在宽带下工作且具有阻止频带的缝隙天线装置
技术领域
本发明涉及一种发送、接收微波频段和毫米波频段等模拟高频信号或数字信号的天线装置,尤其涉及在宽带下工作且具有阻止频带的缝隙天线(s1ot antenna)装置。
背景技术
基于两个理由,必需可在比以前宽得多的频域下工作的无线器件。第一个理由是因为实现认可在宽的频带使用的新的面向近距离无线的通信系统,即超宽带(下面称为UWB)无线通信系统,第二个理由是因为在一台终端中利用使用不同频率而杂乱的多个通信系统。
例如,在美国面向UWB认可的从3.1GHz至10.6GHz的频域当换算成以工作频带的中心频率fc来标准化的相对频带时,相当于109.5%等表示宽的频带的值。另一方面,作为基本天线已知的接线天线(patch antenna)或1/2有效波长缝隙天线的工作频带在相对频带换算中不仅分别小于5%、小于10%,而且不能实现UWB等宽带性。另外,若以当前世界无线通信中使用的频域为例,则为了由同一天线覆盖1.8GHz频带至2.4GHz频带,必需实现30%左右的相对频带,另外,在同时覆盖800MHz频带及2GHz频带的情况下,同样必需实现90%左右的相对频带。并且,为了同时覆盖800MHz频带至2.4GHz频带,必需100%以上的相对频带。同一终端同时处理的系统数量增加,应覆盖的频域越宽,越期望实现宽带的小型天线。
图31A、图31B和图31C中示出示意图的单端开放1/4有效波长缝隙天线是最基本的平面天线之一(下面称为第1现有例。)。图31A是表示一般的1/4有效波长缝隙天线的构造的俯视示意图(通过透视来表示背面的接地导体103),图31B是图31A的虚线的截面示意图,图31C是通过透视来表示图31A的缝隙天线的背面构造的示意图。如图31A、图31B和图31C所示,在电介质基板101的表面存在供电线路113,从位于背面侧的无线接地导体103的外缘105a开始,沿进深方向109a,形成具有宽度Ws和长度Ls的切口,该切口用作利用开放端107开放顶端的缝隙谐振器111。缝隙111是在接地导体103的部分区域中沿厚度方向完全去除导体后得到的电路要素,在有效波长的1/4相当于缝隙长度Ls时的频率fs附近谐振。沿宽度方向109b形成的供电线路113与缝隙111部分交叉,电磁激励缝隙111。经输入端子连接外部电路。为了实现输入阻抗的匹配,供电线路113从顶端开放终端点119至缝隙111的距离Lm通常设定成在频率fs下为1/4有效波长左右。另外,通常对应于基板的厚度H及基板的介电常数来设计线路宽度W1,以将供电线路113的特性阻抗设定成50Ω。
如图32A、图32B和图32C所示,在专利文献1中,公开了用于在多个谐振频率下使第1现有例所示的1/4有效波长缝隙天线工作的构造(下面称为第2现有例。)。缝隙111具有缝隙长度Ls,具备电容16,以短路距开放端距离Ls2的位置的点16a及16b。在供电点15,若在多个谐振频率下谐振,则如图32B和图32C所示,在不同的缝隙长度Ls、Ls2下工作,可拓宽频带。但是,在专利文献1内示出的频率特性下,无法得到当前期望的超宽带特性。
在非专利文献1中,公开了在宽带下使作为1/2有效波长缝隙天线的两端短路缝隙谐振器工作的方法(下面称为第3现有例。)。图33是表示非专利文献1中记载的缝隙天线的构造的俯视示意图,在图33中,通过透视来表示基板的背面的接地导体103及缝隙111。接地导体103中形成具有规定宽度Ws与相当于1/2有效波长的长度Ls的缝隙111,在偏离其中心距离d的位置51a与供电线路113耦合。作为现有缝隙天线的输入阻抗匹配方法,采用如下方法,即在距供电线路113的顶端开放终端点119为频率fs的1/4有效波长的部位,使供电线路113与缝隙谐振器111交叉,激励。但是,如图33所示,在第3现有例中,将供电线路113距顶端开放终端点119横跨距离Lind的区域置换为作为具有比50Ω高的特性阻抗的传送线路之感应区域121,在得到的感应区域121的大致中央,与缝隙111耦合(即在图33中,t1、t2大致相等)。这里,将感应区域121的宽度W2设定成比供电线路113的宽度窄的规定宽度,将其长度Lind设定成工作频带的中心频率f0的1/4有效波长,感应区域用作与缝隙谐振器不同的1/4波长谐振器。结果,通常的缝隙天线中为单个的等效电路构造内的谐振器数量增加为2个,并且,使在接近的频率下谐振的谐振器彼此耦合,从而得到复谐振工作。在非专利文献1中的图2(b)所示的实例中,在相对频带32%(4.1GHz附近至5.7GHz附近),得到一10dB以下的良好反射阻抗特性。如非专利文献1内图4的对频率的反射特性的实测结果进行比较所示,图3的现有例的天线相对频带是比在同一基板条件下制作的通常的缝隙天线的相对频带9%宽得多的频带。
另外,如作为现有例4所示,在非专利文献2中,成功地使作为单极天线之一已知宽带工作的印制单极天线在UWB频域内低反射工作。但是,从非专利文献2内图5(b)中示出的E面放射图案可知,主射束方向取决于频率而变化大。另外,E面内的主射束的半值宽度也取决于频率而变动大。
作为现有例5,在图34所示的专利文献2中,向印制单极天线自身赋予带阻滤波器功能。其目的在于尽管向UWB系统分配宽的频带,但由于在部分频域中已有的无线系统已工作,所以避免系统间的干扰。尤其是无线LAN中使用的5GHz频带在欧洲或日本限制UWB输出,处于必需应对该限制的状况。另一方面,由于难以由小型形状来实现GHz频带下超宽带的滤波器,所以要求天线自身有带阻功能。在现有例5中,在接地导体1上配置印制单极的放射导体2,在接地导体1与放射导体2彼此接近的位置,分别设置接地供电点1f与信号供电点2f。这里,通过将分别具有宽度Nh和长度Nd、为阻止频带的1/4有效波长的单端开放缝隙谐振器NR、NL设定在印制单极的放射导体2的外周部分,实现带阻功能。
与本申请发明关联的现有技术文献如下所示。
(1)专利文献1:特开2004-336328号公报
(2)专利文献2:特开2003273638号公报
(3)非专利文献1:L.Zhu,el al.,“A Novel Broadband Microstrip-FedWide Slot Antenna With Double Rejection Zeros”,IEEE Antennas andWireless Propagation Letters,Vol.2,pp.194-196,2003.
