接收光量的情况下,还需要调节发光时间段“Pb”的长度。
例如,如图7A所示,发光时间段的长度可以从多个长度(Pb1、Pb2、Pb3)中选择是有利的。通过选择发光时间段(Pb1、Pb2、Pb3)中的一个以获得适当的接收光输出,可以提高关于信号光的动态范围。也就是说,确定发光时间段(Pb1、Pb2、Pb3)的长度,使得在光电检测器1不饱和的条件下获得尽量大的接收光输出。在使用该技术的情况下,不需要的电荷的量由于发光时间段(Pb1、Pb2、Pb3)长度的改变而改变。
关于在具有信号光和环境光的环境下改变发光时间段(Pb1、Pb2、Pb3)的长度的情况进行说明。当不需要的电荷没有被排放时,对应于环境光的电荷的量和对应于信号光的电荷的量二者随着发光时间段变长而增加。因此,如上所述,需要排放不需要的电荷使得不出现饱和。
每次称量操作“W”排放的不需要的电荷的量响应于在暂停时间段(Pd1、Pd2、Pd3)中获得的环境光的接收光量增加或减少。因此,通过响应于发光时间段(Pb1、Pb2、Pb3)的长度改变暂停时间段(Pd1、Pd2、Pd3)的长度,可以调节通过一次称量操作分离出的不需要的电荷的量。
也就是说,在发光时间段(Pb1、Pb2、Pb3)中收集的不需要的电荷的量与发光时间段(Pb1、Pb2、Pb3)的长度成比例。另外,通过一次称量操作“W”排放的不需要的电荷的量与在暂停时间段(Pd1、Pd2、Pd3)中获得的接收光量成比例。因此,当不考虑发光时间段(Pb1、Pb2、Pb3)的长度在每个发光时间段(Pb1、Pb2、Pb3)中设置相同次数的称量时间段“Pt”时,要排放的不需要的电荷的量可通过设置发光时间段(Pb1、Pb2、Pb3)的长度和暂停时间段(Pd1、Pd2、Pd3)的长度之间的比例关系来适当调节。在这种情况下,由于需要在具有不同长度的发光时间段(Pb1、Pb2、Pb3)中设置相同次数的称量时间段“Pt”,所以根据发光时间段(Pb1、Pb2、Pb3)的长度调节称量时间段“Pt”之间的时间间隔。
在上述操作中,根据发光时间段(Pb1、Pb2、Pb3)的长度改变暂停时间段(Pd1、Pd2、Pd3)的长度。可替代地,如图7B中所示,暂停时间段“Pd”的长度保持恒定而不考虑发光时间段(Pb1、Pb2、Pb3)的长度也是有利的,并且根据发光时间段(Pb1、Pb2、Pb3)的长度改变一个称量时间段“Pt”中称量操作“W”的次数。由于在称量操作“W”中排放的不需要的电荷的量通过在暂停时间段“Pd”中获得的接收光量来确定,所以其不依赖于发光时间段(Pb1、Pb2、Pb3)的长度。因此,可以关于每个发光时间段(Pb1、Pb2、Pb3)改变称量时间段“Pt”中称量操作“W”的次数。
在该操作中,在一个称量操作“Pt”中排放的不需要的电荷的量根据发光时间段(Pb1、Pb2、Pb3)的长度调节。因此,这基本上等同于调节暂停时间段(Pd1、Pd2、Pd3)的长度的操作。在这点上,由于在称量时间段“Pt”排放的不需要的电荷的量是通过一个称量操作“W”排放的不需要的电荷的量的整数倍,所以与根据发光时间段(Pb1、Pb2、Pb3)的长度调节暂停时间段(Pd1、Pd2、Pd3)的长度的操作相比,在接收光输出中除了信号光成分以外的不需要的成分的量有可能稍微增加。
与在发光时间段“Pb”中只进行一次称量操作“W”的情况相比,在发光时间段“Pb”中重复多次称量操作“W”的情况下,可以减少一次称量操作“W”排放的不需要的电荷的量。结果,由于暂停时间段“Pd”变短,有可能减少发光时间段“Pb”和暂停时间段“Pd”的总时间。另外,通过在发光时间段“Pb”中设置多个称量时间段“Pt”,有可能在保持即使环境光增加也不超过饱和水平L1的状态下,累积对应于信号光的电子。
另一方面,在发光时间段“Pb”中设置多个称量时间段“Pt”的情况下,由于在一个称量时间段“Pt”中排放的不需要的电荷的量被设置成使得对应于信号光的成分不作为不需要的电荷而被排放,因此有可能在重复多次称量时间段“Pt”的操作期间累积残留的不需要的电荷。也就是说,在一个称量时间段“Pt”中排放的不需要的电荷量被理想地调整为使得仅留下对应于信号光的电子的量。然而,实际上,由于在每个称量时间段“Pt”都生成并累积除了对应于信号光的电子以外的残留电子,所以在接收光输出中包含对应于该残留电子的成分以及对应于信号光的成分。
也就是说,如图8所示,在发光时间段“Pb”中称量时间段“Pt”之前累积的电子的量V1大于要排放的不需要的电荷的量V2和对应于信号光的电子的量V3的总和。在排放不需要的电荷后,除了对应于信号光的电子之外还有如噪声的残留电子(电荷量V4)。由于大部分残留电子是由如散粒噪声的内部噪声生成的,所以不能从暂停时间段“Pd”中获得的接收光量估计出残留电子的量。在这点上,尽管由散粒噪声导致的每个称量时间段“Pt”的残留电子的量等随时间推移而变化,但是平均来说几乎是恒定的。
上述残留电子出现在每个称量时间段“Pt”,并在发光时间段“Pb”期间累积。因此,当在发光时间段“Pb”中重复称量时间段“Pt”时,存在残留电子的量达到一次称量操作“W”排放的不需要的电荷的量的情况。如上所述,由于可以估计出残留电子的量的平均值,所以有可能确定累积与一次称量操作排放的不需要的电荷的量相对应的残留电子所需的称量时间段“Pt”的次数。
从该观点来看,每次称量时间段“Pt”的次数达到估计的次数时,称量操作“W”的次数只增加“一次”是有利的。从而有可能显著减少残留电子。另外,根据该操作,有可能防止信号光的动态范围受到残留电子的影响而恶化。
在发光时间段“Pb”中重复多次称量操作“W”的情况下,由于可以通过使用暂停时间段“Pd”的接收光量来估计要排放的不需要的电荷的量,所以需要将对应于暂停时间段“Pd”的接收光量的电子取出到光电检测器1的外部。在本实施例中使用该配置是有利的。另外在以下实施例中,可以将对应于暂停时间段“Pd”的接收光量的电子取出到光电检测器1的外部。
另外,交替进行用于估计不需要的电荷的量的暂停时间段“Pd”和发光时间段“Pb”不是必需的。在一个暂停时间段“Pd”中估计出的不需要的电荷的量可用在多个发光时间段“Pb”中。另外,由于可以将相邻发光时间段“Pb”之间的时间间隔设置得比暂停时间段“Pd”短,所以有可能增加在单位时间接收信号光的时间段的比率,并从而增加用于检测对象空间的空间信息的时间段。在以下实施例中可以以类似的方式使用暂停时间段“Pd”和发光时间段“Pb”之间的关系。
如上所述,在本实施例中,信号处理部分控制光电检测器,使得在发光时间段中设置多个称量时间段,在每个称量时间段中,以根据在暂停时间段中获得的接收光量确定的量分离不需要的电荷。另外,在每个称量时间段中多次重复称量操作。在对应于规定次数的称量时间段的每个定时增加称量操作的次数。规定次数可以通过使用从一个发光时间段中的噪声成分得出的电荷的量和由一个称量操作排放的不需要的电荷的量来确定。因此,有可能减少从接收光输出中的噪声成分得出的不需要的电荷的比率,并增加关于信号光成分的动态范围。
此外,当信号处理部分增加在发光时间段中排放不需要的电荷的操作的次数以增加在发光时间段中分离的不需要的电荷的量时,要排放的不需要的电荷的量可通过仅管理排放不需要的电荷的操作的次数被容易地控制。
另外,在信号处理部分控制光电检测器使得在发光时间段中进行多次排放不需要的电荷的操作,在相邻操作之间设置时间间隔,并且该时间间隔随着在暂停时间段获得的接收光输出增加而减小的情况下,当光电转换部分在发光时间段中收集的电荷增加时,不需要的电荷被排放。因此,有可能减小在光电转换部分中收集的电荷的增加速率,并且即使在环境光的接收光强度增加时,也可以防止接收光输出的饱和。也就是说,由于在发光时间段期间逐步排放不需要的电荷,所以与在发光时间段的末尾总地排放不需要的电荷的情况相比,在光电转换部分中收集的电荷的量难以达到饱和水平。而且,由于当环境光增加时称量操作之间的时间间隔被缩短,所以有可能减小在光电转换部分中收集的电荷的增加速率,并防止由环境光导致的饱和。
在以上说明中,可以使用一次称量操作或连续进行的多次称量操作来排放不需要的电荷。多次连续进行称量操作的时间段对应于上述称量时间段。
另外,当信号处理部分根据信号光的接收光强度选择具有不同的持续时间的多个发光时间段中的一个,并根据该发光时间段的持续时间增加或减少称量操作的次数时,有可能扩展关于信号光的动态范围。另外,由于通过根据发光时间段的持续时间的变化增加或减少称量操作的次数来控制要排放的不需要的电荷的量,所以暂停时间段的持续时间可以保持恒定而与发光时间段的持续时间无关。结果,有可能相对地减少暂停时间段和发光时间段的总时间的增加或减少。换句话说,通过将暂停时间段的持续时间设置得相对短,发光时间段和暂停时间段的总时间的增加或减少仅取决于发光时间段的持续时间的增加或减少。因此,暂停时间段和发光时间段的总时间的最大值比改变暂停时间段的持续时间的情况小。
(第二实施例)
本实施例特征在于使用能够根据接收光量自动改变作为不需要的电荷分离出的电子的量的光电检测器,而不使用用于控制势垒B1的外部电路。
也就是说,如图9A所示,作为用于自动调节不需要的电荷的量的配置,本实施例的光电检测器1具有在装置形成层11的主表面上不同于阱12的位置处形成的保持阱(holding well)15。保持阱15具有与阱12相同的导电类型,并且具有比阱12低的杂质浓度。也就是说,保持阱15的导电类型是n+。另外,通过绝缘层13在对应于保持阱15的位置处布置保持电极14d,并且通过绝缘层13在对应于装置形成层11上的阱12和保持阱15之间区域的位置处布置栅电极14e。保持电极14d电连接到垒控制电极14c。另外,对应于保持电极14d和栅电极14e的装置形成层11的区域被光屏蔽膜16光屏蔽。
另外,由于n+型保持阱15被p型装置形成层11围绕,所以如在阱12中一样在保持阱15中形成电子的势阱。在这点上,由于保持阱15具有比阱12低的杂质浓度,所以在不对分离电极14a、累积电极14b、垒控制电极14c以及保持电极14d施加电压的情况下在保持阱15中形成比阱12具有更大的深度的势阱。在保持阱15中形成的势阱用作保持电子的电荷保持部分D4。
随着保持在保持阱15中的电子的量增加,保持电极14d的电势降低,并且连接到保持电极14d的垒控制电极14c的电势也降低。当垒控制电极14c的电势降低时,势垒B1变高,从而电荷分离部分D2的容量增加。也就是说,当保持在保持阱15中的电子的量随着环境光变大而增加时,有可能响应于环境光增加作为不需要的电荷分离出的电子的量。因此,有可能关于信号光保持动态范围几乎恒定,而与环境光的增减无关。
为了根据环境光的增加或减少而增加或减少保持在保持阱15中的电子的量,需要将通过接收环境光在光电转换部分D1生成的电子转移到保持阱15,并保持在那里。也就是说,设置用于将光电转换部分生成的电荷转移到保持阱15的时间段。由于保持阱15被光屏蔽膜16光屏蔽,所以即使当光照射到装置形成层11和阱12时,保持在保持阱15中的电子的量也不改变。
另外,在本实施例中,由于垒控制电极14c连接到保持电极14d,所以在对应于垒控制电极14c的区域处形成的势垒B1的高度不能任意控制。势垒B1的高度由在保持阱15中保持的电子的量来确定。由于这个原因,势垒B1的高度不能如参照图2A-2D说明的第一实施例中那样进行控制。因此,本实施例使用调节电荷分离部分D2和电荷累积部分D3的势能的技术。从而可以按照与第一实施例相同的过程移动电子。
对本实施例进行更详细的说明。与第一实施例中相同,假定在没有电压施加到分离电极14a和累积电极14b的情况下在阱12中形成的势阱用作光电转换部分D1。另外,与保持阱15相邻地形成漏极(未示出)以排放在保持阱15中收集的电子。首先,排放留在阱12和保持阱15中的电子。在该状态下,没有电压施加到分离电极14a、累积电极14b、垒控制电极14c、保持电极14d和栅电极14e。与图2A中的情况相同,在阱12中形成势阱。该势阱用作光电转换部分D1。此时,发光源没有接通,并且只有环境光入射到光电转换部分D1上。因此,光电转换部分D1在该时间段生成的电子对应于环境光的接收光量。
