CN101299438A - 一种半导体结构 - Google Patents

一种半导体结构 Download PDF

Info

Publication number
CN101299438A
CN101299438A CNA2007101496042A CN200710149604A CN101299438A CN 101299438 A CN101299438 A CN 101299438A CN A2007101496042 A CNA2007101496042 A CN A2007101496042A CN 200710149604 A CN200710149604 A CN 200710149604A CN 101299438 A CN101299438 A CN 101299438A
Authority
CN
China
Prior art keywords
high pressure
well region
type buried
buried horizon
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101496042A
Other languages
English (en)
Other versions
CN101299438B (zh
Inventor
黄郁惠
李定邦
陈富信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101299438A publication Critical patent/CN101299438A/zh
Application granted granted Critical
Publication of CN101299438B publication Critical patent/CN101299438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种半导体结构。一第一高压N阱区埋藏于一基底中。一P型埋藏层水平邻接第一高压N阱区。一第二高压N阱区位于第一高压N阱区上。一高压P阱区位于P型埋藏层上方。一绝缘区位于第二高压N阱区的顶部表面。一栅极电介质从高压P阱区上方延伸至第二高压N阱区上方,其中部分的栅极电介质是位于绝缘区上方。一栅电极位于栅极电介质上。

Description

一种半导体结构
技术领域
本发明涉及一种半导体元件,且特别涉及一种金属氧化物半导体(metaloxide semiconductor,以下可简称MOS)元件,特别是一种高压MOS元件结构及其制造方法。
背景技术
高压金属氧化物半导体(high voltage metal oxide semiconductor,以下可简称HVMOS)元件广泛的应用于许多电子元件,例如微处理器(CPU)的电源供应、电源管理(power management)系统和交流/直流转换器等。
图1揭示传统的高压金属氧化物半导体元件2,其包括栅极氧化层10、位于栅极氧化层10上的栅电极12、位于高压N阱(high voltage n well,以下可简称HVNW,且也可称为漂移区)中的漏极区4和位于高压P阱(highvoltage p well,以下可简称HVPW)中的源极区6。场氧化层8将漏极区4和栅电极12分隔,因此可施加高数值的源极至栅极电压。
高压金属氧化物半导体(HVMOS)元件的两个重要参数为击穿电压和导通电阻,在设计高压金属氧化物半导体元件2时,主要目标为增加击穿电压和降低导通电阻。一般来说,可通过增加漏极区4和栅电极12间的距离,改进高压金属氧化物半导体元件2的击穿电压,然而,其会增加高压金属氧化物半导体元件2的尺寸。另外,可通过降低漂移区(HVNW)中的掺杂浓度,增加高压金属氧化物半导体元件2的击穿电压。然而,增加高压金属氧化物半导体元件2的尺寸会导致较大的耗能,减少掺杂浓度会导致增加导通电阻。