(4)非专利文献2:H.R.Chuang,et al.,“A Printed UWB TriangularMonopole Antenna”,Microwave Journal,Vol.49,No.1,January 2006.
如上所述,在现有的缝隙天线中,宽带化不充分。另外,作为面向UWB频域天线被期待的印制单极天线可在超宽带下低反射工作,也可实现部分频域下的带阻功能,但难以在工作频带内维持主射束方向。结果,即便将同一天线适用于UWB系统,也难以覆盖通信区域。
第一,如第1现有例所示,在其构造内仅有单一谐振器的通常单端开放缝隙天线的情况下,得到良好的反射阻抗特性的频域被限制在10%弱程度的相对频带。
在第2现有例中,通过向缝隙导入电容性电抗元件,实现宽带工作,但容易想像必需芯片电容器等追加部件,另外,因新导入的追加部件的特性差异,天线的特性参差不齐。另外,根据专利文献1内的图13或图19公开的实例判断,难以在超宽带下实现低反射的输入阻抗匹配特性。
在第3现有例中,相对频带特性被限制在35%左右。另外,使用作为1/2有效波长谐振器的两端短路缝隙谐振器与使用作为1/4有效波长谐振器的单端开放缝隙谐振器的第1现有例或第2现有例的天线相比,在小型化方面不利。
在现有例4中,尽管在UWB的全部频域中实现低反射特性,但频域内的放射特性的变动极大。若参照非专利文献2的图5(b)的放射图案图,则225度方向的增益在将4GHz下的增益设为基准值时,在5GHz下降6dB,在7GHz也下降15dB。这是由于频率不同,主射束方向变动,和越是高频域,则主射束半值宽度下降越多引起的现象,很难在整个频域内稳定地使通信条件成立。
在现有例5中,尽管印制单极天线中实现部分频域下的带阻功能,但由于原理上是与现有例4一样的构造,所以不能期待频域内的放射特性的稳定性。
发明内容
本发明的目的在于解决上述现有课题,提供一种缝隙天线装置,就以单端开放缝隙天线装置为基本构成的小型宽带缝隙天线装置而言,可执行比现有宽的频带下的工作,且向同一方向维持工作频带内的主射束方向,并且可实现局部频域中的带阻功能。
根据本发明方式的缝隙天线装置具备:接地导体,其外周包含朝向放射方向的第1部分、和上述第1部分以外的第2部分;单端开放的供电缝隙,按照使上述接地导体的外周的第1部分中央成为开放端的方式,在上述接地导体中沿上述放射方向形成;和供电线路,是具备接近上述接地导体的带状导体所构成的供电线路,至少部分与上述供电缝隙交叉,向上述供电缝隙供电高频信号。上述供电线路在上述供电缝隙附近的第1地点,分支成至少包含2条分支线路的分支线路群,上述分支线路群中的至少2条分支线路在与上述第1地点不同的上述供电缝隙附近的第2地点相互连接,在上述供电线路中形成至少1个环路布线。将上述至少1个环路布线的各环路长度中的最大值设定为小于在工作频带的上限频率下的1有效波长的长度。在上述分支线路群中、未形成上述环路布线且在开放端终结的全部分支线路的分支长度小于在上述工作频带的上限频率下的1/4有效波长。上述缝隙天线装置还具备无供电缝隙,上述无供电缝隙是在规定阻止频带中具有相当于1/4有效波长的电气长度的至少1个单端开放的无供电缝隙,在上述接地导体的外周第2部分具有开放端,不与上述供电线路交叉地形成于上述接地导体上。
就上述缝隙天线装置而言,其特征在于:上述各环路布线与上述供电缝隙和上述接地导体的边界线交叉,上述供电缝隙在上述边界线与上述环路布线交叉、且具有距上述供电缝隙的开放端各不相同距离的2点以上的地点被激励。
就上述缝隙天线装置而言,其特征在于:上述供电线路在开放端被终结。在上述供电线路中,从上述开放端起横跨在工作频带的中心频率下的1/4有效波长长度的区域构成为具有比50Ω高的特性阻抗的感应区域,在上述感应区域的大致中央,上述供电线路与上述供电缝隙交叉。
并且,其特征在于:在上述缝隙天线装置的上述接地导体的外周的第1部分,从上述供电缝隙的开放端至上述外周的第1部分两端的距离分别构成为在上述供电缝隙的谐振频率下的1/4有效波长以上的长度,由此,上述接地导体在比上述供电缝隙的谐振频率低的频率下工作。
并且,就上述缝隙天线装置而言,其特征在于:上述接地导体构成为相对于通过上述供电缝隙且平行于上述放射方向的轴对称,上述供电线路在上述接地导体的外周的第2部分,连接于设置在上述接地导体的对称轴上的供电点上。上述供电点设置在上述接地导体的对称轴上,从而具有比上述接地导体的不平衡模式的阻抗高的输入输出阻抗。
如上所述,根据本发明的不平衡供电宽带缝隙天线装置,不仅可得到现有的缝隙天线装置中难以实现的宽带工作,还能在工作频带内维持主射束方向,另外,赋予抑制部分频域下的放射特性的带阻功能,所以可有助于实现在有效覆盖期望的通信区域的同时,避免与其它通信系统的干扰的功率节省高速UWB通信系统。
附图说明
参照附图,同时利用下面说明的最佳实施方式,本发明的各种对象、特征及优点变得显而易见。
图1是表示本发明第1实施方式的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图2是图1的虚线下的截面示意图。
图3是表示本发明第1实施方式第1变形例的不平衡供电宽带缝隙天线装置的构造的截面示意图。
图4是表示本发明第1实施方式第2变形例的不平衡供电宽带缝隙天线装置的构造的截面示意图。
图5是在背面具有无线接地导体构造的一般高频电路构造中、具有利用环路布线分支信号布线的分支部的二电路的示意图。
图6是在背面具有无线接地导体构造的一般高频电路构造中、具有利用顶端开放短线(stub)布线分支信号布线的分支部的二电路的示意图。
图7是在背面具有无线接地导体构造的一般高频电路构造中、由具有利用环路布线分支信号布线的分支部的二电路来非常短地构成第二路径时的示意图。
图8是说明设置一般传送线路时的接地导体中的高频电流的集中部位用的截面构造图。
图9是说明设置分支的传送线路时的接地导体中的高频电流的集中部位用的截面构造图。