在阱12和保持阱15中的电子被排放之后,在预定的时间段期间在光电转换部分D1中收集对应于环境光的接收光量的量的电子,然后将其转移到保持阱15。也就是说,在发光源没有投射光的暂停时间段中获得的对应于环境光的电子的量保持在保持阱15中。当该电子从光电转换部分D1转移到保持阱15后,将正电压施加到栅电极14e以降低在光电转换部分D1和保持阱15之间形成的势垒B2。另外,将负电压施加到分离电极14a和累积电极14b,使得光电转换部分D1的势能被升高,从而高于保持阱15的势能。根据该操作,可以将电子从阱12移动到保持阱15中。
这样,转移到保持阱15的电子的量对应于发光源的暂停时间段中的接收光量。因此,不需要光电转换部分D1生成的所有电子都流入到保持阱15。也就是说,从阱12转移到保持阱15的电子的量与在发光源的暂停时间段获得的光电转换部分D1的接收光量相关联是重要的。
如图10A中所示,当对应于发光源的暂停时间段的电荷保持在保持阱15中时,确定在对应于垒控制电极14c的区域处形成的势垒B1的高度。也就是说,确定电荷分离部分D2的容量。随着流入到保持阱15的电子的量增加,保持阱15的表面电位减小。响应于表面电位的减小,保持电极14d的电位降低。结果,施加到垒控制电极14c的电压减小,从而势垒B1变高。在图11A-11C中所示的时间段“Ta”中,由于没有电压施加到分离电极14a、累积电极14b和栅电极14e,所以垒控制电极14c和保持电极14d的电位由保持在电荷保持部分D4中的电子的量来确定。
在将电子从光电转换部分D1转移到电荷保持部分D4之后,不需要留在光电转换部分D1中的电子。因此,通过使用与阱12相邻地形成的漏极排放该残留的电子。
接下来,当发光源被接通时,信号光和环境光都入射到光电转换部分D1上。这时,由于根据电荷保持部分D4中保持的电子的量在光电转换部分D1中形成势垒B1,所以收集了不超过势垒B1的高度的量的电子。也就是说,在阱12中,对应于分离电极14a的区域和对应于累积电极14b的区域用作光电转换部分D1。与在第一实施例的图2B中所示的操作中一样,通过形成势垒B1将阱12分为两个区域。
在这两个区域中的一个,即对应于分离电极14a的电荷分离部分D2中收集的电子不被使用而被排放掉,使用在对应于累积电极14b的电荷累积部分D3中收集的电子。因此,在本实施例中,在从发光源投射光的发光时间段中,阱12中对应于累积电极14b的区域实质上用作光电转换部分D1。因此,电荷累积部分D3还用作光电转换部分D1。
如图11A-11C的时间段“Tb”所示,没有电压施加到分离电极14a。如图10B中所示,通过使用漏极排放电荷分离部分D2中的电子。随后,如图11A和11B中的时间段“Tc”所示,对分离电极14a施加正电压,并对累积电极14b施加负电压。从而,如图10C所示,电荷分离部分D2的势能降低。此外,当电荷分离部分D2的势能相当大地降低时,势垒B1也降低。结果,电荷累积部分D3(光电转换部分D1)中的电子可流入到电荷分离部分D2中。
代替降低电荷分离部分D2的势能,可升高电荷累积部分D3的势能。在这种情况下,为了将电荷累积部分D3中的所有电子都移到电荷分离部分D2中,需要将电荷累积部分D3的势能设置为等于或大于势垒B1的势能。另外,降低电荷分离部分D2的势能的操作和升高电荷累计部分D3的势能的操作可以同时进行。
如图11A和11B中的时间段“Td”所示,在电荷累积部分D3中的所有电子都流入到电荷分离部分D2中后,去除对分离电极14a和累积电极14b施加的电压。此时,确定电荷分离部分D2的容量。如图10D中所示,当电荷分离部分D2中收集的电子超过电荷分离部分D2的容量时,超过该容量的电子通过势垒B1流入到电荷累积部分D3中。也就是说,从光电转换部分D1生成的电子中分离出与电荷分离部分D2的容量相对应的且根据保持在电荷保持部分D4中的电子的量(即,对应于发光源的暂停时间段的电子的量)确定的恒定量的电子作为不需要的电荷。另一方面,返回到电荷累积部分D3的电子用作有效电荷。
在上述实施例中,在光电检测器的内部自动调节势垒B1的高度而不使用外部电路。此外,由于不需要的电荷的量根据环境光的接收光量确定,所以接收光输出中信号光的动态范围可以几乎保持恒定而与环境光的接收光量无关。
在通过布置多个光电转换部分D1形成图像拾取装置的情况下,当通过使用外部电路对每个像素控制用于确定不需要的电荷的量的势能时,外部电路的配置变得非常复杂。另一方面,如本实施例中所述,当使用根据环境光的接收光量自动调节不需要的电荷的量的技术时,用于确定不需要的电荷的量的外部电路实质上是不必要的。另外,当图像拾取装置和外部装置集成在半导体衬底中时,由于光电转换部分D1相对于半导体衬底的面积比的减小,S/N比可能恶化。然而,在本实施例中,由于实质上不需要外部电路,所以可以获得改善的S/N比。其它配置和操作与第一实施例的相同。
因此,在光电转换部分生成电荷之后,通过控制对栅电极施加的电压可以将对应于预期时间段中接收光量的电荷从光电转换部分转移到电荷保持部分。在转移电荷之后,从对应于一时间段中的接收光量的电荷中分离出根据保持电极的电位确定的不需要的电荷的量。将光电转换部分生成的电荷转移到电荷保持部分的定时由对栅电极施加的电压来控制。结果,可取出反映用于生成转移到电荷保持部分的电荷的时间段中的接收光量和随后的适当时间段中的接收光量之差的有效电荷作为接收光量。
在本实施例中,栅电极14e用来控制将电子从阱12中作为光电转换部分D1形成的势阱转移到保持阱15中作为电荷保持部分D4形成的势阱的定时。可替代地,可省略栅电极14e。在这种情况下,通过控制对分离电极14a和累积电极14b施加的电压可以将电子从光电转换部分D1转移到电荷保持部分D4。
例如,对分离电极14a和累积电极14b施加正电压以形成势阱。在光电转换部分D1中收集电子后,对分离电极14a和累积电极14b施加负电压,使得收集在阱12中的电子移向保持阱15。通过对累积电极14b施加负电压,阱12和保持阱15之间的势垒被打破,使得电子容易从阱12移到保持阱15。另外,由于对分离电极14a施加负电压,有可能防止阱12中收集的电子向图9的左方向移动。
在电子从阱12移动到保持阱15中之后,对分离电极14a和累积电极14b施加正电压以在阱12中形成势阱。通过这些操作,有可能不使用栅电极14e将电子从光电转换部分D1移到电荷保持部分D4。
代替图9A,垒控制电极14c直接电连接到半导体衬底中作为电荷保持部分形成的保持阱15也是有利的。也就是说,如图9A所示,当在绝缘层13上形成保持电极14d时,保持电极14d成为浮动电极(floatingelectrode)。在这种情况下,随着时间的经过,在保持电极14d和垒控制电极14c之间的配线中容易累积噪声电荷。因此,期望形成用于从保持电极14d和垒控制电极14c之间的配线中去除(复位)噪声电荷的开关。另一方面,当对每个像素形成该开关时,可导致装置尺寸和生产成本的增加。
因此,保持电极14d不通过绝缘层形成在半导体衬底的对应于保持阱15的区域上。可替代地,在垒控制电极14c和半导体衬底的对应于保持阱15的区域之间进行直接的电连接。在这些情况下,当保持阱15被复位时,通过使用相邻形成的复位装置可以可靠地去除布线中的噪声电荷。图9B中所示的复位装置通过复位漏极100、在对应于保持阱15和复位漏极100之间的区域的位置处形成的复位电极14r以及用于排放来自复位漏极100的电荷的电路110形成。通过对复位电极14r施加预定电压Vr,有可能通过复位漏极100去除来自保持阱15的电荷。
(第三实施例)
在本实施例中,如在第二实施例中一样,形成电荷保持部分D4,且根据环境光的接收光量自动确定电荷分离部分D2的容量。本实施例特征在于通过具有恒定频率的调制信号调制在发光时间段中从发光源投射的光的强度,并取出与在与该调制信号的两个不同相位区间(phase zone)同步的定时获得的接收光量相对应的接收光输出。另外,使用正弦波作为调制信号的波形来取出分别与在0-180度的相位区间(在下文中称为相位区间“P0”)中获得的接收光量和在180-360度的相位区间(在下文中称为相位区间“P2”)中获得的接收光量相对应的接收光输出。可以使用矩形波、三角波或锯齿波作为调制信号的波形。另外,用于获得接收光量的相位区间不限于上述相位区间。
在本实施例中,通过布置多个单元1来配置图像传感器。可以在从图像传感器取出1帧的接收光输出的每个操作同时取出上述两个相位区间的接收光输出。在通过1帧取出两个相位区间的接收光输出的情况下,对每个单元1需要检测关于每个相位区间的接收光量的配置和累积关于每个相位区间的接收光输出的配置。因此,光电转换部分D1与电荷分离部分D2和电荷累积部分D3分离地形成。
参照图12A-12C更详细地说明本实施例。光电转换部分D1设置有在装置形成层11的主表面上形成的阱(未示出)和通过绝缘层13在阱上布置的多个灵敏度控制电极(例如,八个灵敏度控制电极17a-17h)。该阱具有与装置形成层11不同的导电类型。期望与用作电荷分离部分D2和电荷累积部分D3的阱12分离地形成该阱,且电荷经由栅极转移到阱12。可替代地,这些阱可以连续形成。在这种情况下,可以通过势能控制来转移电荷。八个灵敏度控制电极(17a-17h)中的四个灵敏度控制电极(17a-17d)用作一个相位区间的组,其余四个灵敏度控制电极(17e-17h)用作其它相位区间的组。控制线21a连接到每个灵敏度控制电极(17a-17h)。因此,可以独立地控制对每个灵敏度控制电极(17a-17h)施加的电压。在附图中,符号“X”表示控制线21a和每个灵敏度控制电极(17a-17h)之间的连接点。
图12A的纵向方向对应于图像传感器的垂直方向。在该图中,在垂直方向上仅示出一个单元1。也就是说,该一个单元1具有在垂直方向上布置的八个灵敏度控制电极(17a-17h)。在该图中示出在水平方向上与单元1相邻的另一单元1的一部分。每个灵敏度控制电极(17a-17h)在水平方向上在相邻的两个单元1的范围上延伸。附图标记20表示单元分离部分,在水平方向上的相邻单元1之间形成该单元分离部分以防止在水平方向上的单元1之间的串扰。通过使用具有不同于装置形成层11的导电类型的半导体在装置形成层11的主表面侧上形成单元分离部分20。在该图中,在单元分离部分20的两侧的每一侧设置四个控制线21a。因此,可以关于在水平方向上相邻地形成的两个单元中的每一个相等地确定光电转换部分D1中控制线21a的面积。因此,相邻的两个单元1的光电转换部分D1可具有相同的灵敏度。另外,在垂直方向上布置的多个单元1中的相同位置处的灵敏度控制电极连接到相同的控制线21a。
在本实施例中,如上所述,具有灵敏度控制电极(17a至17h)的光电转换部分D1与电荷分离部分D2和电荷累积部分D3分离地形成。另外,在水平方向上与灵敏度控制电极(17a至17h)相邻地布置电荷分离部分D2、电荷累积部分D3和电荷保持部分D4。尽管图中没有示出,在水平方向上相邻地形成的两个单元1中的右边一个的电荷分离部分D2、电荷累积部分D3和电荷保持部分D4布置在光电转换部分D1的右侧。另一方面,在水平方向上相邻形成的两个单元1中的左边一个的这些部分布置在光电转换部分D1的左侧。另外,每组灵敏度控制电极(17a-17h)形成电荷分离部分D2和电荷累积部分D3。电荷保持部分D4由构成一个单元1的两组共享,因为电荷保持部分D4用来保持对应于环境光的电子,且可以认为在这两组之间环境光没有变化。由于该配置,当将相同的电压施加到两组的垒控制电极14c时,可以在两组中获得具有相同高度的势垒B1。因此,当形成多组电荷分离部分和电荷累积部分,且电荷保持部分由相邻形成的两个垒控制电极14c共享时,与独立地形成电荷保持部分的情况相比,具有装置形成区域的尺寸减小的优点。
在每一组中,与灵敏度控制电极(17c,17f)相邻地形成累积电极14b。由光电转换部分D1生成的电子可以从对应于灵敏度控制电极(17c,17f)的区域转移到电荷累积部分D3。在这点上,通过调整光电转换部分D1和电荷累积部分D3之间的势能关系,还有可能将电子从电荷累积部分D3移到光电转换部分D1。可替代地,可以通过在光电转换部分D1和电荷累积部分D3之间布置栅电极(未示出)来控制二者之间的电荷的流动。
另外,在每一组中,与灵敏度控制电极(17a,17h)相邻地布置分离电极14a。另一方面,与跨在灵敏度控制电极(17d,17e)之间的区域相邻地布置由所述两个组共享的保持电极14d。分离电极14a,累积电极14b和栅电极14e分别连接到控制线21b。垒控制电极14c通过连接线22连接到保持电极14d。也就是说,控制线21b分别用来在所述组的分离电极14a之间、在所述组的累积电极14b之间以及所述组的栅电极14e之间进行连接。因此,通过使用这三个控制线21b可以控制电子在电荷分离部分D2、电荷累积部分D3和电荷保持部分D4中的移动。在该图中,符号“X”表示在控制线21b或连接线22和分离电极14a、累积电极14b、垒控制电极14c、保持电极14d或栅电极14e之间的连接点。
控制对灵敏度控制电极(17a-17h)施加的电压使得与用来调制从发光源投射的光的强度的调制信号同步。例如,在相位区间P0中,对灵敏度控制电极(17a-17d)和灵敏度控制电极17f中的每一个施加正电压。另一方面,在相位区间P2中,对灵敏度控制电极17c和灵敏度控制电极(17e-17h)中的每一个施加正电压。当对灵敏度控制电极(17a-17h)中的每一个施加正电压时,在对应于该单元中的每个灵敏度控制电极的区域形成用于收集电子的势阱。
如上所述,当对灵敏度控制电极(17a-17h)施加的电压被控制时,在对应于阱的灵敏度控制电极(17a-17d)的区域中收集通过光照在相位区间P0中生成的电子,另一方面,在对应于阱的灵敏度控制电极(17e-17h)的区域中收集通过光照在相位区间P2中生成的电子。也就是说,通过控制对灵敏度控制电极(17a-17h)的电压施加模式可以改变通过光照生成电子的面积。这基本等同于控制光电检测器的灵敏度。
在相位区间P0中,由于在对应于灵敏度控制电极17f的区域也形成势阱,所以可以在该势阱中保持在相位区间P2中收集的电子。另一方面,在相位区间P2中,可以将相位区间P0中收集的电子保持在对应于灵敏度控制电极17c的区域处形成的势阱中。
因此,关于每个相位区间由光照生成的电子可通过多个周期的调制信号来收集。例如,当调制信号是10MHz,且在光电转换部分D1处生成电子的时间段是15ms时,该多个周期对应于150000个周期。即使在用于将电子保持在对应于灵敏度控制电极(17c,17f)的区域中的时间段,在对应于灵敏度控制电极(17c,17f)的区域也生成电子。然而,由于在用于收集电子的时间段中的电子收集面积是用于保持电子的时间段中的电子收集面积的4倍(即面积比为4∶1),所以可以认为所保持的电子的量反映了调制信号的每个相位区间中的接收光量。简而言之,可以将对应于相位区间(P0,P2)中的每一个的量的电子保持在对应于灵敏度控制电极(17c,17f)的区域中。
保持在对应于灵敏度控制电极(17c,17f)的区域中的电子被转移到电荷累积部分D3中。在该转移步骤中,对累积电极14b施加正电压,并对灵敏度控制电极(17a-17h)施加负电压。在电荷分离部分D2、电荷累积部分D3和电荷保持部分D4中移动电子的情况下,对灵敏度控制电极(17a-17h)施加负电压以防止电子移到光电转换部分D1。在这点上,由于在对应于灵敏度控制电极17c的区域中保持在相位区间P2中收集的电子,并且在对应于灵敏度控制电极17f的区域中保持在相位区间P0中收集的电子,所以一个组的电荷累积部分D3接收来自光电转换部分D1的电子的定时不同于另一组的电荷累积部分D3接收来自光电转换部分D1的电子的定时。
在发光源的暂停时间段中在光电转换部分D1处生成的电子通过对应于栅电极14e的区域从电荷累积部分D3转移到电荷保持部分D4。在这点上,尽管对于发光源的暂停时间段不需要调制信号,但是在与发光源的发光时间段相同的定时控制对灵敏度控制电极(17a-17h)施加的电压以在光电转换部分D1处生成对应于环境光的接收光量的量的电子。因此,在两组一个单元1中,对应于环境光的电子被转移到电荷累积部分D3。电子从所述组的一个电荷累积部分D3转移到电荷保持部分D4就足够了。可替代地,电子可以从所述组的两个电荷累积部分D3转移。在对应于环境光的接收光量的量的电子被转移后,对通过连接线22连接到保持电极14d的垒控制电极14c施加电压,使得根据环境光的接收光量在各个阱12中形成势垒B1。
接下来,在发光源的发光时间段中,通过光电转换部分D1每个组收集电子。结果,在相位区间(P0,P2)中收集的电子分别保持在对应于灵敏度控制电极(17c,17f)的区域中。然后,电子从光电转换部分D1移到电荷累积部分D3。此后进行的操作与第二实施例中的操作相同。也就是说,电子从电荷累积部分D3移到电荷分离部分D2,使得根据电荷分离部分D2的容量确定的不需要的量的电荷被排放,并且有效电荷返回到电荷累积部分D3。通过该操作,有可能在电荷累积部分D3中获得有效电荷。该有效电荷的量对应于通过从光电转换部分D1在发光源的发光时间段中收集的电子分离出由发光源的暂停时间段中的接收光量确定的不需要的量的电荷而获得的电荷的量。
本实施例使用将电荷累积部分D3中的有效电荷返回到光电转换部分D1中的配置。也就是说,通过对累积电极14b施加负电压,并对感光控制电极(17c,17f)施加正电压,使有效电荷的电子从电荷累积部分D3转移到光电转换部分D1。通过使用感光控制电极(17a-17h)作为垂直转移电极将转移到光电转换部分D1的电子进一步在垂直方向上转移,然后如在传统的CCD图像传感器中那样将其作为接收光输出取出到光电检测器的外部。
在本实施例的配置中,优选地对除光电转换部分D1之外的部分进行光屏蔽。也就是说,通过光屏蔽电荷分离部分D2、电荷累积部分D3和电荷保持部分D4,有可能防止在分离不需要的电荷的操作期间通过光照生成的电子作为误差成分混合到有效电荷中。另一方面,如在上述实施例那样,由于与用于收集通过光照在光电转换部分D1处生成的电子的光接收时间段相比,用于分离不需要的电荷和取出有效电荷的称量时间段相当短,所以电荷分离部分D2和电荷累积部分D3可以不被光屏蔽。即使在这种情况下,电荷保持部分D4也应该光屏蔽。
在本实施例中,由于在分离不需要的电荷的操作期间光电转换部分D1不收集通过光照生成的电子,所以与光电转换部分D1也用作电荷累积部分D3的情况相比,有可能实现误差的减小。其它配置和操作与第二实施例相同。
另外,在第二和第三实施例中关于如下情况进行了说明:空间信息检测装置特征为具有电荷保持部分D4的光电检测器和发光源的组合,并且对应于在发光源的暂停时间段中的接收光量(即环境光的接收光量)的量的电子保持在电荷保持部分D4中。在该装置中,通过使用光电检测器的接收光输出和从发光源投射的光之间的关系,有可能获得关于从发光源投射的光投射到的对象空间的信息。作为关于对象空间的信息,例如有对象空间中的物体的存在或不存在、该物体的反射系数以及到该物体的距离。根据关于对象空间所需的信息,可以适当设计用于处理接收光输出的电路(未示出)。
例如,在确定到对象空间中的物体的距离的情况下,通过具有预定频率的调制信号来调制从发光源投射的光的强度。光电检测器在与该调制信号同步的多个定时检测接收光量。这是检测从发光源投射的光入射到光电检测器上所用的飞行时间作为调制后的光的相位差的技术。为了计算该相位差,使用调制信号的两个不同相位区间中的接收光量之差。
在第三实施例中,由于在相位区间(P0,P2)中的每一个中获得有效电荷,所以可以使用所述相位区间的有效电荷之差来计算该距离。另一方面,在第二实施例中,当在相位区间(P0,P2)中的一个中获得的电子保持在电荷保持部分D4中时,与该相位区间的接收光量相对应的量的电子被确定为不需要的电荷,并且从在另一相位区间获得的电子中减去该不需要的量的电荷。也就是说,所获得的有效电荷的量对应于两个相位区间(P0,P2)的接收光量之差。因此,当通过外部电路计算出该距离时,有可能减少用于光电检测器的接收光输出的计算量。
在有效电荷的量等于两个相位区间(P0,P2)的接收光量之差的配置中,当在两个相位区间(P0,P2)中收集的电子交替保持在电荷保持部分D4中时,根据保持两个相位区间的接收光输出中的哪一个,在不同方向上出现误差。。在这种情况下,通过确定两个接收光输出的平均值,有可能消除通过分离不需要的电荷而导致的误差。结果,根据接收光输出可以准确检测有关对象空间的信息。
如本实施例中,当布置多个光电转换部分时,可以关于每个光电转换部分将称量时间段中分离出的不需要的电荷的量设置为相同。在这种情况下,与通过每个光电转换部分D1分别确定不需要的电荷的量的情况相比,通过形成用于控制不需要的电荷的量的共同电通道使得控制变得容易。
另外,当关于每个光电转换部分形成电荷分离部分,且信号处理部分关于每个电荷分离部分设置由一个电荷称量操作分离出的不需要的电荷的量时,优选地,关于所有电荷分离部分将电荷称量操作的次数设置为相同。根据该光电检测器,具有可以总地控制电荷称量操作的定时的优点。
(第四实施例)
在第三实施例中,关于与调制信号的0-180度的相位范围同步的相位区间P0中的接收光量和与调制信号的180-360度的相位范围同步的相位区间P2中的接收光量的每个形成电荷分离部分D2和电荷累积部分D3。本实施例特征在于关于这些相位区间(P0,P2)中的接收光量共享电荷分离部分D2和电荷累积部分D3。
也就是说,如图13所示,本实施例在以下方面与第三实施例相同:关于光电转换部分D1的每个单元1形成八个灵敏度控制电极(17a-17h)。在第三实施例中,在垂直方向上以对称的方式布置电荷分离部分D2、电荷累积部分D3和电荷保持部分D4。另一方面,在垂直方向上以非对称的方式布置本实施例的这些部分。在光电转换部分D1中,将形成电荷分离部分D2和电荷累积部分D3的区域E3布置在设置了灵敏度控制电极(17a-17d)的区域E1的一侧。如稍后所述,光电转换部分D1还用作电荷累积部分D3。此外,将形成电荷保持部分D4的区域E4布置在设置了灵敏度控制电极(17e-17h)的区域E2的一侧。
在形成电荷分离部分D2和电荷累积部分D3的区域E3中,与光电转换部分D1的灵敏度控制电极17a相邻地形成接受电极14f。当在接受电极14f下形成的势阱比在灵敏度控制电极17a下形成的势阱具有更大深度时,在灵敏度控制电极17a下形成的势阱中收集的电荷可以从光电转换部分D1接收。
在区域E3中,在灵敏度控制电极(17b,17c,17d)的一侧分别设置分离电极14a、垒控制电极14c和累积电极14b。在附图中,示出只有垒控制电极14c具有小的尺寸。然而,本实施例不局限于该尺寸关系。
另一方面,在形成电荷保持部分D4的区域E4中,与光电转换部分D1的灵敏度控制电极(17e-17g)相邻地形成栅电极14e。当在栅电极14e下形成的势阱比在灵敏度控制电极17f下形成的势阱具有更大深度时,在灵敏度控制电极17f下形成的势阱中收集的电荷可以从光电转换部分D1接收。
在区域E4中,形成保持电极14d使得在栅电极14e的一侧布置光电转换部分D1,而在栅电极14e的另一侧布置保持电极14d。因此,与第二和第三实施例中相同,当在保持电极14d下形成势阱且适当调节栅电极14e下的势能时,在灵敏度控制电极17f下的势阱中收集的电荷可流入到保持电极14d下的势阱中。
在电荷移到保持电极14d下的势阱,即电荷保持部分D4中后,通过保持在电荷保持部分D4中的量来确定垒控制电极14c的势能。也就是说,确定出在垒控制电极14c下形成的势垒的高度。与装置形成层11中的阱12(图1)相邻地形成漏极(溢出漏极)23。
参照图14,说明本实施例的操作。与第三实施例中相同,设置发光源的暂停时间段。在使用本实施例的光电检测器的情况下,首先在暂停时间段(S1)对光电转换部分D1的灵敏度控制电极(17e-17h)施加正电压,并将灵敏度控制电极(17a-17d)保持在基准电位。可替代地,可以对这些电极(17a-17d)施加负电压。然后,可以用施加负电压的状态代替基准电位状态。另外,还将在区域(E3,E4)中形成的分离电极14a、累积电极14b、保持电极14d、栅电极14e和接受电极14f保持在基准电位。
通过上述过程,对应于环境光的接收光量的电子被收集到对应于光电转换部分D1的灵敏度控制电极(17e-17h)的区域E2中(S2)。随后,只对灵敏度控制电极17f施加正电压,并将其余灵敏度控制电极(17a-17e,17g,17h)保持在基准电位。通过该操作,对应于环境光的接收光量的电子被收集到对应于灵敏度控制电极17f的势阱中。
接着,对栅电极14e施加正电压以在栅电极14e下形成通道。从而电子可以从灵敏度控制电极17f下的势阱转移到保持电极14d下的电荷保持部分D4(S3)。当电子转移到电荷保持部分D4时,保持电极14d的电位变成对应于环境光的接收光量的电位,并且垒控制电极14c的电位也变成相同的电位。也就是说,在垒控制电极14c下形成的势垒的高度被确定。
接着,启动从发光源投射光的发光时间段(S4)。在发光时间段中,由调制信号进行强度调制后的信号光被投射之后,进行以下操作以单独取出对应于相位区间(P0,P2)的接收光量的接收光输出。在本说明中,对应于相位区间P0的接收光量的电子被收集在区域E1中,对应于相位区间P2的接收光量的电子被收集在区域E2中。
首先,以与调制信号同步的周期进行一次或多次对区域E1的每个灵敏度控制电极(17a-17d)和区域E2的灵敏度控制电极17f施加正电压并将区域E2的残留灵敏度控制电极(17e,17g,17h)保持在基准电位(S5)的一组操作,以及对区域E1的灵敏度控制电极17b和区域E2的灵敏度控制电极(17e-17h)施加正电压并将区域E1的其余灵敏度控制电极(17a,17c,17d)保持在基准电位(S6)的操作。因而,对应于相位区间P0的接收光量的电子被收集在对应于灵敏度控制电极17b的势阱中,并且对应于相位区间P2的接收光量的电子被收集在对应于灵敏度控制电极17f的势阱中。
接着,进行从对应于每个相位区间(P0,P2)的接收光量的电子中分离出不需要的电荷并取出有效电荷的操作。由于对应于相位区间P0的接收光量的电子被收集到对应于灵敏度控制电极17b的势阱中,所以该电子通过对灵敏度控制电极17a施加正电压并使灵敏度控制电极17b保持在基准电位被转移到对应于灵敏度控制电极17a的势阱。此外,该电子通过对接受电极14f施加正电压并将灵敏度控制电极17a保持在基准电位被转移到接受电极14f下的势阱。也就是说,在区域E1中收集的对应于相位区间P0的接收光量的电子被转移到区域E3(S7)。
转移到区域E3的电子从对应于接受电极14f的势阱流入在对应于分离电极14a的区域处形成的电荷分离部分D2。在这点上,由于电荷分离部分D2和电荷累积部分D3之间的势垒的高度已被确定,所以在电荷分离部分D2中残留恒定量的不需要的电荷,并且其余电子流入电荷累积部分D3中。通过漏极23排放掉电荷分离部分D2中的不需要的电荷。因此,从对应于相位区间P0的接收光量的电子中去除不需要的电荷量,并取出有效电荷(S8)。
如上所述,将由此获得的有效电荷转移到在与累积电极14b相邻的灵敏度控制电极17d下形成的势阱。也就是说,通过从对应于相位区间P0的接收光量的电子中分离出对应于环境光的接收光量的不需要的电荷而获得的有效电荷从区域E3转移到区域E1(S9)。
类似地,需要关于在区域E2中收集的电子分离出不需要的电荷。在区域E2中,对应于相位区间P2的接收光量的电子被收集在对应于灵敏度控制电极17f的势阱中。为了将电子转移到区域E3,首先将电子从对应于灵敏度控制电极17f的势阱转移到对应于灵敏度控制电极17a的势阱。此时,为了防止转移的电子与从相位区间P0的接收光量获得的有效电荷混合,在垂直方向上转移在步骤S9转移到区域E1的电荷。也就是说,电子(即相位区间P0的有效电荷)从灵敏度控制电极17d下的势阱转移到相邻单元1的灵敏度控制电极17g下的势阱。另一方面,电子(即相位区间P2的电子)从灵敏度控制电极17f下的势阱转移到灵敏度控制电极17a下的势阱(S10)。
在对应于相位区间P2的接收光量的电子转移到灵敏度控制电极17a下的势阱后,其进一步从区域E1转移到区域E3。从转移的电子中分离出不需要的电荷,并将有效电荷累积在电荷累积部分D3中(S11-S13)。也就是说,通过进行与步骤S7-S9相同的操作,有可能取出相位区间P2的有效电荷。所获得的有效电荷转移到灵敏度控制电极17d下的势阱。因此,有效电荷从区域E3返回到区域E1(S14)。
根据上述过程,当获得每个相位区间(P0,P2)的有效电荷时,将它们在垂直方向上转移,并一次返回到对应于灵敏度控制电极(17b,17f)的区域(S15)。在发光时间段中将该操作重复规定次数(S16)后,最后取出在对应于灵敏度控制电极(17b,17f)的势阱中留下的电子作为接收光输出(S17)。
在本实施例中,在分离电极14a和漏极23之间形成排放电极14g,在保持电极14d和漏极23之间形成排放电极14h。通过控制对排放电极14g施加的电压可以在每次将电荷从区域E1转移到区域E3时排放不需要的电荷。另外,通过控制对排放电极14h施加的电压可以在每次将电荷从区域E2转移到区域E4时排放保持在电荷保持部分D4中的对应于环境光的接收光量的电子。其它配置和操作与上述实施例中的相同。
(第五实施例)
如图15中所示,本实施例特征在于在垂直方向上设置能够分离不需要的电荷的区域E3和形成光电转换部分D1的区域(E1,E2)。
也就是说,关于一个单元1形成灵敏度控制电极(17a-17f)。由三个灵敏度控制电极(17a-17c)和三个灵敏度控制电极(17d-17f)分别提供用于收集对应于相位区间(P0,P2)中的接收光量的电荷的区域(E1,E2)。此外,在垂直方向上的相邻单元1之间形成用于分离不需要的电荷的区域E3。在区域E3的一侧(即,在水平方向上远离区域E3的位置)还形成用于保持对应于环境光的接收光量的电荷的区域E4。
也就是说,在与单元1的灵敏度控制电极17f相邻的区域布置接受电极14f。在垂直方向上与接受电极14f相邻地按顺序布置分离电极14a、垒控制电极14c和累积电极14b。也就是说,在灵敏度控制电极17f和分离电极14a之间布置接受电极14f,并且在垒控制电极14c和相邻的另一单元1的灵敏度控制电极17a之间布置累积电极14b。
另外,形成栅电极14e使得区域E3的接受电极14f、分离电极14a和垒控制电极14c布置在栅电极14e的一侧。另外,在栅电极14e的另一侧布置保持电极14d。在这点上,垒控制电极14c通过连接线22电连接到保持电极14d。形成漏极23以沿着区域(E1,E2,E3,E4)的周围延伸。另外,在对应于保持电极14d的保持部分D4和漏极23之间布置排放电极14g。在p型装置形成层11上形成的n型阱12的表面上布置上述电极的每一个。
本实施例的操作与第四实施例基本相同。也就是说,在暂停时间段向对应于光电转换部分D1的区域E2的灵敏度控制电极(17d-17f)施加正电压,并且将区域E1的灵敏度控制电极(17a-17c)保持在基准电位。另外,将分离电极14a、累积电极14b、垒控制电极14c、保持电极14d、栅电极14e以及接受电极14f保持在基准电位。因此,对应于环境光的接收光量的电子被收集在光电转换部分D1的区域E2中。随后,只向区域(E1,E2)的灵敏度控制电极(17a-17f)中的一个(即,灵敏度控制电极17f)施加正电压,使得收集的电子被收集在对应于灵敏度控制电极17f的势阱中。
通过接受电极14f和栅电极14e将对应于灵敏度控制电极17f的势阱中收集的电子转移到保持电极14d下的保持部分D4。在该阶段,根据环境光设置在垒控制电极14c下形成的势垒的高度。
接下来,启动从发光源投射光的发光时间段。在与调制信号同步的周期进行至少一组向灵敏度控制电极(17a-17c,17e)施加正电压并将灵敏度控制电极(17d,17f)保持在基准电位的操作,和向灵敏度控制电极(17b,17d-17f)施加正电压并将灵敏度控制电极(17a,17c)保持在基准电位的操作,从而与同步于调制信号的相位区间(P0,P2)相关联。根据这些操作,对应于相位区间P0中的接收光量的电子被收集到灵敏度控制电极17b下的势阱中,且对应于相位区间P2中的接收光量的电子被收集到灵敏度控制电极17e下的势阱中。
在这点上,当在灵敏度控制电极17e下的势阱中收集的电子在垂直方向上转移,并且还被转移到在分离电极14a下作为电荷分离部分D2形成的势阱时,根据垒控制电极14c下的势垒高度分离不需要的电荷,并且在累积电极14b下的电荷累积部分D3中只累积有效电荷。也就是说,对应于相位区间P2的有效电荷被累积在电荷累积部分D3中。另一方面,通过预定路线(未示出)经由漏极23排放在电荷分离部分D2中留下的不需要的电荷。
在图15中,从分离电极14a的上游侧向下游侧连续形成漏极23。在这点上,假定电子从图15的上侧转移到下侧。可替代地,在分离电极14a的上游侧形成的漏极23可与在其下游侧形成的漏极23分离。在这种情况下,不需要的电荷被转移到与上游侧的漏极23相邻的一个灵敏度控制电极(17a-17f,例如灵敏度控制电极17e)下的区域。然后,向漏极23施加用于吸引电子的电压(例如+15V),并向对应于具有转移的不需要的电荷的区域的灵敏度控制电极17e施加用于逐出电子的电压(例如-5V)。对与不需要的电荷转移到的灵敏度控制电极17e相邻的灵敏度控制电极(17c,17d,17f,17g)也施加用于逐出电子的电压。根据这些操作,不需要的电荷可以通过漏极23排放而不流向灵敏度控制电极(17c,17d,17f,17g)。
接下来,在灵敏度控制电极17b下形成的势阱中收集的对应于相位区间P0的接收光量的电子在垂直方向上转移,并且还被转移到在分离电极14a下作为电荷分离部分D2形成的势阱中。此时,在累积电极14b下的电荷累积部分D3中累积的相位区间P2的有效电荷在垂直方向上转移,并且被临时保持在垂直方向上相邻的单元1的灵敏度控制电极17b下形成的势阱处。
如上所述,当对应于相位区间P0的接收光量的电子被转移到电荷分离部分D2时,不需要的电荷被分离,并且相位区间P0的有效电荷被累积在电荷累积部分D3中。
在朝向图15的上侧的垂直方向上转移在电荷累积部分D3中累积的相位区间P0的有效电荷以及在灵敏度控制电极17b下形成的势阱中累积的相位区间P2的有效电荷。通过控制对累积电极14b施加的电压,在电荷累积部分D3中累积的有效电荷可以越过在垒控制电极14c下形成的势垒。因此,通过在相反方向上转移该有效电荷,相位区间(P0,P2)的有效电荷可以分别累积在灵敏度控制电极(14b,14e)下的势阱中。
在发光时间段中将上述操作重复预定次数之后,有效电荷被作为接收光输出取出。在本实施例中,与第四实施例相比较,具有操作次数更少的优点。其它配置和操作与第一实施例的相同。在第二至第五实施例的每一个实施例中,保持电极14d通过绝缘层13布置在保持井15上。可替代地,保持电极14d可不通过绝缘层13欧姆连接到保持阱15。
(第六实施例)
本实施例特征在于设置了多个具有相同宽度的电极,通过使用具有相同宽度的电极的适当组合可以实现与使用多个具有不同宽度的电极的情况基本相同的操作。在本实施例中,与第三实施例相同,通过正弦调制信号调制从发光源投射的光的强度。光电转换部分D1还用作电荷分离部分D2和电荷累积部分D3。另外,不形成电荷保持部分D4。
如图16中所示,本实施例的一个单元1具有多个通过绝缘层13布置在装置形成层11的主表面上的阱12上的具有相同宽度的并且相互等间隔的控制电极(18a-18l)。也就是说,一个单元1包括十二个控制电极(18a-18l)。在一个单元1中,形成配线使得可以单独控制对控制电极(18a-18l)施加的电压。
除了以下各点,光电转换部分D1的操作基本上与使用第三实施例的灵敏度控制电极(17a-17h)的操作相同。在本实施例中,通过使用控制电极(18a-18i)来收集对应于相位区间P0中的接收光量的电子,并通过使用控制电极(18d-18l)来收集对应于相位区间P2中的接收光量的电子。参照图17A-17H说明这些操作。在图17A-17H中,控制电极(18a-18l)被表示为(a)-(l)。
在光接收时间段中光电转换部分D1的操作期间,如图17A所示,关于相位区间P0对控制电极(18a-18i)施加正电压,使得由对应于九个控制电极(18a-18i)的区域收集电子。另外,如图17B所示,关于相位区间P2对控制电极(18d-18l)施加正电压,使得由对应于九个控制电极(18d-18l)的区域收集电子。将关于每个相位区间(P0,P2)收集的电子保持在除了用于收集电子的区域以外的区域处。也就是说,在由对应于控制电极(18a-18i)的区域收集电子的相位区间P0中,将关于相位区间P2收集的电子保持在对应于控制电极18k的区域处。类似地,在对应于控制电极(18d-18l)的区域收集电子的相位区间P2中,将关于相位区间P0收集的电子保持在对应于控制电极18b的区域处。通过重复多次针对相位区间(P0,P2)的操作,将对应于接收光量的量的电子保持在对应于阱12中的控制电极(18k,18b)的区域处。
当光接收时间段结束,使得对应于相位区间P0中的接收光量的量的电子被收集到对应于控制电极18b的区域中,或者对应于相位区间P2中的接收光量的量的电子被收集到对应于控制电极18k的区域中时,启动称量时间段以进行用于分离不需要的电荷以获得有效电荷的操作。
例如,在从对应于控制电极18b的区域处保持的电子中分离出不需要的电荷的情况下,对控制电极18a施加负电压,以在相位区间P0中收集的电子被保持在对应于控制电极18b的区域处形成的势阱中的条件下形成势垒。另外,如下所述,为了使用对应于控制电极(18d,18e)的区域作为电荷累积部分,在相位区间P2中收集的电子被转移。也就是说,如图17C中所示,形成对应于控制电极(18c,18d)的势垒。随后,如图17D中所示,形成对应于控制电极(18c-18e)的势垒。此外,如图17E中所示,形成对应于控制电极(18f-18h)的势垒。因此,在相位区间P2中收集的电子可被转移。
另外,如图17E中所示,对控制电极(18d,18e)施加正电压以形成用作电荷累积部分D3的势阱,同时通过控制施加到控制电极18c的电压形成具有预定高度的势垒B3。通过该操作,不需要的电荷留在对应于控制电极18b的势阱中,且通过势垒B3上流入到对应于控制电极(18d,18e)的势阱中的电子用作有效电荷。
接下来,如图17F所示,增加对应于控制电极18c的势垒的高度以防止对应于相位区间P0的有效电荷的泄漏。同时,在相位区间P2中收集的电子被收集到对应于控制电极18k的势阱中。在该状态下,在对应于控制电极(18g-18i)的区域中形成势阱作为电荷累积部分D3,并且在对应于控制电极18j的区域处形成势垒B4。
如图17G所示,为了从保持在对应于控制电极18k的势阱中的电荷(电子)中分离出不需要的电荷,通过控制对控制电极18j施加的电压来降低势垒B4。通过势垒B4的高度来确定在相位区间P2中收集的电子中不需要的电荷的量。也就是说,对应于控制电极18k的区域用作电荷分离部分D2。
如图17H所示,在分离出不需要的电荷之后,增加对应于控制电极18j的势垒的高度,以防止关于区间P2在对应于控制电极(18g-18i)的势阱中收集的有效电荷的泄漏。另一方面,排放留在对应于控制电极(18b,18k)的区域中的不需要的电荷。
根据上述操作,从通过在相位区间(P0,P2)中的光照生成的电子中分离出不需要的电荷,并取出有效电荷。在本实施例中,由于在一列上布置控制电极(18a-18l),所以与传统CCD图像传感器的垂直转移电阻器的情况相同,通过在适当的定时对控制电极(18a-18l)施加电压可以在控制电极(18a-18l)的排列方向上转移有效电荷的电子。通过将该电子取出到光电检测器的外部,获得接收光输出。也就是说,在本实施例的配置中,光电转换部分D1还用作电荷分离部分D2、电荷累积部分D3和电荷取出部分。另外,由于可以同时进行用于从两个相位区间(P0,P2)中生成的电子中分离出不需要的电荷的操作,所以具有可以缩短分离不需要的电荷所需的处理时间的优点。
在上述配置中,关于进行与第一实施例相同的操作的情况进行了说明。可替代地,可以根据由分别形成的电荷保持部分D4保持的电子的量控制对控制电极18b、18k施加的电压。在这种情况下,如第二和第三实施例中所述,有可能自动调节不需要的电荷的量。其它配置和操作与上述实施例中的相同。
此外,在通过光电转换部分生成电荷的操作和从光电转换部分生成的电荷中分离出不需要的电荷并将有效电荷累积在电荷累积部分中的操作被重复多次之后,通过电荷取出部分将累积在电荷累积部分中的电荷取出作为接收光输出是有利的。在这种情况下,由于从光电转换部分生成的电荷中反复分离不需要的电荷,所以有可能减少在光电转换部分处出现饱和的可能性,并实现光电转换部分尺寸的减小。另外,当光电转换部分的尺寸减小时,电荷取出部分的容量也可减小。结果,有可能作为整体减小光电检测器的尺寸。
(第七实施例)
本实施例与第六实施例在以下方面相同:设置多个具有相同宽度的控制电极。然而,如图18所示,本实施例特征在于一个单元1具有九个控制电极(19a-19i)。如第六实施例中所述,六个控制电极用来累积对应于调制信号的一个相位区间的电子,并分离不需要的电荷。因此,不能通过使用九个控制电极(19a-19i)在不同区域处单独进行收集对应于调制信号的两个相位区间的电子和从其分离出不需要的电荷的操作。也就是说,在这两个相位区间中以重叠的方式使用这九个电极中的一部分。另外,在第六实施例中,可以同时进行从这两个区间中收集的电子中分别分离出不需要的电荷的操作。另一方面,在本实施例中,由于以重叠的方式使用该部分控制电极,所以从这两个相位区间中的一个收集的电子中分离不需要的电荷的操作在与从另一个相位区间收集的电子中分离不需要的电荷的操作不同的时间进行。
具体地,进行图19A-19O中所示的操作。当光电转换部分D1用于收集通过接收来自对象空间的光而生成的电子时,交替设置如图19A中所示的对每个控制电极(19g,19i)施加负电压的时间段和如图19B中所示的对每个控制电极(19a,19c)施加负电压的时间段。与调制信号同步设定这两个时间段。例如,图19A的状态对应于相位区间P0,图19B的状态对应于相位区间P2。在图19A-19O中,控制电极(19a-19i)被表示为(a)-(i)。
在图19A的状态中,对应于控制电极(19a-19f)的区域关于相位区间P0用作光电转换部分D1。在图19B的状态中,对应于控制电极(19d-19i)的区域关于相位区间P2用作光电转换部分D1。另外,在相位区间P0中收集的电子被保持在对应于相位区间P2中的控制电极19b的区域中。另一方面,在相位区间P2中收集的电子被保持在对应于相位区间P0中的控制电极19h的区域中。
在将图19A和19B的状态交替重复足够长的时间段之后,进行从对应于控制电极(19b,19h)的区域中保持的电子中分离不需要的电荷以获得有效电荷的操作。由于对应于控制电极19b的区域是用于有效电荷的区域,所以其也用作电荷累积部分D3。如上所述,由调制信号的两个相位区间共享该部分控制电极。在分离不需要的电荷的时间段中,在对应于控制电极19c的区域中一直形成势垒B5以防止在这两个相位区间中收集的电子相互混合。也就是说,一直向控制电极19c施加负电压。
在图19A-19O中,首先从相位区间P2中收集的电子中分离出不需要的电荷,然后从相位区间P0中收集的电子中分离出不需要的电荷。因此,在从相位区间P2中收集的电子中分离不需要的电荷的操作期间,将相位区间P0中收集的电子保持在对应于控制电极19b的区域中。
在光电转换部分D1收集由光照生成的电子之后,如图19C中所示,将相位区间P0中收集的电子保持在对应于控制电极19b的区域中形成的势阱中。另外,对控制电极19a施加负电压以形成势垒。维持该状态,直到从相位区间P2中收集的电子中分离出不需要的电荷(即,在图19C-19I的范围上)。另一方面,在图19C的状态下,将相位区间P2中收集的电子保持在对应于控制电极(19d-19f)的区域中形成的势阱中。也就是说,保持在相位区间P2中的对应于控制电极(19d-19i)的区域中的电子,或者保持在相位区间P0中的对应于控制电极19h的区域中的电子被收集在对应于控制电极(19d-19f)的区域中。
如图19D中所示,该操作是先前进行的操作以在对应于控制电极19h的区域中形成没有电子(空的)势阱。也就是说,在收集通过光照生成的电子的操作已经结束的阶段中,在相位区间P2中收集的电子存在于对应于控制电极19h的区域中。因此,如图19C中所示,在对控制电极(19g-19i)施加负电压之后,如图19D中所示,在对应于控制电极19h的区域中形成没有电子的势阱。
接下来,如图19E和19F中所示,保持在对应于控制电极(19d-19f)的区域中的电子被移到对应于控制电极19h的区域。首先,在对应于控制电极(19f-19h)的区域中形成势阱,并且在对应于控制电极(19c-19e)的区域中形成势垒。随后,在对应于控制电极19f的区域中形成势垒,并且还在对应于控制电极19g的区域中形成势垒。因此,可以在对应于控制电极19h的区域中收集电子。在该阶段中,在对应于控制电极(19d-19f)的区域中形成空势阱。尽管在图19E的状态和图19F的状态之间存在多个中间状态,但是它们没有在附图中示出。另一方面,关于势能,图19F的状态与图19D的状态相同。然而,在图19D的状态中,电子存在于对应于控制电极(19d-19f)的区域中,而在图19F的状态中,电子存在于对应于控制电极19h的区域中。
通过上述过程,在相位区间P2中收集的电子被收集到对应于控制电极19h的区域中。接下来,如图19G中所示,对应于控制电极19g的势垒B6被降低。该势垒B6与第一实施例中所说明的势垒B1具有相同的功能。根据势垒B6的高度确定的量的电子留在作为电荷分离部分D2的对应于控制电极19h的区域中。超出电荷分离部分D2的容量的量的电子越过势垒B6流入到对应于控制电极(19d-19f)的区域,即电荷累积部分D3中。
在电子流入到电荷累积部分D3中后,如图19H所示,通过对控制电极19g施加负电压来增加势垒B6的高度。因而电荷分离部分D2中的不需要的电荷可以与电荷累积部分D3中的有效电荷完全分离。如图19I所示,从电荷分离部分D2中排放不需要的电荷,并将有效电荷留在对应于控制电极(19d-19f)的区域中。有效电荷的量对应于相位区间P2中的接收光量。
另一方面,保持在对应于控制电极19b的区域中的电子的量对应于相位区间P0中的接收光量。不需要的电荷可通过图19J-19O所示的过程从电子中分离。在该过程期间维持相位区间P2的有效电荷保持在对应于控制电极(19d-19f)的区域中的状态。本实施例特征在于对应于控制电极19h的区域具有针对收集在相位区间P2中的电子的电荷分离部分D2的功能和针对收集在相位区间P0中的电子的电荷分离部分D2的功能。
也就是说,在不需要的电荷被排放后,如图19J和19K中所示,保持在对应于控制电极19b的区域中的相位区间P0的电子被移动到对应于控制电极19h的区域中。此时,对应于控制电极(19a,19i)的区域的势能被首先降低,使得对应于控制电极(19a,19b,19h,19i)的区域的势能彼此相等。随后,在对应于控制电极19h的区域中收集电子。在该图中没有示出图19J和19K之间的中间状态。简而言之,首先增加对应于控制电极19b的区域的势能。随后,增加对应于控制电极19a的区域的势能,然后增加对应于控制电极19i的区域的势能。在对应于控制电极19h的区域中收集电子之后,降低对应于控制电极(19a,19b)的区域的势能。
根据上述操作,相位区间P0的电子被保持在对应于控制电极19h的区域中,且对应于控制电极19h的区域用作电荷分离部分D2。接下来,如图19L所示,在对应于控制电极19i的区域中形成势垒B7。越过势垒B7流入对应于控制电极(19a,19b)的区域中的电子是有效电荷。也就是说,对应于控制电极(19a,19b)的区域用作电荷累积部分D3。
随后,如图19M所示,升高对应于控制电极19i的势垒B7。在电荷分离部分D2中的电子与电荷累积部分D3中的电子隔离的状态下,当电荷分离部分D2中的电子作为不需要的电荷被排放时,如图19N中所示,对应于相位区间P2中的接收光量的电子保持在对应于控制电极(19d,19e,19b)的区域中,且对应于相位区间P0中的接收光量的电子保持在对应于控制电极(19a,19b)的区域中。在通过图19O的状态取出这些电子之后,再现图19A和19B中所示的状态以收集通过光照生成的电子。
因此,在本实施例中,作为一个单位设置多个控制电极,并且在光接收时间段中的不同的两个定时(例如,A0、A2)生成电荷。所生成的电荷被暂时收集到在对应于该一个单位的不同控制电极的区域形成的势阱中。另一方面,在称量时间段中,关于在两个定时中的一个生成的电荷形成的电荷分离部分、电荷累积部分和势垒被设置在与关于在另一个定时中生成的电荷形成的电荷分离部分、电荷累积部分和势垒不同的位置处。因而有可能增加用于在光接收时间段中收集电荷的区域。而且,在称量时间段中,从在这两个不同定时中的每一个生成的电子中分离出不需要的电荷。也就是说,由于用于从在这两个定时中的一个生成的电荷中分离不需要的电荷的控制电极不同于用于从在另一个定时生成的电荷中分离不需要的电荷的控制电极,所以有可能从在这两个不同定时中的每一个生成的电荷中分离出不需要的电荷,同时防止在这两个定时生成的电荷相互混合。
另外,在称量时间段中,用于保持在这两个不同的定时中的一个生成的电荷的势阱可用作在这两个定时收集的电荷的电荷分离部分。在图19A-19O中,在右端示出控制电极(i)。实际上,设置相邻单元的控制电极(a)-(i)。因此,对应于控制电极19h的势阱用作在相位区间P2中收集的电子的电荷分离部分D2。另一方面,在相邻单元中,如图19L所示,对应于控制电极19h的势阱还用作在相位区间P0中收集的电子的电荷分离部分D2。此时,通过使用与对应于电荷分离部分D2的控制电极19h的两侧相邻的每个控制电极形成在每个定时收集的电子的势垒。
也就是说,当从在相位区间P2中收集的电子中分离出有效电荷时,使用通过对控制电极19g施加电压而形成的势垒。另一方面,当从在相位区间P0收集的电子中分离出有效电荷时,使用通过对控制电极19i施加电压而形成的势垒。因此,由于在两个定时收集的电子共享用作电荷分离部分的区域,所以与第六实施例的电极配置相比较,有可能减少控制电极的数量,且作为整体减小控制电极的占用面积,同时保持在两个定时生成电荷的功能。结果,光电检测部分的尺寸可减小。另外,当配置图像拾取装置使得布置多个单元1,且每个单元1提供一个像素时,存在如下优点:一个像素的占用面积减小,并且实现了分辨力的提高。其它配置和操作与上述实施例中的相同。
(第八实施例)
本实施例特征在于根据以下方法从通过接收来自对象空间的光生成的电荷(电子)排放规定的恒定量的不需要的电荷。
也就是说,如图20所示,在装置形成层11的主表面侧形成的排放阱25被布置在与用作光电转换部分D1的阱12不同的位置处。另外,通过绝缘层13在装置形成层11的主表面上且在阱12和排放阱25之间形成排放栅电极26。而且,排放电极27欧姆连接到排放阱25。排放阱25具有与阱12相同的导电类型,并且排放阱25的杂质浓度高于阱12的杂质浓度。
一直向排放电极27施加正的恒定电压,使得可以通过排放电极27排放在排放阱25中收集的电子。另外,当对排放栅电极26施加正电压时,形成通道使得电子可以在阱12和排放阱25之间移动。阱12中的电子通过该通道移向排放阱25。在这点上,当对排放栅电极26和排放电极27施加的电压保持恒定时,从阱12到排放阱25的电子迁移率(electronmobility)几乎是恒定的。
在接收到来自对象空间的光时在阱12的光电转换部分D1中收集电子之后,在预定的时间段对排放栅电极26施加规定的恒定电压以使电子从阱12移动到排放阱25。如上所述,由于电子迁移率是恒定的,所以与对排放栅电极26施加电压的时间段成比例地确定的量的电子可以被移动到排放阱25。也就是说,当从阱12移动到排放阱25的电子是不需要的电荷,且在阱12中的残留电子被用作有效电荷时,意味着可以从阱12中生成的电荷去除规定的恒定量的不需要的电荷。在阱12中所留的有效电荷被取出作为接收光输出。
根据本实施例,通过对排放栅电极26和排放电极27施加的电压以及对排放栅电极26施加电压的时间段来确定不需要的电荷的量。另一方面,如上所述,由于对排放栅电极26和排放电极27施加的电压保持恒定,所以不需要的电荷的量被表示为对排放栅电极26施加电压的时间段的函数。另外,由于在阱12中残留有效电荷,所以本实施例的阱12用作光电转换部分D1,还用作电荷累积部分D3。排放阱25、排放栅电极26以及排放电极27用作电荷分离部分D2。其它配置和操作与上述实施例的相同。
(第九实施例)
本实施例特征在于通过控制对在用于取出接收光输出的电荷转移部分处形成的转移控制电极31施加的电压将电荷转移部分用作电荷累积部分D3,而不形成用于控制电子在用于分离不需要的电荷的电荷分离部分D2处的移动的电极。也就是说,在每个上述实施例中,电极布置与帧转移型(frame-transfer type)CCD图像传感器的电极配置相同。在本实施例中,电极布置与隔行转移(interline-transfer,IT)型CCD图像传感器的电极配置相同。
如图21所示,在n型衬底10上形成p型装置形成层11。在装置形成层11的主表面上并且在p+型势阱33的一侧形成n+型阱12。另外,在p+型势阱33的相对侧形成n型转移阱32。转移阱32具有与IT型CCD图像传感器相同的配置。转移控制电极通过绝缘层34布置在转移阱32的主表面上。转移阱32被光屏蔽膜35覆盖。在与图21的页面垂直的方向上布置多个转移控制电极31。为了转移电子,与传统情况相同,控制对转移控制电极31施加电压的顺序。为了分离不需要的电荷,与转移控制电极31相结合地使用欧姆连接到衬底10的漏电极36。阱12由光电转换部分D1和电荷分离部分D2共同使用。
在本实施例中,阱12没有电极,且装置形成层11具有与阱12不同的导电类型。因此,如图22C中所示,在阱12中形成势阱。势阱33在阱12和转移阱32之间呈现势垒B8。此时,假定转移阱32处于无电子状态。另外,没有电压施加到转移控制电极31,且对漏电极35施加正电压(例如5伏)。
通过光照光电转换部分D1生成电子之后,对转移控制电极31施加相对大的正电压(例如10伏)。随着对转移控制电极31施加的电压更大,势垒B8的势能减小。当对转移控制电极31施加比在转移电子的情况下施加的电压高的适当电压时,在阱12中收集的一部分电子通过势垒B8流入转移阱32,如图22D中所示。由于势垒B8的高度由对转移控制电极31施加的电压确定,所以在阱12中可残留下规定的恒定量的电子。也就是说,阱12用作电荷分离部分D2,且转移阱32用作电荷累积部分D3。
当在阱12中残留不需要的电荷,且有效电荷流入转移阱32时,停止对转移控制电极31施加电压,并且对漏电极36施加相对高的正电压(例如15伏)。在该状态下,如图22E所示,势垒B8变高,且在转移阱32中形成的势阱变浅。也就是说,流入转移阱32中的有效电荷保持在电荷累积部分D3中。另外,通过漏电极36排放在阱12中残留的不需要的电荷。
根据以上操作,从通过接收来自对象空间的光而生成的电子中分离出规定的恒定量的电子作为不需要的电荷,且有效电荷残留在转移阱32中。通过控制对转移控制电极31施加的电压并进行与传统CCD图像传感器的垂直转移电阻器的情况类似的操作,可以在与该图的页面垂直的方向上转移有效电荷。其它配置和操作与上述实施例的相同。
另外,当本实施例的图21所示的光电检测器与用于投射由调制信号进行强度调制的光以检测对象空间的信息的发光源相结合使用时,需要提取对应于调制信号的预定相位区间的接收光量。在这种情况下,例如,如图23A所示,在光接收时间段“T1”对转移控制电极31施加相对大的正电压(例如15伏)以在转移阱32中形成深的势阱。因而,由光电转换部分D1(阱12)生成的电子可流入到转移阱32中。另一方面,如图23B所示,与调制信号同步地以高和低两个阶段(例如15V和5V)改变对排放电极36施加的电压,从而交替重复排放电子的状态和电子流入在转移阱32中形成的势阱中的状态。当在从光电转换部分D1生成的电荷中取出用作接收光输出的电荷的定时将施加给排放电极36的电压改变为低电压时,允许预期的电荷流入转移阱32中。图22A和22B中示出光接收时间段“T1”中势阱的变化。
在进行上述操作的光接收时间段中多次改变对排放电极36施加的电压之后,启动称量时间段“T2”。在称量时间段“T2”中,对转移控制电极31施加负电压(例如-5伏),使得转移阱32的势阱变浅。另外,将施加到排放电极36的电压控制为相对低的电压(例如5伏),使得电子不从阱12排放。根据该关系,电子可以从转移阱32返回到阱12。在电子返回到阱12之后进行的电荷称量操作与上述的相同。
本发明的目的和特征是通过防止饱和而不受环境光的增加或减少的影响稳定地获得检测空间信息所需的有效电荷。因此,尽管在优选实施例中没有对细节进行说明,但是通过使用作为接收光输出的有效电荷检测的空间信息包括:通过使用在与调制信号的多个相位区间同步的不同定时检测到的接收光输出之差来测量到对象空间中物体的距离;生成具有像素值的振幅图像,每个像素值由上述差来提供;从振幅图像识别物体的尺寸或形状;以及通过消除环境光成分来获得如对象空间中物体的反射率的信息。
工业应用
如上所述,根据本发明,通过控制对垒控制电极施加的电压以改变势垒的高度来调节通过势垒从电荷分离部分流入电荷累积部分的电荷量,并排放在电荷分离部分中残留的不需要的电荷。因此,有可能提供这样的空间信息检测装置:其能够减小光电转换部分的尺寸,并且即使在通过接收来自对象空间的光生成大量不需要的电荷的情况下,也能够通过防止饱和现象来可靠地获得有效电荷。
特别地,当根据光电转换部分在暂停时间段生成的电荷量调节从对应于发光时间段中的接收光量的电荷中作为不需要的电荷分离出的电荷量时,即使在对象空间中出现环境光的增加或减少时,也可以根据环境光的变化自动排放适当量的不需要的电荷。
因此,由于本发明的空间信息检测装置具有准确检测室内和室外任何地方的对象空间的信息的能力,所以预期将扩展传统空间信息检测装置的应用领域。

Claims (13)

1.一种空间信息检测装置,包括:
发光源,被配置成将由调制信号进行强度调制的信号光投射到对象空间;
光电检测部分,被配置成在与所述调制信号同步的定时从对应于从所述对象空间检测的接收光量的电荷分离出恒定量的偏置成分,从而提供反映所述信号光的波动成分的接收光输出;以及
信号处理部分,被配置成通过使用所述接收光输出来检测所述对象空间的空间信息;
其中所述光电检测部分包括:
光电转换部分,被配置成接收来自所述对象空间的光以生成电荷;
电荷分离部分,被配置成从由所述光电转换部分生成的电荷中分离出对应于所述偏置成分的规定的恒定量的不需要的电荷,其中所述光电转换部分生成的电荷对应于不依赖于所述信号光的波动的所述恒定量的偏置成分和根据所述信号光的波动变化的所述波动成分的总和;
电荷累积部分,被配置成累积通过从所述光电转换部分生成的电荷中分离出所述不需要的电荷而获得的残留电荷作为有效电荷;以及
电荷取出部分,被配置成取出在所述电荷累积部分中累积的所述有效电荷作为所述接收光输出;
其中所述发光源被配置成向所述对象空间照射由所述调制信号进行强度调制的光,从而具有从所述发光源向所述对象空间投射所述强度调制的光的发光时间段和不向所述对象空间投射所述强度调制的光的暂停时间段,
其中所述光电检测部分包括电荷量调节装置,被配置成根据所述光电转换部分在所述暂停时间段中生成的电荷量调节从对应于在所述发光时间段中获得的接收光量的电荷中分离出的作为所述不需要的电荷的电荷的量,
其中所述电荷分离部分和所述电荷累积部分是在半导体衬底中形成的势阱,
其中在所述电荷分离部分和所述电荷累积部分之间布置垒控制电极以形成势垒,以及
其中所述电荷量调节装置根据所述光电转换部分在所述暂停时间段中生成的电荷量控制对所述垒控制电极施加的电压,以改变所述势垒的高度,从而调节通过所述势垒从所述电荷分离部分流入所述电荷累积部分的电荷的量。
2.根据权利要求1所述的空间信息检测装置,其中当所述光电转换部分在所述暂停时间段中生成的电荷量增加时,所述电荷量调节装置增加要从与在所述发光时间段中获得的所述接收光量相对应的电荷中分离出的不需要的电荷的量。
3.根据权利要求1所述的空间信息检测装置,其中所述电荷量调节装置具有电荷保持部分,该电荷保持部分是在所述半导体衬底中形成的势阱,以保持所述光电转换部分在所述暂停时间段中生成的电荷,以及
所述电荷量调节装置对所述垒控制电极施加根据所述电荷保持部分保持的电荷量确定的电压。
4.根据权利要求3所述的空间信息检测装置,其中所述电荷量调节装置包括通过绝缘层在所述半导体衬底上对应于所述电荷保持部分的位置处形成的并且电连接到所述垒控制电极的保持电极。
5.根据权利要求3所述的空间信息检测装置,其中所述垒控制电极电连接到与作为所述电荷保持部分形成的电荷保持阱相对应的所述半导体衬底的部分。
6.根据权利要求3所述的空间信息检测装置,还包括栅电极,该栅电极形成在所述光电转换部分和所述电荷保持部分之间的所述半导体衬底的主表面上,并被配置成控制将所述光电转换部分生成的电荷转移到所述电荷保持部分的定时。
7.一种空间信息检测装置,包括:
发光源,被配置成将由调制信号进行强度调制的信号光投射到对象空间;
光电检测部分,被配置成在与所述调制信号同步的定时从对应于从所述对象空间检测的接收光量的电荷分离出恒定量的偏置成分,从而提供反映所述信号光的波动成分的接收光输出;以及
信号处理部分,被配置成通过使用所述接收光输出来检测所述对象空间的空间信息;
其中所述光电检测部分包括:
光电转换部分,被配置成接收来自所述对象空间的光以生成电荷;
电荷分离部分,被配置成从由所述光电转换部分生成的电荷中分离出对应于所述偏置成分的规定的恒定量的不需要的电荷,其中所述光电转换部分生成的电荷对应于不依赖于所述信号光的波动的所述恒定量的偏置成分和根据所述信号光的波动变化的所述波动成分的总和;
电荷累积部分,被配置成累积通过从所述光电转换部分生成的电荷中分离出所述不需要的电荷而获得的残留电荷作为有效电荷;以及
电荷取出部分,被配置成取出在所述电荷累积部分中累积的所述有效电荷作为所述接收光输出;
其中所述发光源被配置成向所述对象空间照射由所述调制信号进行强度调制的光,从而具有从所述发光源向所述对象空间投射所述强度调制的光的发光时间段和不向所述对象空间投射所述强度调制的光的暂停时间段,
其中所述光电检测部分包括电荷量调节装置,被配置成根据所述光电转换部分在所述暂停时间段中生成的电荷量调节从对应于在所述发光时间段中获得的接收光量的电荷中分离出的作为所述不需要的电荷的电荷的量,
其中所述电荷分离部分和所述电荷累积部分是在半导体衬底中形成的势阱,
其中在所述半导体衬底上对应于所述电荷分离部分的位置处布置分离电极,以及
其中所述电荷量调节装置被配置成根据所述光电转换部分在所述暂停时间段中生成的电荷量控制对所述分离电极施加的电压,以改变作为所述电荷分离部分形成的势阱的深度,从而调节通过所述势垒从所述电荷分离部分流入所述电荷累积部分的电荷的量。
8.根据权利要求7所述的空间信息检测装置,其中所述电荷量调节装置具有电荷保持部分,该电荷保持部分是在所述半导体衬底中形成的势阱,以保持所述光电转换部分在所述暂停时间段中生成的电荷,以及
所述电荷量调节装置对所述分离电极施加根据所述电荷保持部分保持的所述电荷量确定的电压。
9.根据权利要求1或7所述的空间信息检测装置,其中当在所述发光时间段中生成的电荷量达到预定的饱和水平时,所述信号处理部分增加在下一个发光时间段中分离出的所述不需要的电荷的量。
10.一种空间信息检测装置,包括:
发光源,被配置成将由调制信号进行强度调制的信号光投射到对象空间;
光电检测部分,被配置成在与所述调制信号同步的定时从对应于从所述对象空间检测的接收光量的电荷分离出恒定量的偏置成分,从而提供反映所述信号光的波动成分的接收光输出;以及
信号处理部分,被配置成通过使用所述接收光输出来检测所述对象空间的空间信息;
其中所述光电检测部分包括:
光电转换部分,被配置成接收来自所述对象空间的光以生成电荷;
电荷分离部分,被配置成从由所述光电转换部分生成的电荷中分离出对应于所述偏置成分的规定的恒定量的不需要的电荷,其中所述光电转换部分生成的电荷对应于不依赖于所述信号光的波动的所述恒定量的偏置成分和根据所述信号光的波动变化的所述波动成分的总和;
电荷累积部分,被配置成累积通过从所述光电转换部分生成的电荷中分离出所述不需要的电荷而获得的残留电荷作为有效电荷;以及
电荷取出部分,被配置成取出在所述电荷累积部分中累积的所述有效电荷作为所述接收光输出;
其中所述发光源被配置成向所述对象空间照射由所述调制信号进行强度调制的光,从而具有从所述发光源向所述对象空间投射所述强度调制的光的发光时间段和不向所述对象空间投射所述强度调制的光的暂停时间段,
其中所述光电检测部分包括电荷量调节装置,被配置成根据所述光电转换部分在所述暂停时间段中生成的电荷量调节从对应于在所述发光时间段中获得的接收光量的电荷中分离出的作为所述不需要的电荷的电荷的量,
其中所述光电检测部分具有多个光电检测单元,每个所述光电检测单元对应于一个像素,
每个所述光电检测单元包括:第一导电类型的半导体层;第二导电类型的阱,形成在所述半导体层的主表面中;所述光电转换部分,包括通过绝缘层在所述第二导电类型的所述阱的规定区域上形成的多个灵敏度控制电极的阵列;分离电极,用于在所述阱中形成作为所述电荷分离部分的势阱;垒控制电极,用于在所述阱中形成势垒;累积电极,用于在所述阱中形成作为所述电荷累积部分的势阱;以及排放部分,所述不需要的电荷从所述电荷分离部分排放到所述排放部分,
其中所述电荷量调节装置具有电荷保持部分,该电荷保持部分是用于保持所述光电转换部分在所述暂停时间段中生成的电荷的势阱,以及
其中所述电荷量调节装置被配置成根据所述电荷保持部分保持的电荷量对所述垒控制电极和所述分离电极中的至少一个施加电压。
11.根据权利要求10所述的空间信息检测装置,其中在所述灵敏度控制电极的所述阵列中形成所述分离电极、所述垒控制电极和所述累积电极,并且在垂直于所述灵敏度控制电极的所述阵列的方向上相邻地形成所述电荷保持部分。
12.根据权利要求10所述的空间信息检测装置,其中在与所述灵敏度控制电极的所述阵列相邻的列中在所述灵敏度控制电极的阵列方向上布置所述分离电极、所述垒控制电极、所述累积电极和所述电荷保持部分。
13.一种空间信息检测装置,包括:
发光源,被配置成向对象空间照射由调制信号进行强度调制的光;
光电检测部分,被配置成根据从所述对象空间接收的光提供电输出;以及
信号处理部分,被配置成通过使用所述电输出检测所述对象空间的空间信息;
其中所述光电检测部分包括:
光电转换部分,被配置成接收来自所述对象空间的光以生成电荷;
电荷分离部分,被配置成从所述光电转换部分在所述调制信号的具有不同相位范围的两个区间中的一个生成的电荷中分离出根据所述光电转换部分在另一区间中生成的电荷量确定的量的不需要的电荷;
电荷累积部分,被配置成累积通过从所述光电转换部分在所述调制信号的所述具有不同相位的两个区间中的所述一个中生成的电荷中分离出所述不需要的电荷而获得的残留电荷作为有效电荷;以及
电荷取出部分,被配置成输出在所述电荷累积部分中累积的所述有效电荷作为所述电输出,
其中所述电荷分离部分和所述电荷累积部分是在半导体衬底中形成的势阱,
其中所述空间信息检测装置具有:垒控制电极,布置在所述半导体衬底上以在所述电荷分离部分和所述电荷累积部分之间形成势垒;
其中电荷保持部分被配置成保持所述光电转换部分在所述调制信号的所述具有不同相位范围的两个区间中的所述另一区间中生成的电荷,
其中根据所述电荷保持部分保持的电荷量对所述垒控制电极施加电压以确定所述不需要的电荷的量,以及
其中通过所述电荷分离部分从所述光电转换部分在所述调制信号的所述具有不同相位范围的两个区间中的所述一个生成的电荷中分离出所述量的不需要的电荷。
CN2006800421023A 2005-11-14 2006-11-14 空间信息检测装置及适用于其的光电检测器 Expired - Fee Related CN101305261B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005329509 2005-11-14
JP329509/2005 2005-11-14
PCT/JP2006/322652 WO2007055375A1 (ja) 2005-11-14 2006-11-14 空間情報検出装置および同装置に好適な光検出素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010101726328A Division CN101834197B (zh) 2005-11-14 2006-11-14 空间信息检测装置

Publications (2)

Publication Number Publication Date
CN101305261A CN101305261A (zh) 2008-11-12
CN101305261B true CN101305261B (zh) 2010-09-15

Family

ID=38023366

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010101726328A Expired - Fee Related CN101834197B (zh) 2005-11-14 2006-11-14 空间信息检测装置
CN2006800421023A Expired - Fee Related CN101305261B (zh) 2005-11-14 2006-11-14 空间信息检测装置及适用于其的光电检测器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010101726328A Expired - Fee Related CN101834197B (zh) 2005-11-14 2006-11-14 空间信息检测装置

Country Status (8)

Country Link
US (1) US7876422B2 (zh)
EP (2) EP2309224B1 (zh)
KR (1) KR100969905B1 (zh)
CN (2) CN101834197B (zh)
CA (1) CA2626606C (zh)
HK (2) HK1123353A1 (zh)
TW (1) TWI350587B (zh)
WO (1) WO2007055375A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270835B2 (ja) * 2006-12-29 2013-08-21 パナソニック株式会社 光検出素子、空間情報の検出装置
JP5139727B2 (ja) * 2007-06-21 2013-02-06 パナソニック株式会社 受光装置および空間情報の検出装置
JP2009047661A (ja) * 2007-08-22 2009-03-05 Hamamatsu Photonics Kk 測距装置
JP5171158B2 (ja) * 2007-08-22 2013-03-27 浜松ホトニクス株式会社 固体撮像装置及び距離画像測定装置
JP5356726B2 (ja) * 2008-05-15 2013-12-04 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
JP2009287977A (ja) * 2008-05-27 2009-12-10 Toppoly Optoelectronics Corp 光強度検出装置、そのような装置を備えたディスプレイ装置、光強度検出方法、プログラム及びその記録媒体
JP5091886B2 (ja) 2009-02-13 2012-12-05 浜松ホトニクス株式会社 イメージセンサ
JP5271104B2 (ja) 2009-02-13 2013-08-21 浜松ホトニクス株式会社 リニアイメージセンサ
JP5302073B2 (ja) * 2009-04-01 2013-10-02 浜松ホトニクス株式会社 固体撮像装置
JP4798254B2 (ja) * 2009-05-13 2011-10-19 株式会社デンソー 受光デバイス及びその制御方法
JP4785963B2 (ja) * 2009-10-09 2011-10-05 キヤノン株式会社 固体撮像装置
JP5717329B2 (ja) * 2009-10-09 2015-05-13 キヤノン株式会社 固体撮像装置及びその製造方法
JP5629134B2 (ja) * 2010-06-14 2014-11-19 パナソニック株式会社 電荷結合素子の駆動装置、空間情報検出装置
JP5635938B2 (ja) 2011-03-31 2014-12-03 本田技研工業株式会社 固体撮像装置
JP5829036B2 (ja) 2011-03-31 2015-12-09 本田技研工業株式会社 単位画素の信号加算方法
JP5635937B2 (ja) * 2011-03-31 2014-12-03 本田技研工業株式会社 固体撮像装置
WO2016017305A1 (ja) * 2014-07-31 2016-02-04 ソニー株式会社 画素回路、半導体光検出装置および放射線計数装置
IL238339B (en) * 2014-08-04 2020-05-31 Sensors Unlimited Inc A low-noise hybridization detector based on charge transfer
TWI734709B (zh) * 2015-10-21 2021-08-01 新加坡商海特根微光學公司 解調變像素裝置、像素裝置陣列及包含其之光電裝置
JP6808316B2 (ja) 2015-12-04 2021-01-06 キヤノン株式会社 撮像装置、および、撮像システム
JP6659447B2 (ja) * 2016-05-02 2020-03-04 浜松ホトニクス株式会社 距離センサ
EP3392674A1 (en) * 2017-04-23 2018-10-24 Xenomatix NV A pixel structure
JP2019047294A (ja) 2017-08-31 2019-03-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および固体撮像装置の制御方法
JP2021096070A (ja) * 2019-12-13 2021-06-24 株式会社デンソー 物体検出装置および物体検出装置の制御方法
US20230112018A1 (en) * 2020-03-18 2023-04-13 Sony Semiconductor Solutions Corporation Solid-state imaging element and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646937A (zh) * 2002-04-08 2005-07-27 松下电工株式会社 使用强度调制光的空间信息检测装置
CN1659447A (zh) * 2002-07-15 2005-08-24 松下电工株式会社 具有可控灵敏度的光接收设备及其空间信息检测装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969634A (en) * 1975-07-31 1976-07-13 Hughes Aircraft Company Bucket background subtraction circuit for charge-coupled devices
JPH0748826B2 (ja) * 1988-12-01 1995-05-24 三菱電機株式会社 固体撮像装置
JPH0722436A (ja) 1993-06-28 1995-01-24 Fuji Film Micro Device Kk 電荷転送方法と装置
JPH0722437A (ja) 1993-06-28 1995-01-24 Fuji Film Micro Device Kk 電荷転送方法と装置
JPH1123258A (ja) * 1997-07-01 1999-01-29 Canon Inc 測距装置
JP2001051184A (ja) 1999-08-05 2001-02-23 Canon Inc 測距装置
JP3702854B2 (ja) * 2002-03-06 2005-10-05 ソニー株式会社 固体撮像素子
JP3906824B2 (ja) * 2003-05-30 2007-04-18 松下電工株式会社 強度変調光を用いた空間情報の検出装置
KR100495120B1 (ko) * 2002-09-26 2005-06-14 (주) 인텍플러스 촬상 영상 고속 포획장치 및 그 방법
JP4235729B2 (ja) 2003-02-03 2009-03-11 国立大学法人静岡大学 距離画像センサ
JP4439888B2 (ja) * 2003-11-27 2010-03-24 イノテック株式会社 Mos型固体撮像装置及びその駆動方法
JP4345693B2 (ja) * 2004-03-17 2009-10-14 パナソニック電工株式会社 光検出素子および光検出素子の制御方法
TWI296704B (en) 2004-03-17 2008-05-11 Matsushita Electric Works Ltd Light detecting element and control method of light detecting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646937A (zh) * 2002-04-08 2005-07-27 松下电工株式会社 使用强度调制光的空间信息检测装置
CN1659447A (zh) * 2002-07-15 2005-08-24 松下电工株式会社 具有可控灵敏度的光接收设备及其空间信息检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平11-23258A 1999.01.29

Also Published As

Publication number Publication date
CA2626606A1 (en) 2007-05-18
CN101305261A (zh) 2008-11-12
CN101834197B (zh) 2013-03-13
KR20080063402A (ko) 2008-07-03
TW200731526A (en) 2007-08-16
EP1944571A1 (en) 2008-07-16
WO2007055375A1 (ja) 2007-05-18
KR100969905B1 (ko) 2010-07-13
US7876422B2 (en) 2011-01-25
EP1944571B1 (en) 2013-07-31
HK1148610A1 (en) 2011-09-09
EP1944571A4 (en) 2010-06-16
US20090040502A1 (en) 2009-02-12
CN101834197A (zh) 2010-09-15
HK1123353A1 (en) 2009-06-12
TWI350587B (en) 2011-10-11
EP2309224A1 (en) 2011-04-13
CA2626606C (en) 2012-04-10
EP2309224B1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
CN101305261B (zh) 空间信息检测装置及适用于其的光电检测器
US8730382B2 (en) Charge accumulating and splitting imaging device
CN207037088U (zh) 飞行时间探测像素元件和图像传感器
US8767189B2 (en) Solid state imaging device and distance image measurement device
US8441619B2 (en) Photodetector and spatial information detecting device using the same
US20210223371A1 (en) Image sensor for determining a three-dimensional image and method for determining a three-dimensional image
JP3906818B2 (ja) 受光素子の感度制御方法、強度変調光を用いた空間情報の検出装置
KR20170134550A (ko) 측장 소자 및 고체 촬상 장치
WO2005088720A2 (en) Light detecting element and method for operating it
WO2018142878A1 (ja) 3次元モーション取得装置、及び3次元モーション取得方法
EP3664438A1 (en) Imaging device
US7476841B2 (en) Photodetector, spatial information detecting device using the photodetector, and photo detection method
EP3839555A1 (en) Distance measuring device, camera, and method for adjusting drive of distance measuring device
CN100555677C (zh) 光电检测器、使用光电检测器的空间信息检测装置和光电检测法
JP2008135800A (ja) 光検出素子、光検出素子の制御方法、空間情報の検出装置
JPWO2018142878A1 (ja) 3次元モーション取得装置、及び3次元モーション取得方法
JP2016219873A (ja) Ccdイメージセンサ及びその駆動方法
JP2007093620A (ja) 受光素子の感度制御方法、強度変調光を用いた空間情報の検出装置
KR20230104171A (ko) 적외선 감지를 위한 방법 및 시스템
JP2019012996A (ja) 光検出装置、及び撮像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1123353

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1123353

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100915

Termination date: 20191114

CF01 Termination of patent right due to non-payment of annual fee