图2揭示另一减少导通电阻的公知结构,此结构除了形成预先漂移区(pre-HVNW)于漂移区(HVNW)下面外,类似图1的结构。一般来说,在形成图2所示的高压金属氧化物半导体时,提供一基底9,且于基底9表面掺杂形成预先漂移区(pre-HVNW)。接着进行一外延生长工艺,以形成一外延层,其中于外延层中掺杂适当的掺杂物形成高压N阱(HVNW)和高压P阱(HVPW)。预先漂移区(pre-HVNW)的电阻是和高压N阱(HVNW)的电阻并联,因此,可减小高压金属氧化物半导体元件2的导通电流。
然而,图2所示的高压金属氧化物半导体元件2存在一些缺点:预先漂移区(pre-HVNW)是用作寄生双载子晶体管(parasitic bipolar junctiontransistor,以下可简称BJT)14的集电结构(collector)。寄生双载子晶体管14的基极电阻器18是位于起始基底和外延层中,其中起始基底和外延层均具有低掺杂浓度。因此,基极电阻器18具有高的电阻,而此高的电阻会导致于寄生双载子晶体管14基础施加不预期高电压,所以寄生双载子晶体管14很容易被开启,因而降低MOS元件的击穿电压。
发明内容
根据上述问题,本发明提供一种高压金属氧化物半导体元件及其制作方法,具有高击穿电压和低导通电阻。
本发明提供一种半导体结构。一第一高压N阱区埋藏于一基底中。一P型埋藏层水平邻接第一高压N阱区。一第二高压N阱区位于第一高压N阱区上。一高压P阱区位于P型埋藏层上方。一绝缘区位于第二高压N阱区的顶部表面。一栅极电介质从高压P阱区上方延伸至第二高压N阱区上方,其中部分的栅极电介质是位于绝缘区上方。一栅电极位于栅极电介质上。
本发明提供一种半导体结构。一第一高压N阱区从半导体基底的顶部表面延伸入半导体基底中。一P型埋藏层从半导体基底的顶部表面延伸入半导体基底中,其中P型埋藏层邻接第一高压N阱区。一外延层位于半导体基底上,外延层包括一第二高压N阱区和一高压P阱区,其中第二高压N阱区位于第一高压N阱区上,且从外延层的顶部表面延伸至外延层的底部表面,一高压P阱区位于P型埋藏层上方,且从外延层的顶部表面延伸入外延层中。一绝缘区位于外延层的顶部表面,且大体上位于第二高压N阱区中。一栅极电介质从高压P阱区上方延伸至第二高压N阱区上方,其中部分的栅极电介质是位于绝缘区上方。一栅电极位于栅极电介质上。
本发明提供一种半导体结构。一第一高压N阱区从基底的顶部表面延伸入一基底中。一第二高压N阱区从基底的顶部表面延伸入基底中。一P型埋藏层埋藏于基底中,且仅邻接第一高压N阱区和第二高压N阱区的下部部分,其中第一高压N阱区和第二高压N阱区分别位于P型埋藏层的两侧。一高压P阱区位于P型埋藏层上方。一绝缘层位于基底的顶部表面。一栅极电介质从高压P阱区上方延伸至第二高压N阱区上方,其中部分的栅极电介质位于绝缘区上方。一栅电极位于栅极电介质上。一源极/漏极区位于第一高压N阱区中,且位于绝缘区相对栅极电介质的另一侧。
附图说明
图1显示传统的高压金属氧化物半导体元件。
图2显示传统包括预先高压N阱区的高压金属氧化物半导体元件。
图3~图10显示非对称高压金属氧化物半导体元件中介工艺的剖面图。
图11显示一对称高压金属氧化物半导体元件。
其中,附图标记说明如下:
HVNW~高压N阱区;
HVPW~高压P阱区;
Pre-HVNW~预先高压N阱区;
2~高压金属氧化物半导体元件;4~漏极区;
6~源极区;8~场氧化层;
10~栅极氧化层;12~栅电极;
14~寄生双载子晶体管;18~基极电阻器;
20~基底;22~光致抗蚀剂;
24~预先高压N阱区;26~预先高压N阱区;
28~光致抗蚀剂;30~P型埋藏层;
32~外延层;36~高压N阱区;
38~高压N阱区;40~高压P阱区;
42~P型外延区/外延层部分;44~掩模层;
46~绝缘区;48~光致抗蚀剂;
50~P型重掺杂接触区;52~栅极介电层;
54~栅电极;56~间隙壁;
60~光致抗蚀剂;62~N型(N+)漏极区;
64~N型(N+)源极区;68~高压金属氧化物半导体元件;
72~寄生双载子晶体管;102~高压N阱区;
106~高压P阱区;108~预先高压N阱区;112~P型埋藏层。
具体实施方式