图10是表示本发明第1实施方式第3变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图11是表示本发明第1实施方式第4变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图12是表示本发明第1实施方式第5变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图13是表示本发明第1实施方式第6变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图14是表示本发明第1实施方式第7变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图15是表示本发明第2实施方式的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图16是表示平衡模式时的接地导体103中的高频电流的流动方向的示意图。
图17是表示不平衡模式时的接地导体103中的高频电流的流动方向的示意图。
图18是表示本发明第1实施例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图19是表示本发明第2实施例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图20是表示第1比较例的缝隙天线装置的构造的俯视示意图。
图21是第1实施例与第1比较例中、比较相对频率的反射损耗特性的曲线。
图22是第1实施例的工作频率为3GHz时的E面放射图案图。
图23是第1实施例的工作频率为7GHz时的E面放射图案图。
图24是第1实施例的工作频率为10.6GHz时的E面放射图案图。
图25是第1实施例与第1比较例中、比较-X方向中的相对频率的天线有效增益的曲线。
图26是第2实施例与第1比较例中、比较相对频率的反射损耗特性的曲线。
图27是表示本发明第3实施例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图28是表示第2比较例的缝隙天线装置的构造的俯视示意图。
图29是第3实施例中、同轴缆线135的长度为0mm时与为150mm时的、工作频率为3GHz时的E面放射图案图。
图30是第2比较例中、同轴缆线135的长度为0mm时与为150mm时的、工作频率为3GHz时的E面放射图案图。
图31A是表示一般的1/4有效波长缝隙天线(第1现有例)的构造的俯视示意图。
图31B是图31A的虚线的截面示意图。
图31C是通过透视来表示图31A的缝隙天线的背面构造的示意图。
图32A是表示专利文献1记载的1/4有效波长缝隙天线(第2现有例)的构造的示意图。
图32B是表示低频带下工作时的图32A的缝隙天线的示意图。
图32C是表示高频带下工作时的图32A的缝隙天线的示意图。
图33是表示非专利文献1记载的缝隙天线(第3现有例)的构造的俯视示意图。
图34是表示专利文献2记载的宽带天线装置(第5现有例)的构造的示意图。
具体实施方式
下面,参照附图来说明本发明的实施方式。附图中,同一符号表示同样的构成要素。
第1实施方式
图1是表示本发明第1实施方式的不平衡供电宽带缝隙天线装置的构造的俯视示意图,图2是图1的虚线下的截面示意图。图1及其它俯视示意图中,通过透视(即点划线)来表示基板101背面的构造。为了说明,参照各附图所示的XYZ坐标。
本发明实施方式的不平衡供电宽带缝隙天线装置的特征在于,具备:接地导体103,具有包含朝向放射方向(即-X方向)的第1部分、和除此以外的第2部分的外周;单端开放的缝隙111,按照使接地导体103的外周第1部分中央成为开放端107的方式,在接地导体103中沿放射方向形成;和不平衡供电线路113,是具备接近接地导体103的带状导体所构成的供电线路,至少部分与缝隙111交叉,向缝隙111供电高频信号,由此,可在比以前宽的频带下工作。本发明实施方式的不平衡供电宽带缝隙天线装置的特征在于:还具备无供电缝隙谐振器108c和108d,即在规定阻止频带中具有相当于1/4有效波长的电气长度的单端开放的无供电缝隙谐振器,在接地导体103的外周第2部分具有开放端110c和110d,不与不平衡供电线路113交叉地形成于接地导体103上。
参照图1,在电介质基板101的背面,形成具有有限面积和规定形状的接地导体103。接地导体103具备形成一端开放的缝隙111的1个边、和除此以外的其它多个边,实质上构成为多边形形状。在本实施方式的情况下,接地导体103为长方形,包含-X侧的边105a1、105a2、+X侧的边105b、+Y侧的边105c和-Y侧的边105d。在接地导体103的-X侧的边的中点附近(即-X侧的边的第1部分105a1与第2部分105a2之间),沿与上述边正交的方向(即+X方向)切出接地导体103,形成具有宽度Ws及长度Ls的矩形形状的缝隙111。因此,缝隙111的-X侧的端部构成为开放端107,+X侧的端部构成为短路端125。缝隙111用作具有1/4有效波长的单端开放的供电缝隙谐振器(缝隙天线模式)。在假设缝隙宽度Ws与缝隙长度Ls相比可忽视的情况下,缝隙111的谐振频率fs为有效波长的1/4相当于缝隙长度Ls时的频率。另外,在上述假设不成立的情况下,构成为考虑了缝隙宽度的缝隙长度(Ls×2+Ws)÷2相当于1/4有效波长。在本发明的各实施方式中,缝隙111的谐振频率fs最好设定成工作频带(例如3.1GHz至10.6GHz)的中心频率fc左右。在电介质基板101的表面,形成沿实质上与缝隙111正交的方向(即Y轴方向)延伸、且至少部分上下与缝隙111交叉的不平衡供电线路113。不平衡供电线路113的一部分区域细节如后所述,构成为感应区域121。不平衡供电线路113构成为由接地导体103、电介质基板101的表面的带状导体与它们之间的电介质基板101构成的微带状线路,下面,在本说明书中,为了简化说明,仅将表面的带状导体称为不平衡供电线路113。来自缝隙111的放射的主射束方向从缝隙111的短路端125朝向临近开放端107的方向(即-X方向),所以在本说明书中,将-X方向视为‘前方’,将+X方向视为‘后方’,另外,将Y轴方向称为不平衡供电宽带缝隙天线装置的‘宽度方向’。在本说明书中,将沿厚度方向完全去除构成接地导体103的导体层的构造定义为缝隙。即,不是在部分区域削减接地导体103的表面、仅减少厚度的构造。
电路块133的配置
在本发明实施方式的不平衡供电宽带缝隙天线装置中,还可在天线基板上配置具有不平衡端子的任意电路块133。此时,连接上述电路块133的不平衡端子与不平衡供电线路113一端的天线供电点117,由此,可提供执行不平衡供电的同时实现面积节省化的超宽带通信系统。
作为具有不平衡端子的任意电路块133的构成要素,可利用带通或带阻、低通、高通等滤波器、平衡-不平衡转换器、收发切换等功能性开关、高输出放大器、振荡器、低噪声放大器、可变衰减器、上变频器、下变频器等。尤其是要求宽带特性的滤波器难以在平衡电路中实现,所以现实的是由不平衡电路来实现从滤波器至天线供电线路的连接电路。本发明的实施方式的不平衡供电宽带缝隙天线装置执行不平衡供电的同时实现超宽带特性。本发明实施方式的不平衡供电宽带缝隙天线装置的带阻特性可缓和到可实现关于滤波器的带宽的要求特性的水平。
用作偶极天线的接地导体103
下面,说明对接地导体103宽度方向上的尺寸所要求的条件。接地导体103如上所述,是有限区域的导体构造,尤其是构成为在-X侧的边包含从开放端107沿+Y方向延伸长度Wg1的部分105a、和从开放端107沿-Y方向延伸长度Wg2的部分105b。这里,-X侧的边105a、105b的长度Wg1、Wg2取在缝隙111的谐振频率fs下相当于1/4有效波长的长度Lsw以上的值。该条件是适于使缝隙天线模式的天线放射特性稳定的条件。
本发明实施方式的接地导体103通过将电路面积限定为有限值,也用作利用接地导体构造整体的接地导体偶极天线模式。该接地导体偶极天线模式的情况和基于缝隙111的缝隙天线模式的情况的共同之处在于高频电流集中流过缝隙111的短路端125。从而,两天线可边使用共同的电路基板,边同时提供共同的偏振波特性的放射特性。另外,不仅缝隙天线模式的放射,该接地导体偶极天线模式的放射的主射束方向也朝向-X方向。从而,若能设定成使接地导体偶极天线模式的谐振频率fd不同于缝隙111的谐振频率fs,并且比频率fs稍低,则本发明实施方式的不平衡供电宽带缝隙天线装置的工作频带与仅使用缝隙天线模式的情况相比,可实现低频域侧飞跃扩大的特性。由于接地导体103在大致中央部具有缝隙111,所以延长接地导体偶极天线模式的谐振器的有效长度。因此,在本发明实施方式的不平衡供电宽带缝隙天线装置中,当边的部分105a、105的长度Wg1、Wg2被构成相当于1/4有效波长的长度Lsw以上的值时,接地导体偶极天线模式的谐振频率fd必然比缝隙111的谐振频率fs低,保证宽带工作。此时,频率fd变为不平衡供电宽带缝隙天线装置的工作频带的下限频率fL(例如如上所述为3.1GHz)。将边的部分105a、105的长度Wg1、Wg2构成极大的值以便频率fd取比频率fs低得多的值从小型化的观点看,不现实。即,若将边的部分105a、105的长度Wg1、Wg2均构成为长度Lsw以上的必要最低限度值,则在小型天线的方式中,可能使接地导体偶极天线模式的谐振频率fd接近缝隙天线模式的工作频带。
包含环路布线123的不平衡供电线路113
下面,详细说明在本发明实施方式的不平衡供电宽带缝隙天线装置中,飞跃地扩大缝隙天线模式的工作频带、并有助于实现宽带工作的环路形状的布线。
不平衡供电线路113在缝隙111附近的第1地点,被分支成包含至少2条分支线路的分支线路群,这些分支线路群中的至少2条分支线路在与第1地点不同的缝隙111附近的第2地点相互连接,在不平衡供电线路113中形成至少1个环路布线。
如图1所示,在本发明实施方式的不平衡供电宽带缝隙天线装置中,不平衡供电线路113的至少部分区域在与缝隙111交叉的部位附近,被置换为环路布线123。因此,环路布线123与沿缝隙111的长度方向(即X轴方向)的缝隙111及接地导体103之间的+Y侧的边界线237、和-Y侧的边界线239至少一方交叉。环路布线123的环路长度Llo构成为小于在不平衡供电宽带缝隙天线装置的工作频带的上限频率fH(例如如上所述为10.6GHz)下的有效波长的1倍。即,环路布线123的谐振频率flo设定得比频率fH高。另外,不平衡供电线路113不仅构成为包含环路布线123,还可构成为形成分支不平衡供电线路113的一部分的开放短线,此时,该短线长度构成为小于在相当于工作频带的上限频率fH时的1/4有效波长的长度。即,开放短线的谐振频率fst设定得比频率fH高。本发明实施方式中的不平衡供电宽带缝隙天线装置的频带特性的巨大改善不是分支的布线单独的谐振现象、例如开放短线的1/4有效波长谐振等引起的现象。上述改善是通过缝隙111与环路布线123电磁耦合,缝隙谐振器的激励部位增大至多个,并且造成输入阻抗匹配电路的电气长度调整,从而首次发现的效果。
这里,参照图5,说明在背面假设无限面积的接地导体的一般高频电路中使用环路布线构造时引起的现象。图5中,示出由具有路径长度Lp1的第一路径205与具有路径长度Lp2的第二路径207构成的环路布线123连接于输入端子201和输出端子203之间的电路示意图。在路径长度Lp1和Lp2之和就传送信号而言相当于有效波长的1倍的条件下,环路布线变为谐振状态,在该条件下,环路布线123用作环形谐振器。但是,在路径长度Lp1和Lp2之和比传送信号的有效波长短的情况下,由于未示出急剧的频率响应,所以不必在通常的高频电路中积极地使用环路布线123。这是因为作为具有无限面积的接地导体的高频电路内的巨大的高频特性,会平均化局部的电流分布变动的影响。
另一方面,如图1所示,本发明实施方式的不平衡供电宽带缝隙天线装置中的环路布线123的导入发现上述一般高频电路中得不到的特有效果。环路布线123与缝隙111同接地导体103的边界线237、239交叉,缝隙111在边界线237、239与环路布线123交叉的地点,即在距缝隙111的开放端107具有各不相同的距离的2点以上的地点被激励。具体而言,接地导体103上的高频电流沿环路布线123的第一路径205被导向131c的方向,沿环路布线123的第二路径207也被导向131d一侧。结果,可使接地导体103上的高频电流流动中产生131c与131d等不同的路径,可以多个部位激励缝隙111。接地导体103中使高频电流分布在缝隙111附近局部变化调制缝隙天线模式的谐振特性,剧烈地扩大同一模式下的天线工作频带。