以下详细讨论本发明优选实施例的制造和使用,然而,根据本发明的概念,其可包括或运用于更广泛的技术范围。须注意的是,实施例仅用以揭示本发明制造和使用的特定方法,并不用以限定本发明。
以下以图3至图10描述本发明的实施例,并于其后讨论实施例的变化。在本发明的各实施例中,类似的单元使用相同的标号。
请参照图3,提供一基底20,基底20优选为半导体材料组成,例如Si或SiGe。基底20为轻掺杂P型掺杂物,P型掺杂物浓度较佳约小于1E+15/cm3
于基底20上形成光致抗蚀剂22,且使用光刻技术图形化光致抗蚀剂。接着,注入N型掺杂物,以形成高压N阱区(HVNW)24、26。在本发明的描述中,由于高压N阱区(HVNW)24、26是在形成外延层之前形成,其被称为预先高压N阱区(pre-HVNW),预先高压N阱区24也可称为漂移区24。预先高压N阱区24、26可掺杂磷、锑和/或砷,以中和基底20中的P型掺杂物,且将掺杂区转换成N型。在注入之后,预先高压N阱区24、26的掺杂浓度较佳约为6E+14/cm3~6E+15/cm3,然后移除光致抗蚀剂22。
接着,请参照图4,形成光致抗蚀剂28,覆盖预先高压N阱区24、26。注入P型掺杂物(较佳包括硼、铟或其组合),形成P型埋藏层(p typed buriedlayer,以下可简称PBL)30。P型埋藏层(PBL)30较佳邻近预先高压N阱区24、26。虽然图4揭示P型埋藏层的厚度和预先高压N阱区的厚度相当,P型埋藏层30的厚度可大于或小于预先高压N阱区24、26的厚度。在一示范的实施例中,P型埋藏层30的厚度约介于6000nm~8000nm之间。P型埋藏层30的掺杂浓度较佳约大于预先高压N阱区24、26的掺杂浓度,且更佳约大于预先高压N阱区24、26的掺杂浓度的两倍。在一示范的实施例中,P型埋藏层30的掺杂浓度约为8.0E+15/cm3~1.5E+16/cm3;在注入后,移除光致抗蚀剂28。
图5揭示于基底20的顶部表面形成外延层32。在优选实施例中,外延层32包括硅。在外延生长时,其较佳同环境掺杂低掺杂浓度的P型掺杂物。在一示范的实施例中,外延层32的掺杂浓度约为1E+12/cm3~1E+13/cm3。此外,外延层32的掺杂浓度较佳小于基底20的掺杂浓度(外延层的掺杂浓度可等于或大于基底的掺杂浓度)。外延层32的厚度较佳约为6000nm~7000nm。
图6揭示形成高压N阱区(HVNW)36、38和高压P阱区(HVPW)40,注入N型掺杂物形成高压N阱区36、38,以使用形成预先高压N阱区(pre-HVNW)24、26相同的掩模较佳。高压N阱区36、38的厚度至少和外延层32的厚度相等,如此高压N阱区36邻接预先高压N阱区24,且高压N阱区38邻接预先高压N阱区26。在一示范的实施例中,高压N阱区36、38的掺杂浓度约为9E+15/cm3~1.2E+16/cm3
较佳高压P阱区40是由使用P型埋藏层30相同的掩模形成,注入P型掺杂物形成。在一实施例中,高压P阱区40的厚度小于外延层32的厚度,因此高压P阱区40和P型埋藏层30间保留外延层32的部分42。在另一实施例中,高压P阱区40的厚度等同(或大于)外延层32的厚度,如此高压P阱区40邻接P型埋藏层30,且高压P阱区和P型埋藏层不存在剩余的外延区42。在一示范的实施例中,高压P阱区40的掺杂浓度约为1.5E+15/cm3~1.5E+16/cm3。高压P阱区40的掺杂浓度和P型埋藏层的掺杂浓度的比例较佳约小于1.0,更佳约小于0.7。
由于预先高压N阱区24、26和P型埋藏层30是通过注入基底20形成,P型埋藏层30的顶部表面大体上和预先高压N阱区24、26的顶部表面同一水平。然而,若使用其它的制作方法,P型埋藏层30的顶部表面可高于或低于预先高压N阱区24、26的顶部表面。举例来说,P型埋藏层30的顶部表面可高于预先高压N阱区24、26的顶部表面,且可直接接触高压P阱区40。