当图8和图9中示意性地示出并说明传送线路截面构造时,在图8的一般传送线路中高频电流集中分布的在带状导体(即供电线路)401侧是布线的端部403、405,在接地导体103侧是面向带状导体401的区域407。从而,仅在缝隙111附近使不平衡供电线路113的带状导体的宽度变粗难以使接地导体103侧的高频电流分布产生大的变化。如图9所示,通过将带状导体分支成2条路径205、207,可在分别与各路径205、207对置的不同接地导体区域413、415中实现有效的高频电流的分布。
另外,本发明实施方式的不平衡供电宽带缝隙天线装置中新导入的环路布线123不仅具备上述功能,还可兼备调整不平衡供电线路113的电气长度的功能。不平衡供电线路113的电气长度的变动使不平衡供电线路113的谐振状态进一步转为复谐振状态,进一步增强本发明实施方式的工作频带的扩大效果。即,通过向缝隙111附近导入环路布线123,对不同频率多重最佳化与缝隙谐振器耦合的不平衡供电线路113的阻抗匹配条件,可实现工作频带的宽带化。
如上所述,通过组合复谐振化缝隙111自身具有的谐振现象的第一功能、与复谐振化耦合于缝隙111的供电线路113的谐振现象的第二功能,本发明实施方式的不平衡供电宽带缝隙天线装置可在比现有缝隙天线装置宽的频带下工作。
用于不受环路布线123的无用谐振影响的制约条件
但是,就环路布线123而言,为了维持宽带的阻抗匹配特性,产生在环路布线123未单独谐振的条件下使用的制约。以图5所示的环路布线123为例,作为路径长度Lp1与Lp2之和的环路长度Lp构成为小于在工作频带的上限频率fH的有效波长的1倍。在构造内存在多个环路布线的情况下,内部不包含其它小环路的环路布线中最大的环路布线必需满足上述条件。
另一方面,与环路布线相比,作为一般的高频电路,有图6所示的开放短线。本发明实施方式的不平衡供电宽带缝隙天线装置的、从不平衡供电线路113分支的布线中的几个也可采用开放短线213的构造。但是,为了本发明的目的,从宽带特性的观点看,环路布线的使用比开放短线的使用有利。开放短线213是1/4有效波长谐振器,即便在短路长度Lp最长的情况下,也构成为小于在相当于频率fH时的1/4有效波长的长度。图7中示出环路布线123的极端实例,说明与开放短线213相比的环路布线123的优点。当环路布线123中极端减小一个路径长度Lp2时,环路布线123看上去无限接近开放短线213。但是,路径长度Lp2接近0时的环路布线123的谐振频率是有效波长相当于另一路径长度Lp1时的频率,开放短线213的谐振频率是有效波长的1/4相当于开放短线213的路径长度Lp3时的频率。假设在环路布线123的路径长度Lp1的一半与开放短线213的路径长度Lp3相等的条件下比较两个构造,则环路布线123的最低阶的谐振频率相当于短线布线213的最低阶的谐振频率的2倍。如上所述,作为用于避免宽的工作频带内无用的谐振现象的供电线路构造,当换算成频域时,环路布线123为开放短线213的2倍时有效。另外,由于在图6的开放短线213的开放终端点119电路地开放,所以不流过高频电流,因此,即便假设在缝隙111附近配置开放终端点119,也难以得到与缝隙111的电磁耦合。另一方面,如图7所示,环路布线123的一点213c无论电路上决定开放与否,必然流过高频电流,若配置在缝隙111附近,则容易得到与缝隙111的电磁耦合。从这点看,本发明的目的中环路布线的采用也比开放短线的采用有利。
为了宽带化本发明实施方式的不平衡供电宽带缝隙天线装置,不采用线路宽度粗的线路或开放短线,导入环路布线最有效,这在上面的说明中说明。
另外,即便第1现有例中将接地导体限定为有限面积,若不赋予向低频域侧延长缝隙天线模式的工作频带的功能,则很难确保与接地导体偶极天线模式的频域的连续性。并且,如本发明实施方式所示,若不赋予向高频域侧延长缝隙天线模式的工作频带的功能,则也不能实现宽带工作。
导入不平衡供电线路113的感应区域121
如图1所示,在不平衡供电线路113上,最好将相当于距其顶端开放点119规定长度Lind的区域构成为由具有比不平衡供电线路113的特性阻抗(即50Ω)高的特性阻抗之布线形成的感应区域121。长度Lind具有相当于缝隙111的谐振频率fs(即如上所述,等于不平衡供电宽带缝隙天线装置的工作频带的中心频率fc)下1/4有效波长左右的值。环路布线123最好形成于感应区域121内。最好在感应区域121的长度方向(即Y轴方向)的大致中央,感应区域121与缝隙111交叉。感应区域121形成1/4有效波长谐振器,与缝隙111形成的1/4有效波长谐振器耦合,进一步促进复谐振化,结果,有效地增大作为缝隙111的缝隙天线模式的天线工作频带。进而通过与导入本发明实施方式的环路布线123的构造的相乘效果,可在宽带下实现低反射工作。环路布线123的布线宽度最好与感应区域121中的不平衡供电线路113的布线宽度相等,或比其细地构成。
基于无供电缝隙谐振器108c、108d的阻止频带的设定
这里,说明为了设定规定的阻止频带,追加地导入接地导体103中的单端开放的无供电缝隙谐振器108c、108d。
在本发明实施方式中,通过具备上述说明的构成,实现在工作频带内将主射束方向始终维持在前方(即-X方向),在宽带下实现低反射特性的不平衡供电宽带缝隙天线装置。接着,说明用于在工作频带内形成抑制天线工作的阻止频带的接地导体103的构成。如图1所示,在本发明实施方式的不平衡供电宽带缝隙天线装置中,单端开放的无供电缝隙谐振器108c、108d形成于至少1个接地导体103上。在图1的实例中,无供电缝隙谐振器108c构成为其开放端110c位于边105c上,无供电缝隙谐振器108d构成为其开放端110d位于边105d上。即便各无供电缝隙谐振器的开放端设置在接地导体103的-X侧的边105a1、105a2、+X侧的边105b、+Y侧的边105c、-Y侧的边105d之一上,也可发现本发明实施方式的效果。但是,为了不妨碍偶极天线模式下的工作,各无供电缝隙谐振器的开放端最好设置在-X侧的边105a1、1005a2以外的位置上。另外,追加的无供电缝隙谐振器108c、108d必需形成于接地导体103上不与不平衡供电线路113交叉的位置上。即,仅有助于放射的缝隙111与不平衡供电线路113耦合,无供电缝隙谐振器108c、108d不与不平衡供电线路113电磁耦合。无供电缝隙谐振器108c、108d的缝隙长度在应阻止的频域中构成为1/4有效波长。在无供电缝隙谐振器108c和108d中,通过使距缝隙111的开放端107的距离彼此相等,使各缝隙宽度彼此相等,使各缝隙长度彼此相等,实现对称构成,从而具有在前方正面维持工作频带内的主射束定向方向的效果。另外,即便在仅设置无供电缝隙谐振器108c、108d之一的情况下,也可实现带阻功能。使无供电缝隙谐振器108c、108d的缝隙长度稍稍不同,调整谐振频率,也可扩展阻止频带。
第1实施方式的变形例
图3是表示本发明第1实施方式第1变形例的不平衡供电宽带缝隙天线装置的构造的截面示意图,图4是表示其第2变形例的不平衡供电宽带缝隙天线装置的构造的截面示意图。
在本说明书中,如图2所示,主要说明在电介质基板101的表面(即最上面)配置供电线路113,在电介质基板101的背面(即最下面)配置接地导体103的构造,但也可采用图3和图4所示的不同构造来代替图2的构造。
图3所示的不平衡供电宽带缝隙天线装置使用包含多个电介质层101a和101b的多层基板来代替图2的电介质基板101来构成,不平衡供电线路113(及不平衡供电线路113内的感应区域121)形成于电介质层101a和101b之间的内层。这样,即便利用多层基板的采用等方法来将供电线路113、接地导体103之一或两者配置在电介质基板101的内层面也无妨。
另外,图4所示的不平衡供电宽带缝隙天线装置在基板的表面与背面两者中形成接地导体103a和103b,代替如图3所示仅在基板的背面设置接地导体103。被供电的缝隙形成于基板的表面与背面两者中(缝隙111a、111b),无供电缝隙谐振器仅形成于基板的背面(无供电缝隙谐振器108c、108d)。这样,相对供电线路113用作接地导体103的导体布线面在构造内未必限于一个,也可构造成夹持形成不平衡供电线路113的层来配置相对的接地导体103a和103b。即,本发明实施方式的不平衡供电宽带缝隙天线装置不仅是微带状(micro strip)线路构造,即便是至少部分采用带状线路构造的电路构成的电路构成,也可得到同样的效果。另外,即便是共面线路、接地共面线路构造也一样。
在图3和图4的层构造的实施方式中,电路块133与不平衡供电线路113也可使用贯通层间的贯通电极134来连接。
图10是表示本发明第1实施方式第3变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。本发明的实施方式的不平衡供电宽带缝隙天线装置不仅如图1所示,仅设置一对无供电缝隙谐振器108c、108d,也可追加设置更多单端开放的无供电缝隙谐振器108c2、108d2。通过调整无供电缝隙谐振器108c与无供电缝隙谐振器108c2、无供电缝隙谐振器108d与无供电缝隙谐振器108d2的谐振频率,可扩展阻止频带。为了削减无供电缝隙谐振器108c、108d的占有面积,追加缝隙的并列附加、弯曲形状的采用、曲折构造的多用是有效的。
图11是表示本发明第1实施方式第4变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。如图11所示,从本发明实施方式的不平衡供电宽带缝隙天线装置的不平衡供电线路113分支的布线中的几个也可如上所述,采用开放短线构造213。
图12是表示本发明第1实施方式第5变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。
图12的变形例表示不平衡供电线路113的分支线路部的分支条数为3的情况。若在路径205、207的中间插入路径209,则形成由路径205与209构成的环路布线、和由路径207与209构成的环路布线,代替最初的由路径205和207构成的环路布线。这些环路布线的各环路长度中的最大值构成为小于在不平衡供电宽带缝隙天线装置的工作频带上限频率下的1有效波长的长度。根据本变形例的构成,与图1的情况相比,缩短环路布线的路径长度,提高环路布线的谐振频率,所以从工作频带的扩大方面看是有效的。
也可形成多个环路布线。既可串联连接、也可并联连接设置多个的环路布线彼此。既可串联连接两个环路布线,也可经任意形状的传送线路来间接连接。
图13是表示本发明第1实施方式第6变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图,图14是表示本发明第1实施方式第7变形例的不平衡供电宽带缝隙天线装置的构造的俯视示意图。参照图13和图14,说明环路布线123与缝隙111的位置关系。
在图1的实例中,沿缝隙111长度方向的+Y侧的边界线237与-Y侧的边界线239双方与环路布线123交叉,但即便是环路布线123与缝隙111同接地导体103的边界线237、239任一都不交叉的构成,也可得到本发明实施方式的效果。这是因为在激励缝隙111的高频电流中,对应于第1路径205与第二路径207的路径差,产生相位差,产生使输入阻抗匹配条件转到更宽带的效果。严格地讲,只要环路布线123最外侧(即+Y侧)的点141与边界线237(或239)之间的间隔小于不平衡供电线路113的布线宽度的一倍的状态即可。这是因为若上述间隔构成得比不平衡供电线路113的布线宽度短,则对应于带状导体的两端流过的高频电流的相位差,流过接地导体103侧的局部高频电流之间产生的相位差不消失。但是,为了最大化本发明实施方式的效果,如图1所示,第一路径205与第二路径207最好与缝隙111同接地导体103的边界线237、239的至少一个交叉。
另外,在本发明实施方式的不平衡供电宽带缝隙天线装置中,作为供电缝隙谐振器的缝隙111的形状未必是矩形,也可置换成任意形状。由于在主缝隙上并联连接追加缝隙在电路上相当于向主缝隙附加串联的电感,所以主缝隙的缝隙长度有效地缩短,实用上好。另外,即便在缩窄主缝隙的缝隙宽度、实现曲折小型化为弯曲形状等的条件下,也可无变化地得到本发明实施方式的不平衡供电宽带缝隙天线装置的宽带化效果。
第2实施方式
图15是表示本发明第2实施方式的不平衡供电宽带缝隙天线装置的构造的俯视示意图。本实施方式的不平衡供电宽带缝隙天线装置的特征在于具备与第1实施方式不同的供电构造。接地导体103如图15所示,相对通过缝隙111的X轴方向的对称轴对称地构成,此时,特征在于,通过将不平衡供电线路113连接于接地导体103的+X侧边上、接地导体103的对称轴上设置的天线供电点117,通过将天线供电点117设置在接地导体103的对称轴上,具有比接地导体103的不平衡模式的阻抗高的输入输出阻抗。
如图15所示,本发明实施方式的不平衡供电宽带缝隙天线装置的不平衡供电线路113也可采用如下构造,即在与缝隙111交叉后,在电介质基板101的表面内将定向方向弯曲至少90度以上,到达与电介质基板101中设置缝隙111的开放端107的边相反的边(即+X侧的边)上设置的天线供电点117。即,与图1所示在天线基板上设置电路块133的构成不同,为在限定集成于天线基板上的电路块,使用不平衡线路在天线电路区域与外部电路之间进行RF信号交换时有用的实施方式。天线供电点117设置在电介质基板101的+X侧边的中央附近。
在通过不平衡供电线路113激励缝隙111所产生的缝隙天线模式中,在缝隙111的短路端125中共同产生高频电流。产生的高频电流沿缝隙111与接地导体103的边界线流过,若到达开放端107,则沿接地导体103的外缘流过。这里,若将其它导体连接于接地导体103的外缘,则由于该连接的导体的阻抗极低,所以难以防止高频电流流入连接的导体。利用铁氧体磁芯使流入连接的导体中的不平衡高频电流反射从铁氧体磁芯的插入损耗的观点看不现实。另外,使用平衡-不平衡转换器将供电电路从不平衡电路暂时变换为平衡电路、再从平衡电路再变换为不平衡电路从超宽带平衡-不平衡转换器的插入损耗、电路小型化的观点看不现实。但是,如上所述在对称性高的位置配置天线供电点117在该不平衡模式下,实现比流过接地导体103的高频电流(这具有不平衡模式的阻抗。)高得多的输入输出阻抗,可不伴随追加损耗、窄带化地排除连接于接地导体103上的导体的影响。
图15所示的不平衡供电宽带缝隙天线装置构造内的接地导体103可看做是在缝隙111的短路端125中组合对称性高的有限接地导体对103-1、103-2的导体构造。图16是表示平衡模式时的接地导体103中的高频电流的流动方向的示意图,图17是表示不平衡模式时的接地导体103中的高频电流的流动方向的示意图。在图16和图17中,将接地导体103中的高频电流的流动方向分别示意性地表示为与各模式的供电构造的关系。在平衡模式下,等于向成对的接地导体103-1、103-2逆相供电从供电点15沿箭头方向流过的高频电流131a、131b,结果,与接地导体对的连接点、即缝隙111的短路端125流过最强的同相高频电流相等。另一方面,在不平衡模式下,等于向成对的接地导体103-1、103-2同相供电从供电点15(视为经规定阻抗R接地的点)沿箭头方向流过的高频电流131a、131b,结果,可在接地导体对的连接点、即天线供电点15使高频电流抵消。接地导体对103-1、103-2的构成对称性越高,天线供电点15越设置在接地导体的对称点上,接地导体的不平衡模式的输入输出阻抗越高。从而,若采用图15所示的天线供电条件,则即便将外部不平衡供电电路连接于接地导体103上,也可避免不平衡接地导体电流从外部不平衡供电电路逆流到接地导体103。通过构成为将成对的各接地导体103-1、103-2的长度(即相当于图15的边的部分105a1、105a2的长度Wg1与Wg2)设为彼此相同的值,本发明实施方式的效果进一步增大。另外,如图15所示,通过将为了形成阻止频带而导入的单端开放的无供电缝隙谐振器108c、108d设为对构成,将无供电缝隙谐振器108c、108d的谐振频率、开放端110c、110d设置成相对通过缝隙111的X轴方向的对称轴镜面对称配置,本发明实施方式的效果进一步增大。
另外,在本发明实施方式中,天线供电点117处的接地导体103与外部不平衡供电电路的连接不限于仅在电介质基板101的背面进行。即,也可在连接点附近经贯通导体向电介质基板表面引导接地导体之后,在电介质基板101的表面共面线路构造地连接。即便在上述构成中,本发明实施方式的有利效果也不消失。由于与其可在电介质基板101的表面进行带状导体、接地导体的两个连接,所以还不如执行向外部安装基板表面安装本发明实施方式的不平衡供电宽带缝隙天线装置。
实施例
为了使本发明各实施方式的效果变得显而易见,利用出售的电磁场解析模拟器来解析本发明实施例的缝隙天线装置及比较例的缝隙天线装置的输入阻抗特性、放射特性。表1表示本发明的第1、第2和第3实施例中共同的电路基板的设定图案。另外,表2表示第1和第2比较例中共同的电路基板的设定图案。
表1
电介质基板101的材料 |
FR4 |
电介质基板101的厚度H |
0.5mm |
电介质基板101的进深D |
11.5mm |
电介质基板101的宽度W |
32mm |
布线的厚度t |
0.04mm |
缝隙长度Ls |
8.8mm |
缝隙宽度Ws |
2.5mm |
-X侧的边的部分105a1、105a2的长度wg1、Wg2 |
13.8mm |
不平衡供电线路113的宽度W1 |
0.95mm |
感应区域121的宽度W2 |
0.4mm |
环路布线的宽度W3 |
0.25mm |
不平衡供电线路113距开放端107的距离d2 |
5.8mm |
感应区域121的长度Lind |
9mm |
环路布线123的路径间距离doff |
1.4mm |
无供电缝隙谐振器的宽度Was |
0.5mm |
无供电缝隙谐振器的开放端距-X侧的边的距离Das |
3mm |
表2
电介质基板101的材料 |
FR4 |
电介质基板101的厚度H |
0.5mm |
电介质基板101的进深D |
11.5mm |
电介质基板101的宽度W |
32mm |
布线的厚度t |
0.04mm |
缝隙长度Ls |
8.8mm |
缝隙宽度Ws |
2.5mm |
-X侧的边的部分105a1、105a2的长度wg1、wg2 |
13.8mm |
不平衡供电线路113的宽度W1 |
0.95mm |
不平衡供电线路113距开放端107的距离d2 |
5.8mm |
缝隙111距不平衡供电线路113的顶端开放终端点119的偏移距离Lm |
4.5mm |
在所有解析中,以相同尺寸的电路基板的制作为前提,设定条件。导体图案考虑成假设厚度为40微米的铜布线,可由湿蚀刻加工形成的精度范围。
首先,进行图18、图19和图20所示的3个缝隙天线装置、即本发明第1和第2实施例的不平衡供电宽带缝隙天线装置、与第1比较例的缝隙天线装置的特性解析。就不平衡供电线路113的形状、接地导体103的形状以外的全部基板条件而言,设实施例与比较例为相同条件。在第1和第2实施例与第1比较例中,在天线基板内设定理想的50Ω的不平衡供电端子117。就第1和第2实施例的阻止频带形成用单端开放的无供电缝隙谐振器108c、108d、108c2、108d2而言,调整缝隙长度,调整阻止频带的谐振频率。在第1实施例中,设定成无供电缝隙谐振器108c、108d的缝隙长度等于相对4.5GHz频率的1/4有效波长。另外,在第2实施例中,在第1实施例的接地导体构造中追加配置无供电缝隙谐振器108c2、108d2。无供电缝隙谐振器108c2、108d2的缝隙长度设定成等于相对4.65GHz频率的1/4有效波长。设无供电缝隙谐振器108c与无供电缝隙谐振器108c2之间、无供电缝隙谐振器108d与无供电缝隙谐振器108d2之间的接地导体宽度Das2分别为0.5mm。
在图21的曲线中,对第1实施例与第1比较例比较示出相对频率的反射损耗的特性。在第1比较例中,得不到如下宽带特性,即在从3.01GHz至3.69GHz的20%相对频带范围中,反射损耗下降-10dB,从2.88GHz至4.29GHz,反射损耗下降-7.5dB,而在6.1GHz,反射损耗到达-4.8dB。另外,由于工作频带自身窄,所以也不可能形成局部急剧的阻止频带。另一方面,第1实施例同时得到局部频域中强的反射强度、和在去除上述频域的超宽带的频率范围中,得到低反射特性。进一步详细说明,得到在从2.98GHz至4.31GHz的低频域、与从4.77GHz至11GHz的高频域中、反射损耗为-10dB以下的良好的反射特性,在从4.36GHz至4.6GHz中,反射强度变为-5dB以上等高的值,成功形成阻止频带。在4.49GHz下得到-2.7dB等强的反射强度。另外,在图22、图23和图24中,如第1实施例的工作频率为3GHz、7GHz和10.6GHz时的E面放射图案所示,在第1实施例中,在全部工作频带中,主射束方向始终沿前方方向(即-X方向)定向,验证了与现有例的印制单极相比的优越性。在图25的曲线中,对第1实施例与第1比较例比较示出-X方向上相对频率的天线有效增益。在阻止频带以外,第1实施例示出比第1比较例好的增益,验证本发明实施方式的超宽带的低反射特性。另外,在第1实施例中,若在阻止频带下与周边频域相比,则得到8dB左右的增益抑制,验证本发明实施方式的局部频域的带阻功能的效果。
另外,在图26的曲线中,对第2实施例与第1比较例比较示出相对频率的反射损耗的特性。第2实施例同时得到局部频域中强的反射强度、和在去除上述频域的超宽带的频率范围下的低反射特性。在4.49GHz下得到-2.7dB等强的反射强度。进一步详细说明,得到在从2.98GHz至4.64GHz的低频域、与从5.27GHz至11GHz的高频域中、反射损耗为-10dB以下的良好的反射特性,在从4.78GHz至5.18GHz中,反射强度示出-5dB以上等高的值。另外,在阻止频带中,得到在4.93GHz下为-3.3dB、在5.06GHz下为-3.4dB的复谐振峰值。第1实施例中的带阻功能取决于单一的谐振特性,阻止频带为窄带,但在第2实施例中,实现阻止频带的宽带化。
另外,执行图27与图28分别示出的本发明第3实施例的不平衡供电宽带缝隙天线装置与第2比较例的缝隙天线装置的特性解析。在第3实施例与第2比较例中,假设在图中示为天线供电点117的部位、天线与同轴缆线135之间经同轴连接器(未图示)连接的供电构造。第3实施例为除不平衡供电线路113与供电构造以外、与第1及第2实施例相同的构造。另外,第2比较例为除供电构造以外、与第1比较例相同的构造。在解析中,首先,假设150mm,作为同轴缆线长度Lc,由同轴缆线135的顶端进行理想的供电。即,解析包含连接为不平衡供电电路的长度Lc的同轴缆线135对特性造成的影响的、天线的工作稳定性、宽带性。另外,同时还进行假设同轴缆线长度Lc为0的情况,即由天线供电点117进行理想的高频供电的解析。在第2比较例中,由于未假设不平衡供电线路113的弯曲,所以同轴缆线135的定向方向在图中坐标轴上为Y轴方向,另一方面,在第3实施例中,在XY面内弯曲不平衡供电线路113,导向天线供电点117,所以同轴缆线135的定向方向在图中是X方向。
图29中示出第3实施例中、同轴缆线135的长度为0mm时与为150mm时的、工作频率为3GHz时的E面放射图案图。增益为排除了输入阻抗不匹配影响的理想增益值。尽管天线内的接地导体103与外部电路经不平衡端子连接,在150mm的情况下也可维持稳定的放射特性。另一方面,第2比较例的放射特性得到特性因同轴缆线135的影响而变化大的倾向。图30中示出第2比较例中、同轴缆线135的长度为0mm时与为150mm时的、工作频率为3GHz时的E面放射图案图。由于天线内的接地导体135与外部电路经不平衡端子连接,在150mm的情况下,放射图案因同轴缆线135的影响而明显混乱。
这样,根据图29和图30,验证抑制不平衡接地导体电流等本发明实施方式的优越效果。
本发明的不平衡供电宽带缝隙天线装置由于可不使电路占有面积、制造成本增大地使阻抗匹配频域扩大,所以可以简单的构成实现以前若搭载多个天线则无法实现的高功能终端。另外,也可有助于实现利用比以前宽得多的频域的UWB系统。另外,由于不使用芯片部件地扩大工作频带,所以也可用作对制造时的差异的耐性强的天线。另外,在比缝隙天线模式的频域低的频域,由于在与缝隙天线模式时相同的偏振波特性、即接地导体偶极天线模式下工作,所以可用作小型宽带缝隙天线装置。另外,即便无线发送接收数字信号等、必需超宽带的频率特性的系统中也可用作小型天线。在任一情况下,在安装于终端设备上时,工作频带内主射束方向始终可保持在相同方向上。另外,由于不必其它通信中使用的、用于降低频带干扰的局部频域的阻止功能用的滤波器追加搭载,或急剧缓和对滤波器的要求特性,所以可期待终端的小型化、低成本化、插入损耗的降低、通信区域的扩大、节省功率化等效果。另外,UWB系统中使用的滤波器元件在平衡电路构成时难以实现超宽带特性,本发明执行不平衡供电的同时实现宽带特性产生的工业上的实用性极高。
如上所述,利用最佳实施方式详细说明了本发明,但本发明不限于此,对本领域技术人员而言,在下面的权利要求范围中记载的本发明的技术范围内可实现大量的最佳变形例和修正例是显而易见的。