图7A和图7B揭示形成绝缘区46,其位于高压N阱区36的表面,且可稍微延伸入高压P阱区40中。在一实施例中,如图7A所示,毯覆性的形成掩模层44(由氮化硅所组成较佳),然后图形化掩模层44,形成一开口。接着进行一氧化工艺,形成一穿过开口的绝缘区46(也可称为场氧化层)。在另一实施例中,如图7B所示,绝缘区46是采用以下方法形成:于高压N阱区36中形成一凹槽,于凹槽中填满介电材料(例如氧化硅或高密度等离子体氧化物HDP),进行化学机械研磨工艺,以将介电材料的表面平坦化,形成的绝缘区46为浅沟槽绝缘(STI)区。
请参照图8,形成一光致抗蚀剂48且将光致抗蚀剂图形化,以于其中形成一开口。进行P型掺杂物注入,于高压P阱区40中形成P型重掺杂(P+)接触区50。P型重掺杂接触区50较佳包括硼和/或其它P型掺杂物,且其重掺杂的浓度约大于1020/cm3。在上述的实施例中,重掺杂是指掺杂浓度约大于1020/cm3,然而,熟悉此技术的技术人员可了解重掺杂是一技术术语,其可依特定元件形态、技术时代、最小特征尺寸或类似的因素决定。因此上述的术语是由应用的技术诠释,非由说明书中的实施例限定。P型重掺杂接触区50用作P型区40、42、30和基底20的接触。然后移除光致抗蚀剂48。
图9揭示形成栅极介电层52、栅电极54和间隙壁56。如此技术人员所熟知的,栅极介电层52较佳包括氧化硅,但栅极介电层也可包括其它介电材料,例如氮化硅、碳化硅、氮氧化硅、上述的组合或上述的堆叠层。栅电极54较佳为掺杂的多晶硅所组成,本发明不限于此,栅电极另可为其它导电材料所组成,例如金属、金属氮化物或金属硅化物。较佳栅极间隙壁56是由以下方法形成:毯覆性的形成一介电材料,从水平表面移除不预期的部分。形成栅极介电层52、栅电极54和栅极间隙壁56的详细步骤为此技术领域所熟知,因此在此不描述。栅电极54的侧壁边缘较佳位于绝缘区46上方。
另外,P+接触区50可在形成栅极介电层52、栅电极54和栅极间隙壁56前形成,其工艺步骤也为此技术人士所熟知,在此不详细描述。
请参照图10,形成且图形化一光致抗蚀剂60。注入N型掺杂物,于高压N阱区36中形成重掺杂N型(N+)漏极区62,且于高压P阱区40中形成N+源极区64,因此形成HVNMOS元件68。N型掺杂物可包括磷和/或砷,其掺杂浓度约大于1020/cm3。在注入后移除光致抗蚀剂60。由于栅电极54和N+漏极区62分开,因此可施加高电压。
以上所描述的实施例为非对称结构,其中源极区和漏极区位于不同形态的高电压阱区中。图11揭示一具有对称结构的HVNMOS的实施例,其中HVNMOS的源极区和漏极区有大体上对称的结构。类似于图10所示的实施例,一P型埋藏层112形成于高压P阱区106下方,而预先高压N阱区108形成于高压N阱区102下方。工艺步骤实质上和上述章节所讨论的工艺步骤相同。
请再参照图10,高压金属氧化物半导体元件68包括一寄生双载子晶体管(B打)72,寄生双载子晶体管72的集极包括高压N阱区36和预先高压N阱区24,寄生双载子晶体管72的基极包括基底20、P型埋藏层30和高压P阱区40,且可能包括P型外延区42。寄生双载子晶体管的射极包括N+源极区64。由于P型埋藏层30具有高掺杂浓度,寄生双载子晶体管72的基极阻抗显著的减少,因此很难开启寄生双载子晶体管72,据此增加高压金属氧化物半导体元件68的击穿电压。
在一测试范例元件的实验中,以形成具有图10所示结构为第一范例元件。除了未形成P型埋藏层30,第二范例元件类似图10所示结构的第一范例元件。实验发现第一范例元件的开启击穿电压约为95V,其相较于第二范例元件的开启击穿电压60V改进约60%,而关闭击穿电压约改进22%。此外,仿真结果显示本发明上述实施例的漏极62和源极64间的导通电阻(Rdson)是较传统不具有P型埋藏层30和预先高压N阱区24、26的高压金属氧化半导体元件改进。
虽然本发明已以优选实施例揭示如上,然而其并非用以限定本发明,任何熟悉此技术领域的普通技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰。举例来说,内连接可有不同的结构,或根据本发明可制作出其它的半导体元件。另外,本发明可采用上述不同的材料,因此,本发明的保护范围,当视后附的权利要求书为准。

Claims (15)

1.一种半导体结构,包括:
一基底;
一第一高压N阱区,埋藏于该基底中;
一P型埋藏层,水平邻接该第一高压N阱区;
一第二高压N阱区,位于该第一高压N阱区上;
一高压P阱区,位于该P型埋藏层上方;
一绝缘区,位于该第二高压N阱区的顶部表面;
一栅极电介质,从该高压P阱区上方延伸至该第二高压N阱区上方,其中部分的栅极电介质是位于该绝缘区上方;及
一栅电极,位于该栅极电介质上。
2.如权利要求1所述的半导体结构,其中该P型埋藏层的掺杂浓度高于该第一高压N阱区的掺杂浓度。
3.如权利要求2所述的半导体结构,其中该P型埋藏层的掺杂浓度大体上高于两倍该第一高压N阱区的掺杂浓度。
4.如权利要求1所述的半导体结构,还包括一P型区,位于该P型埋藏层和该高压P阱区间,其中该P型区的掺杂浓度低于该P型埋藏层和该高压P阱区的掺杂浓度。
5.如权利要求1所述的半导体结构,其中该P型埋藏层邻接该高压P阱区。
6.如权利要求1所述的半导体结构,其中该高压P阱区和该P型埋藏层是位于该栅电极下,且其中该半导体结构还包括:
一第三高压N阱区,邻接该P型埋藏层,其中该第三高压N阱区是位于该P型埋藏层相对该第一高压N阱区的另一侧边;
一第四高压N阱区,位于该第三高压N阱区上;
一另外绝缘层,位于该第四高压N阱区的表面,其中该栅极电介质延伸至部分该另外绝缘层上方;
一漏极区,位于该第二高压N阱区中;及
一源极区,位于该第四高压N阱区中,其中该漏极区和该源极区是重掺杂N型掺杂物。
7.如权利要求1所述的半导体结构,还包括一重掺杂的P型接触区,位于该高压P阱区中。
8.一种半导体结构,包括:
一半导体基底;
一第一高压N阱区,从该半导体基底的顶部表面延伸入该半导体基底中;
一P型埋藏层,从该半导体基底的顶部表面延伸入该半导体基底中,其中该P型埋藏层邻接该第一高压N阱区;
一外延层,位于该半导体基底上,该外延层包括:
一第二高压N阱区,位于该第一高压N阱区上,其中该第二高压N阱区从该外延层的顶部表面延伸至该外延层的底部表面;及
一高压P阱区,位于该P型埋藏层上方,其中该高压P阱区从该外延层的顶部表面延伸入该外延层中;
一绝缘区,位于该外延层的顶部表面,且大体上位于该第二高压N阱区中;
一栅极电介质,从该高压P阱区上方延伸至该第二高压N阱区上方,其中部分的栅极电介质是位于该绝缘区上方;及
一栅电极,位于该栅极电介质上。
9.如权利要求8所述的半导体结构,其中该P型埋藏层的掺杂浓度高于该第一高压N阱区的掺杂浓度。
10.如权利要求8所述的半导体结构,还包括一P型区,位于该P型埋藏层和该高压P阱区间,其中该P型区的掺杂浓度低于该P型埋藏层和该高压P阱区的掺杂浓度。
11.一种半导体结构,包括:
一基底;
一第一高压N阱区,从该基底的顶部表面延伸入该基底中;
一第二高压N阱区,从该基底的顶部表面延伸入该基底中;
一P型埋藏层,埋藏于该基底中,且仅邻接该第一高压N阱区和该第二高压N阱区的下部部分,其中该第一高压N阱区和该第二高压N阱区分别位于该P型埋藏层的两侧;
一高压P阱区,位于该P型埋藏层上方;
一绝缘层,位于该基底的顶部表面;
一栅极电介质,从该高压P阱区上方延伸至该第二高压N阱区上方,其中部分的栅极电介质是位于该绝缘区上方;
一栅电极,位于该栅极电介质上;及
一源极/漏极区,位于该第一高压N阱区中,且位于该绝缘区相对该栅极电介质的另一侧。
12.如权利要求11所述的半导体结构,其中该P型埋藏层的掺杂浓度高于部分该基底的掺杂浓度,且部分该基底是位于该第一高压N阱区下。
13.如权利要求11所述的半导体结构,其中该P型埋藏层的掺杂浓度大体上高于两倍该第一和第二高压N阱区的掺杂浓度。
14.如权利要求11所述的半导体结构,其中部分该第二高压N阱区是位于该栅极电介质下,且其中该半导体结构还包括一位于该第二高压N阱区中的源极/漏极区。
15.如权利要求11所述的半导体结构,其中该栅极电介质不延伸至该第二高压N阱区,且该半导体结构还包括一位于该高压P阱区中的源极/漏极区。
CN2007101496042A 2007-04-30 2007-09-05 一种半导体结构 Active CN101299438B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/796,832 2007-04-30
US11/796,832 US7893490B2 (en) 2007-04-30 2007-04-30 HVNMOS structure for reducing on-resistance and preventing BJT triggering

Publications (2)

Publication Number Publication Date
CN101299438A true CN101299438A (zh) 2008-11-05
CN101299438B CN101299438B (zh) 2010-07-21

Family

ID=39885900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101496042A Active CN101299438B (zh) 2007-04-30 2007-09-05 一种半导体结构

Country Status (3)

Country Link
US (1) US7893490B2 (zh)
CN (1) CN101299438B (zh)
TW (1) TWI340470B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562195B (zh) * 2008-04-15 2010-12-08 台湾积体电路制造股份有限公司 半导体结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476591B2 (en) 2006-10-13 2009-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral power MOSFET with high breakdown voltage and low on-resistance
US7989890B2 (en) * 2006-10-13 2011-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral power MOSFET with high breakdown voltage and low on-resistance
US7843002B2 (en) 2007-07-03 2010-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Fully isolated high-voltage MOS device
US20090032885A1 (en) * 2007-07-31 2009-02-05 Intersil Americas, Inc. Buried Isolation Layer
US7960786B2 (en) 2008-07-09 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Breakdown voltages of ultra-high voltage devices by forming tunnels
US7768071B2 (en) * 2008-07-09 2010-08-03 Taiwan Semiconductor Manufacturing Company, Ltd. Stabilizing breakdown voltages by forming tunnels for ultra-high voltage devices
US8461647B2 (en) * 2010-03-10 2013-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having multi-thickness gate dielectric
US8643104B1 (en) * 2012-08-14 2014-02-04 United Microelectronics Corp. Lateral diffusion metal oxide semiconductor transistor structure
TWI549299B (zh) * 2014-03-06 2016-09-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
TWI683437B (zh) * 2016-12-30 2020-01-21 新唐科技股份有限公司 高壓半導體裝置
US10276679B2 (en) * 2017-05-30 2019-04-30 Vanguard International Semiconductor Corporation Semiconductor device and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227654A (en) * 1989-05-17 1993-07-13 Kabushiki Kaisha Toshiba Semiconductor device with improved collector structure
US5889315A (en) * 1994-08-18 1999-03-30 National Semiconductor Corporation Semiconductor structure having two levels of buried regions
US6265752B1 (en) * 1999-05-25 2001-07-24 Taiwan Semiconductor Manufacturing, Co., Inc. Method of forming a HVNMOS with an N+ buried layer combined with N well and a structure of the same
US6475870B1 (en) * 2001-07-23 2002-11-05 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562195B (zh) * 2008-04-15 2010-12-08 台湾积体电路制造股份有限公司 半导体结构

Also Published As

Publication number Publication date
TWI340470B (en) 2011-04-11
US20080265292A1 (en) 2008-10-30
US7893490B2 (en) 2011-02-22
CN101299438B (zh) 2010-07-21
TW200843108A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
CN101299438B (zh) 一种半导体结构
US9601595B2 (en) High breakdown voltage LDMOS device
US7508032B2 (en) High voltage device with low on-resistance
CN101626031B (zh) 半导体结构
CN101345259B (zh) 垂直型mos晶体管及其方法
CN101211972B (zh) 半导体结构及其形成方法
TWI475614B (zh) 溝渠裝置結構及製造
US20080237703A1 (en) High voltage semiconductor devices and methods for fabricating the same
KR101245935B1 (ko) 반도체 소자 및 그 제조방법
US20130161740A1 (en) Lateral High-Voltage Transistor with Buried Resurf Layer and Associated Method for Manufacturing the Same
JP2006165145A (ja) 横型半導体デバイスおよびその製造方法
US8115273B2 (en) Deep trench isolation structures in integrated semiconductor devices
TWI440183B (zh) 超高電壓n型金屬氧化物半導體元件及其製造方法
CN103208521B (zh) Hvmos器件及其形成方法
US9231081B2 (en) Method of manufacturing a semiconductor device
CN103715087B (zh) 鳍式场效应晶体管及其制造方法
CN100499167C (zh) 半导体结构
TW202221926A (zh) 切換式電源供應電路之高壓元件及其製造方法
CN102694020A (zh) 一种半导体装置
CN107026199A (zh) 具有双阱的金属氧化物半导体元件及其制造方法
TW201234590A (en) High voltage device and manufacturing method thereof
CN102569397B (zh) 高电压半导体元件
CN114765222A (zh) 高压元件及其制造方法
CN101431099B (zh) 半导体元件
CN107293543A (zh) 具有双阱的金属氧化物半导体元件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant