CN101289985B - 优化发动机预热的方法和设备 - Google Patents
优化发动机预热的方法和设备 Download PDFInfo
- Publication number
- CN101289985B CN101289985B CN200810092194.7A CN200810092194A CN101289985B CN 101289985 B CN101289985 B CN 101289985B CN 200810092194 A CN200810092194 A CN 200810092194A CN 101289985 B CN101289985 B CN 101289985B
- Authority
- CN
- China
- Prior art keywords
- engine
- power loss
- loss
- energy loss
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000000446 fuel Substances 0.000 claims description 36
- 239000003054 catalyst Substances 0.000 claims description 15
- 238000010792 warming Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000009849 deactivation Effects 0.000 claims description 10
- 239000002360 explosive Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 abstract description 9
- 238000002485 combustion reaction Methods 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 17
- 238000004422 calculation algorithm Methods 0.000 description 10
- 239000007921 spray Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 239000000659 freezing mixture Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- BWSQKOKULIALEW-UHFFFAOYSA-N 2-[2-[4-fluoro-3-(trifluoromethyl)phenyl]-3-[2-(piperidin-3-ylamino)pyrimidin-4-yl]imidazol-4-yl]acetonitrile Chemical compound FC1=C(C=C(C=C1)C=1N(C(=CN=1)CC#N)C1=NC(=NC=C1)NC1CNCCC1)C(F)(F)F BWSQKOKULIALEW-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/068—Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1006—Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1406—Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Hybrid Electric Vehicles (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
本发明涉及优化发动机预热的方法和设备,提供一种最小化内燃发动机在发动机预热期间的能量损失的方法和设备。这包括监视发动机工作条件,和估计未来能量损失。确定动力损失和该估计的未来能量损失的变化率。在发动机预热期间执行一个能够有效减少动力损失和该估计的未来能量损失变化率的发动机控制方案。
Description
技术领域
本发明一般涉及用于动力系统的控制系统。
背景技术
动力控制系统,包括混合动力系统架构,用于满足驾驶者对于例如扭矩和加速度的性能要求,它们是要与其他驾驶者需求和调节相平衡的,例如燃料节约和喷射。为了优化动力系统的运作,就需要在正常工作期间量化与工作条件相关的发动机动力损失。
现有技术中用于确定瞬时发动机动力损失的系统依赖于车载计算机中存储的预校准表来确定损失。这些系统消耗了大量计算机存储空间,并且常常不能适应工作条件的变化。当引入其他发动机工作模式例如停缸(cylinder deactivation)时,该存储空间会进一步增加。
存在一种在发动机预热期间减小整体能耗的需要。这包括需要一种在正常工作期间快速高效地确定与发动机工作条件和发动机控制有关的发动机动力损失以及基于其来控制发动机工作的系统。现在就对这种系统进行说明。
发明内容
根据本发明的一个实施例,提供一种制造方法和制造产品,包括其中存储有能够在发动机预热期间有效减少内燃机能量损失的机器可执行代码的存储介质。其中包括监视发动机工作条件和估计未来能量损失的代码。该估计的未来能量损失中的动力损失和变化速率被确定。在发动机预热期间,确定和执行一个用于减少在该估计的未来能量损失中的动力损失和变化速率的发动机控制方案。
在阅读和理解以下对实施例的详细说明的基础上,本领域普通技术人员将会清楚本发明的这些和其他方面。
附图说明
本发明可以采取特定部件和部件设置的物理形式,在附图中详细描述和解释了一个实施例,该附图构成其一部分,其中:
图1是用于根据本发明的一个动力系统和控制系统的示例性架构的示意图;
图2是根据本发明的一个示意图;和
图3是根据本发明的一个图形表示。
具体实施方式
现在参照图1,其中所示仅仅是用于解释说明本发明的目的而不是为了要限制本发明,图1示出了本发明的一个动力系统和控制系统的示意图。下文中描述的部件提供了对该动力系统的协同控制。该动力系统包括内燃发动机14和用于通过输出轴65向传动系统提供扭矩输出的电-机械变速器(electro-mechanical transmission)10。该电-机械变速器10包括一对电机MA、MB 46、48。该发动机、变速器和电机可用于根据预定的控制方案和参数在它们之间传递扭矩,这里未详细说明该方案和参数。
该示例性内燃发动机14包括可用于选择性地通过轴12向变速器传递扭矩的多汽缸内燃发动机,并且可以是火花点火或压缩点火发动机。该发动机可以选择性地用于多种工作模式和发动机状态。该发动机工作模式包括空气/燃料比计算,其包括化学计量工作模式和浓(rich)工作模式。在使用压缩点火发动机的系统中可以有额外的或可选的模式,包括斜率计算模式。该发动机工作模式包括发动机温度管理模式,其包括预热(warm-up)模式和已预热(warmed-up)模式,典型地是基于发动机冷却温度。该预热模式典型地包括在启动发动机操作期间延迟火花时间(或燃料喷射时间)以增加在燃烧期间传递到该发动机的热量,从而增加从燃烧传递到后处理系统的热量。示例性发动机状态包括正常发动机工作(‘ALL_CYL’)和具有被关停汽缸的发动机工作(‘DEACT’)。在正常发动机状态,所有发动机汽缸都被供应燃料并点火。在停缸状态,典型地,一半汽缸例如一组V配置的汽缸被关停。典型地,通过停止燃料喷射来关停一组汽缸。
该发动机包括用于氧化和/或减少发动机排出气流成分为惰性气体的排出后处理系统(未示出)。该排气后处理系统的工作温度很关键,因为过低的温度会导致不能有效变换被调节的排出气体成分,例如碳氢化合物HC、一氧化碳CO、氧化氮NOx和特殊物质PM。过高的温度会破坏后处理部件特别是催化剂。发动机控制和工作方案包括启动非最佳发动机工作以控制排出气流温度和成分,从而增加或降低后处理系统的温度。这包括有效点燃该后处理系统,即在其中产生放热反应。从而会发生能量损失或与发动机喷射相关的低效率。
在所示实施例中,变速器10从扭矩产生设备包括发动机14和电机MA、MB 46、48接收输入扭矩,该输入扭矩是通过使存储在电能存储设备(ESD)25中的燃料或电势能进行能量转化而得到的。电机MA、MB 46、48每个都包括具有可在定子中旋转的转子的三相AC电机。ESD 25是通过DC传递导体27而DC耦合到变速器功率变换器模块(TPIM)19的高电压。TPIM 19是控制系统的一个部件。TPIM 19通过传递导体29向MA 46传输电能或从其接收电能,并且类似地,TPIM 19通过传递导体31向MA 48传输电能或从其接收电能。根据ESD 25是充电或放电而将电流传输到ESD25或从ESD 25接收电流。TPIM 19包括该一对功率变换器和对应的电动机控制模块,该电动机控制模块被配置成从其接收电动机控制命令和控制变换器状态以提供电动机驱动或再生功能。
该控制系统综合相关的信息和输入,并且执行算法以控制各个传动器而获得控制目标,包括各种参数例如燃料节约、喷射、性能、驱动性能,和硬件保护包括ESD 25的电池和MA、MB 46、48。该示例性实施例是一个分布式控制模块架构,包括发动机控制模块(‘ECM’)23、变速器控制模块(‘TCM’)17、电池组控制模块(‘BPCM’)21和TPIM19。混合控制模块(‘HCP’)5提供对于前述控制模块的全部控制和协同。用户接口(‘UI’)13可操作地连接到多个设备,典型地,车辆驾驶者可以利用它通过对扭矩输出的请求来控制或指示包括变速器10的动力系统的工作。UI 13的示例性车辆驾驶者输入包括油门踏板、制动踏板、变速器齿轮选择器和车速稳定控制。每个前述控制模块通过局域网(‘LAN’)总线6与其他控制模块、传感器和传动器通信。该LAN总线6允许控制参数和命令在各个控制模块之间的结构传输。所使用的特定通信协议是基于应用特定的。该LAN总线和相应的协议提供了在前述控制模块之间的健壮通信和多控制模块互连,并且其他控制模块提供了例如制动器防锁、牵引控制和车辆稳定性的功能。
HCP 5提供了对于该混合动力系统的全局控制,用于基于来自UI 13和该动力系统包括电池组的各个输入信号而协同ECM 23、TCM 17、TPIM 19的工作。ECM 23可操作地连接到发动机14,其功能是用于从多个传感器获取数据并且分别通过多条分离的线控制发动机14的多个传动器,该多条线被集中显示为聚集线35。探测设备(未示出)用于监视发动机工作,典型地包括曲轴传感器、歧管绝对压力(MAP)传感器和冷却温度传感器等等。TCM 17可操作地连接到变速器10,其功能是用于从多个传感器获取数据并且为该变速器提供命令信号,包括监视来自压力开关的输出和选择性启动压力控制螺线管和调节螺线管以启动各个离合器从而实现各种变速器工作模式。BPCM 21被信号连接到用于监视ESD 25的电流或电压参数的一个或多个传感器以提供关于HCP 5的电池状态的信息。这种信息包括电池充电状态(‘SOC’)、电池电压和可用电池能量。
每个前述控制模块优选地包括通用数字计算机,其一般包括微处理器或中央处理单元,包括随机存取存储器(RAM)、非易失性存储器例如只读存储器(ROM)和电可编程只读存储器(EPROM)的存储介质,高速时钟,模数(A/D)和数模(D/A)转换电路,和输入/输出电路和设备(I/O),以及适当的信号调节和缓冲电路。每个控制模块具有一组控制算法,包括常驻在ROM中的机器可执行代码和标度(calibrations),其可被执行以提供每个计算机的各个功能。各个计算机之间的信息传输优选地使用前述LAN 6来实现。
用于在每个控制模块中控制和状态估计的算法典型地在预设循环期间执行以使得每个算法在每个循环中至少执行一次。存储在非易失性存储器中的算法由一个中央处理单元执行,并且用于监视来自探测设备的输入和执行控制和诊断程序以使用预设标度控制相应设备的工作。典型地在规则间隔中执行循环,例如在正在运行的发动机和车辆工作期间的每3.125、6.25、12.5、25、50和100毫秒(msec)。可选地,可以响应于事件的发生而执行算法。
本发明被实现和简化以执行优选为存储在一个控制模块的非易失性存储器中的机器可执行代码形式的算法。该算法优化了内燃发动机在包括发动机预热的发动机工作循环期间的动力损失。这包括监视工作条件和发动机工作。为了本发明的目的,工作条件包括环境条件即环境温度和大气压力,发动机工作条件包括冷却温度、排气后处理系统的温度和排出喷射。发动机控制方案包括控制发动机工作方面,包括发动机速度/扭矩操作点,即Ni和Ti,前述发动机工作模式(空气/燃料比模式和发动机温度管理模式),和发动机状态(正常或停缸发动机状态)。估计发动机工作循环的未来能量损失,并且在发动机工作的范围上确定发动机工作循环的当前动力损失和该估计的未来能量损失的时间变化率。选择一个发动机控制方案以用于充分获取该驾驶者扭矩请求和减小发动机预热周期期间的当前动力损失和该估计的未来能量损失的时间变化率。该选择的发动机控制方案被传送到ECM或HCP以实施。现在对其进行详细描述。
当前发动机动力损失包括在当前发动机工作条件下按照当前发动机控制方案对于该示例性内燃发动机在该时间点的动力损失的估计。这包括监视和确定发动机工作条件和发动机控制以确定瞬时动力损失,包括该发动机工作点的标准动力损失和动力损失校正。在共同未决和共同提交的、题目为METHOD AND APPARATUS TO DETERMINE INSTANTANEOUSENGINE POWER LOSS FOR A POWERTRAIN SYSTEM的美国专利申请第11/737197号(代理编号P000187-PTH-CD)中描述了确定瞬时动力损失,这里通过全文引用而结合在此。现在将对其进行详细描述。
确定工作条件包括监视来自各个发动机探测设备的输入和发动机工作以确定发动机速度(RPM)、发动机负载(制动扭矩,Nm)、大气压力和发动机冷却温度。发动机空气/燃料比典型地是一个命令参数,可以直接测量或基于发动机工作条件估计。排气后处理系统(即催化剂)的温度可以基于工作条件使用结合在该控制模块中的算法来估计。
标准发动机动力损失使用如下公式1来计算:
该标准动力损失是基于发动机工作点包括发动机速度和扭矩来确定的。优选地,在每个50msec的发动机循环期间,根据一个预定校准表来确定标准动力损失,该校准表是在标准发动机工作条件下的温度、大气压力和按化学计量的空气/燃料比(即EQR=1.0)时对于示例性发动机工作的一个发动机速度和负载条件范围而确定的。为了准确估计该发动机动力损失,必须对于所有可能工作条件下的所有速度和负载估计燃料消耗。冷却温度或大气压力的改变会显著影响这些值。为了考虑由于发动机在非标准条件下工作而导致标准动力损失发生的改变,将动力损失校正值ΔPLOSS_ENG加到标准动力损失PLOSS_ENG上。
动力损失校正值ΔPLOSS_ENG是基于工作条件计算的,该工作条件包括环境温度和催化剂温度、大气压力和空气/燃料比以及执行多个嵌入多项式之一,从而基于当前实际工作条件来计算动力损失校正。该动力损失校正是基于从发动机得到的速度(Ni)和扭矩(Ti)来确定的。动力损失公式是参照等式2确定的:
ΔPLOSS_ENG=
C0+C1*Ti+C2*Ti2+C3*Ni+C4*Ni*Ti+C5*N*iTi2
【2】
C6*Ni2+C7*Ni2*Ti+C8*Ni2*Ti2
系数C0-C8优选为使用一个最小二乘曲线拟合来计算和估计,该曲线拟合是使用在发动机输入速度和负载的整个范围以及包括工作模式和状态的发动机控制方案来获得的。系数C0-C8被生成以用于包括该化学计量的和浓的(rich)工作模式的空气/燃料比工作模式,以及包括预热和已预热模式的发动机温度模式。系数C0-C8被生成还用于正常发动机工作和停缸的发动机状态。该系数可以被存储在一个存储设备内的数组中以用于每个工作模式和发动机状态以便在正常发动机工作期间检索得到(retrieval)。
动力损失校正值ΔPLOSS_ENG包括多个多项式之和,如下所述。
与在当前工作条件下发动机稳定工作所必需的补充燃料相关的动力损失优选地使用等式3计算,如下所示:
与优化HC喷射的加油(fueling)相关的动力损失优选地使用等式4计算,如下所示:
与优化NOx喷射的加油相关的动力损失优选地使用等式5计算,如下所示:
与实现冷却剂和发动机燃油预热的加油相关的动力损失优选地使用等式6计算,如下所示:
与实现催化剂预热以满足HC喷射的加油相关的动力损失优选地使用等式7计算,如下所示:
与实现催化剂预热以满足NOx喷射的加油相关的动力损失优选地使用等式8计算,如下所示:
与防止催化剂过热操作的加油相关的动力损失优选地使用等式9计算,如下所示:
与防止发动机过热操作的加油相关的动力损失优选地使用等式10计算,如下所示:
等式3-10中的各项基于过工作条件和发动机工作和控制进行预校准并在存储器中存储为数组。TCAT包括冷却剂温度,典型地为估计值。项TCOOL包括冷却剂温度,典型地为测量值。用于燃料、HC喷射和NOx喷射的项包括与加油和HC以及NOx喷射的生成相关的全部燃料流速。项EFUEL、EHC和ENOX包括与补充燃料和满足HC与N0x喷射相关的能量损失。dTcool/dt和dTcat/dt项是随着发动机速度、扭矩和温度变化的预校准项。dE/dT项是随着经过时间和温度而变化的预校准项,并且是基于脱机能量损失计算的。这些值被存储在具有发动机运转时间轴和催化剂温度轴的图表中,或者替代地存储在具有发动机运转时间轴和冷却剂温度轴的图表中。
系数β1(t,TCAT)-β8(t,TCAT)包括用于每个动力损失等式的加权因子,是对于自从发动机启动以来的发动机运转时间t和估计催化剂温度TCAT以及冷却剂温度TCOOL的范围而确定的。它们优选为根据使用发动机数据的最小二乘曲线拟合来校准和估计。该系数被存储在ROM内的校准表中以用于各种工作条件并且可以在发动机正在工作期间检索得到。典型地,该系数被校准以使得β1+β2+β3=1,β4+β5+β6=1,β1=β4,β2=β5,β3=β6。β7是用于影响发动机工作(速度和负载)的主观校准量,用于在催化剂温度较高时增加催化剂温度。使用这种方法控制催化剂温度减少或消除了通常用于减少催化剂温度的燃料增添条件的需要。β8是用于影响发动机工作(速度和负载)的主观校准量,用于在冷却剂温度过高时增加催化剂温度。使用线性插值来确定当工作条件在表中值之间时的系数。
等式3-10中的每个都以等式2的形式执行,使用特别校准的系数C0-C8以及发动机速度和扭矩的输入。这包括对于每个空气/燃料比控制模式和每个发动机温度模式生成的等式3-10的形式,该空气/燃料比控制模式包括化学计量的工作模式和浓工作模式中的任一个,该发动机温度模式包括预热模式和已预热模式。系数C0-C8还被对于包括正常发动机工作(‘ALL_CYL’)和停缸(‘DEACT’)的发动机工作中的每个发动机状态而进行生成。多项式系数C0-C8是对于正在工作期间的每个等式而评估,然后组合到系数C0-C8的一个单独集合中以用于等式2,并且在控制模块之一中以每秒一次的相对较慢的速度更新。β确定了不同类型的发动机动力损失之间的加权,如下所述。最终的多项式等式每秒被评估数百次,作为典型地以非常快的速度运行的优化程序的一部分。
用于在等式3-10中反映的动力损失的多项式等式提供了对于标准动力损失校准的校正。等式导数和系数是对于所有汽缸都是活动的正常工作模式和一半汽缸是活动的停缸模式而确定的。这些等式导数和系数还是对于每个标准和较低大气压力例如100kPa和70kPa得到的。这些等式导数和系数还是对于每个化学计量的工作模式和浓模式例如空气/燃料等价比为1.0和0.7而得到的。确定一个特定发动机工作条件下的动力损失会包括使用该标准等式确定动力损失和在其间插值以确定在实时工作条件下的动力损失。
这种方法使得可以使用标准动力损失的单个查询表,以及利用基于当前发动机控制方案和工作条件来执行该多项式等式即等式2以进行动力损失校正,从而计算发动机动力损失包括浓的发动机动力损失特征。该多项式等式,包括对该标准动力损失和从等式3-10得到的结果求和,表示快速运行的总发动机动力损失。多项式等式2的最终系数是基于预校准因子和加权因子来确定的。这种系数确定可以以相对较慢的更新速度例如每秒一次来完成。该多项式等式在下一次更新前被多次用于该优化程序中。
为了减小瞬时动力损失而进行的系统优化不会在一个工作循环内例如发动机启动和发动机停止之间的发动机工作期间获得最小的能量损失。预热发动机和排气后处理系统的工作不会提供最佳短期燃料节约或者最低的瞬时喷射。为了在一个完整的循环内最小化燃料消耗和排气喷射,该优化程序确定在该循环期间的能量损失。
未来的能量损失包括基于当前工作条件完成一个循环所需的能量总量,如等式11所示:
该积分的上下限是从当前时间t到最大时间tmax。在工作期间,随着时间t的增加,该积分的值会减小,即到达预热发动机的预期产量需要更少的能量。这是参照图3进行图示的,以下对其进行说明。
在发动机预热模式的工作期间,最小化总能量损失包括操作该发动机以最小化在该工作循环的剩余期间的能量损失,例如直到发动机冷却温度到达90℃或其他目标温度。未来的能量损失在等式12中表示如下:
ELOSSFUTURE(t,TCOOL,TCAT)=PLOSSTOTAL(t,TCOOL,TCAT)·Δt+ELOSSFUTURE(t+Δt,TCOOL+ΔTCOOL,TCAT+ΔTCAT)
[12]
其中TCOOL和TCAT包括冷却剂和催化剂温度。这可以简化为等式13:
可以通过最小化该动力损失和未来能量损失的变化率来实现该能量损失的最小化。上述等式13的导数可以以连续形式表示为偏导数,如等式14所示:
其中该偏导数是基于冷却剂温度和催化剂温度对能量变化求导,其中包括在存储器中存储为数组并且被确定为发动机工作时间和冷却剂温度的函数的预校准因子,其中使用从寒冷例如-30℃到加热例如90℃变化的离散冷却剂温度。用于该发动机的校准值使用一个标准发动机和车辆测试过程来获得。项包括一个基于等式2的预校准多项式等式,用于冷却剂温度随时间的变化。在工作期间基于包括正常发动机工作和停缸发动机工作的发动机状态从多个可用于项的多项式等式中选择。此外,有多个对于从寒冷例如-30℃到加热例如90℃变化的离散冷却剂温度得到的多项式等式。该多项式等式是使用热损耗数据和发动机的热量模型预测冷却剂的预热速度来得到的。dTcat/dt项表示对于该特定车辆和系统应用中催化剂温度随时间的变化的预校准值。
通过基于上述等式14计算未来能量损失的变化率,以及基于瞬时动力损失和该未来能量损失变化率的组合确定包括总发动机动力损失最小值PLOSSTOTAL的发动机工作点,来确定在发动机预热期间的该估计的未来能量损失的变化率。
现在参照图2,其中示出了根据本发明的实施例用于确定发动机总动力损失最小值PLOSSTOTAL的最简化程序。该最简化程序被执行以确定最小化该动力损失的优选发动机控制方案。该最简化程序优选地包括执行被编码在该控制模块之一中的二维搜索引擎260(“2D搜索引擎”)。该二维搜索引擎260基于在迭代循环266中执行的可用发动机工作状态范围反复生成多个发动机工作状态。该发动机工作状态包括发动机速度和发动机扭矩[NI,TI]j,该范围包括发动机速度和发动机扭矩NIMin,NIMax,TIMin,TIMax。该发动机速度和发动机扭矩的范围可以包括可达到的发动机速度和扭矩,例如从发动机空转(idle)工作到发动机停机(red-line)工作,或者可以包括其一个子集,其中该范围由于与工作特性例如噪声、振动和粗糙(harshness)相关的原因而受到限制。下标“j”表示某一次迭代,其值从1变化到n。迭代的次数n可以利用多种方法中的任何一种来生成,或者属于该搜索引擎内部,或者作为该整个方法的一部分。发动机速度和发动机扭矩的参数值[NI,TI]j被输入到系统等式262,由此来确定总发动机动力损失(PLOSSTOTAL)j的值。系统等式362优选地包括执行上述具有如上所述导出的系数C0-C8的等式1和等式2的算法。
对于每个迭代确定的总动力损失PLOSSTOTAL被返回和捕获,或者在搜索引擎260中分析,这取决于该搜索引擎的特性。该搜索引擎反复估计总动力损失的参数值(PLOS STOTAL)j,并且基于反馈来选择新的[NI,TI]的值,以便搜索最小的总动力损失。该搜索引擎260根据从所有迭代计算的参数值得到的优选动力损失即最小总动力损失(PLOSS TOTAL)j来识别[NI,TI]的优选值。该优选的总动力损失和对应的输入速度和输入扭矩的值[NI,TI,PLOSS TOTAL]PREF被输出到控制模块之一以便实施或进一步评估。
如前所述,有多个动力损失校正多项式等式,每个可以在一个控制模块中运行。在该示例性实施例中,得到了8个多项式等式用于组合发动机控制方案,该发动机控制方案包括:浓和化学计量的空气/燃料比控制模式即大约为0.7(浓)和1.0(化学计量的)空气/燃料等价比,正常和停缸状态,以及包括预热模式和已预热模式的发动机工作温度即冷却剂温度为90℃或大约90℃。在工作中,该发动机系统监视进行中的操作,包括发动机速度(RPM)、负载(制动扭矩或以N-m计量的NMEP)、大气压力、冷却剂温度和空气/燃料比。
该系统的操作包括试制系统校准。典型地,这包括在正常发动机工作条件下和已知的可重复车辆工作条件下操作一个典型的发动机和车辆以获得基线。然后利用所有处于工作和停止模式的汽缸,在化学计量工作和浓工作中,在预热模式和已预热模式中,测试该发动机。优选地,使用一个发动机扭矩和气流模型来估计非标准条件下的燃料消耗,例如较低的冷却剂温度和/或大气压力下。可以在各种冷却剂温度和/或大气压力下测试该发动机以检验燃料消耗校正和测量喷射。发动机热喷射数据和发动机的热模型可用于预测冷却剂预热速度,并且通过车辆测试来检验。类似地,可以使用一个已知的数学模型来生成校准表。
现在参照图3,图形显示了在发动机预热期间操作该示例性系统的执行结果。这些结果是基于使用在非优化操作下工作的发动机和利用上述控制方案在优化操作下工作的同一发动机的系统建模。该结果显示了在预定的发动机工作循环中,在发动机预热期间操作该发动机所得到的发动机冷却剂温度TCOOL、未来能量损失ELOSSFUTURE和总动力损失PLOSSTOTAL。使用该优化控制方案的操作在开始时经受了更大的总动力损失,表示为在“t”和“t+Δt”之间的时间段内,优化操作的PLOSSTOTAL是9个动力单位,而非优化操作是7个动力单位。然而,为了达到已预热发动机冷却剂温度所耗费的更低的总能量导致了更少的总能量损失,表示为在冷却剂温度保持90℃的“t”和“tMAX”之间的时间段内,优化操作是39个能量单位,而非优化操作是42个能量单位。
可以认识到,在本发明的范围内允许对硬件进行改变。以上已经特别参照实施例和变体对本发明进行了说明。在阅读和理解该说明的基础上还可以进行其他改变和替代。这意味着所有这些改变和替代都被包含在本发明的范围内。
Claims (4)
1.用于最小化适于向电-机械变速器传递扭矩的内燃发动机的能量损失的方法,该内燃发动机和电-机械变速器用于在它们之间选择性传递扭矩,包括:
监视发动机工作条件;
估计未来能量损失;
确定动力损失和该估计的未来能量损失的变化率;
确定最小化发动机预热期间的动力损失和该估计的未来能量损失变化率的发动机控制方案;和
执行该发动机控制方案以最小化发动机预热期间的动力损失和该估计的未来能量损失变化率。
2.如权利要求1所述的方法,其中确定该用于最小化发动机预热期间的动力损失的发动机控制方案包括:
迭代生成多个发动机速度和扭矩状态;
对每个迭代生成的多个发动机速度和扭矩状态计算动力损失和估计的未来能量损失变化率;和
识别最小化该动力损失的最佳发动机速度和扭矩状态。
3.如权利要求2所述的方法,其中所述对每个迭代生成的多个发动机速度和扭矩状态计算动力损失包括:
确定发动机工作条件;
基于大气压力、发动机温度、空气/燃料比和催化剂温度确定标准动力损失和动力损失校正;该动力损失校正被确定以用于:发动机空气/燃料比模式、发动机汽缸活动状态和发动机工作温度模式。
4.如权利要求3所述的方法,其中该动力损失校正还包括:
包括化学计量和浓操作之一的发动机空气/燃料比模式;
包括正常和停缸状态之一的发动机汽缸活动状态;和
包括预热和已预热模式之一的发动机工作温度模式。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/737,211 US7487030B2 (en) | 2007-04-19 | 2007-04-19 | Method and apparatus to optimize engine warm up |
US11/737211 | 2007-04-19 | ||
US11/737,211 | 2007-04-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101289985A CN101289985A (zh) | 2008-10-22 |
CN101289985B true CN101289985B (zh) | 2013-07-10 |
Family
ID=39873070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810092194.7A Expired - Fee Related CN101289985B (zh) | 2007-04-19 | 2008-04-18 | 优化发动机预热的方法和设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7487030B2 (zh) |
CN (1) | CN101289985B (zh) |
DE (1) | DE102008019133B4 (zh) |
Families Citing this family (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8010263B2 (en) * | 2006-03-22 | 2011-08-30 | GM Global Technology Operations LLC | Method and apparatus for multivariate active driveline damping |
US8091667B2 (en) | 2006-06-07 | 2012-01-10 | GM Global Technology Operations LLC | Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device |
JP4616818B2 (ja) * | 2006-11-16 | 2011-01-19 | ヤンマー株式会社 | 内燃機関の制御方法 |
US7987934B2 (en) | 2007-03-29 | 2011-08-02 | GM Global Technology Operations LLC | Method for controlling engine speed in a hybrid electric vehicle |
US7999496B2 (en) * | 2007-05-03 | 2011-08-16 | GM Global Technology Operations LLC | Method and apparatus to determine rotational position of an electrical machine |
US7996145B2 (en) | 2007-05-03 | 2011-08-09 | GM Global Technology Operations LLC | Method and apparatus to control engine restart for a hybrid powertrain system |
US7991519B2 (en) | 2007-05-14 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode |
US8390240B2 (en) | 2007-08-06 | 2013-03-05 | GM Global Technology Operations LLC | Absolute position sensor for field-oriented control of an induction motor |
US8265813B2 (en) * | 2007-09-11 | 2012-09-11 | GM Global Technology Operations LLC | Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system |
US7988591B2 (en) * | 2007-09-11 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system |
US7983823B2 (en) | 2007-09-11 | 2011-07-19 | GM Global Technology Operations LLC | Method and control architecture for selection of optimal engine input torque for a powertrain system |
US8027771B2 (en) * | 2007-09-13 | 2011-09-27 | GM Global Technology Operations LLC | Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission |
US7867135B2 (en) | 2007-09-26 | 2011-01-11 | GM Global Technology Operations LLC | Electro-mechanical transmission control system |
US8062170B2 (en) * | 2007-09-28 | 2011-11-22 | GM Global Technology Operations LLC | Thermal protection of an electric drive system |
US8234048B2 (en) | 2007-10-19 | 2012-07-31 | GM Global Technology Operations LLC | Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system |
US9140337B2 (en) | 2007-10-23 | 2015-09-22 | GM Global Technology Operations LLC | Method for model based clutch control and torque estimation |
US8060267B2 (en) | 2007-10-23 | 2011-11-15 | GM Global Technology Operations LLC | Method for controlling power flow within a powertrain system |
US8187145B2 (en) | 2007-10-25 | 2012-05-29 | GM Global Technology Operations LLC | Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system |
US8118122B2 (en) | 2007-10-25 | 2012-02-21 | GM Global Technology Operations LLC | Method and system for monitoring signal integrity in a distributed controls system |
US8296027B2 (en) | 2007-10-25 | 2012-10-23 | GM Global Technology Operations LLC | Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system |
US8265821B2 (en) | 2007-10-25 | 2012-09-11 | GM Global Technology Operations LLC | Method for determining a voltage level across an electric circuit of a powertrain |
US8335623B2 (en) | 2007-10-25 | 2012-12-18 | GM Global Technology Operations LLC | Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system |
US8303463B2 (en) | 2007-10-26 | 2012-11-06 | GM Global Technology Operations LLC | Method and apparatus to control clutch fill pressure in an electro-mechanical transmission |
US8560191B2 (en) | 2007-10-26 | 2013-10-15 | GM Global Technology Operations LLC | Method and apparatus to control clutch pressures in an electro-mechanical transmission |
US8167773B2 (en) | 2007-10-26 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control motor cooling in an electro-mechanical transmission |
US8548703B2 (en) | 2007-10-26 | 2013-10-01 | GM Global Technology Operations LLC | Method and apparatus to determine clutch slippage in an electro-mechanical transmission |
US8406945B2 (en) | 2007-10-26 | 2013-03-26 | GM Global Technology Operations LLC | Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission |
US8204702B2 (en) | 2007-10-26 | 2012-06-19 | GM Global Technology Operations LLC | Method for estimating battery life in a hybrid powertrain |
US7985154B2 (en) | 2007-10-26 | 2011-07-26 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission |
US9097337B2 (en) | 2007-10-26 | 2015-08-04 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission |
US8428816B2 (en) | 2007-10-27 | 2013-04-23 | GM Global Technology Operations LLC | Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system |
US8062174B2 (en) | 2007-10-27 | 2011-11-22 | GM Global Technology Operations LLC | Method and apparatus to control clutch stroke volume in an electro-mechanical transmission |
US8099219B2 (en) | 2007-10-27 | 2012-01-17 | GM Global Technology Operations LLC | Method and apparatus for securing an operating range state mechanical transmission |
US8244426B2 (en) | 2007-10-27 | 2012-08-14 | GM Global Technology Operations LLC | Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system |
US8282526B2 (en) | 2007-10-29 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system |
US8170762B2 (en) | 2007-10-29 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission |
US8095254B2 (en) | 2007-10-29 | 2012-01-10 | GM Global Technology Operations LLC | Method for determining a power constraint for controlling a powertrain system |
US8489293B2 (en) | 2007-10-29 | 2013-07-16 | GM Global Technology Operations LLC | Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system |
US8112194B2 (en) | 2007-10-29 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus for monitoring regenerative operation in a hybrid powertrain system |
US8209098B2 (en) | 2007-10-29 | 2012-06-26 | GM Global Technology Operations LLC | Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission |
US8290681B2 (en) | 2007-10-29 | 2012-10-16 | GM Global Technology Operations LLC | Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system |
US8078371B2 (en) | 2007-10-31 | 2011-12-13 | GM Global Technology Operations LLC | Method and apparatus to monitor output of an electro-mechanical transmission |
US8556011B2 (en) | 2007-11-01 | 2013-10-15 | GM Global Technology Operations LLC | Prediction strategy for thermal management and protection of power electronic hardware |
US8035324B2 (en) | 2007-11-01 | 2011-10-11 | GM Global Technology Operations LLC | Method for determining an achievable torque operating region for a transmission |
US8073602B2 (en) | 2007-11-01 | 2011-12-06 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range |
US8145375B2 (en) | 2007-11-01 | 2012-03-27 | GM Global Technology Operations LLC | System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system |
US7977896B2 (en) | 2007-11-01 | 2011-07-12 | GM Global Technology Operations LLC | Method of determining torque limit with motor torque and battery power constraints |
US8847426B2 (en) | 2007-11-02 | 2014-09-30 | GM Global Technology Operations LLC | Method for managing electric power in a powertrain system |
US8287426B2 (en) | 2007-11-02 | 2012-10-16 | GM Global Technology Operations LLC | Method for controlling voltage within a powertrain system |
US8121765B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges |
US8170764B2 (en) | 2007-11-02 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system |
US8121767B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | Predicted and immediate output torque control architecture for a hybrid powertrain system |
US8200403B2 (en) | 2007-11-02 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling input torque provided to a transmission |
US8585540B2 (en) | 2007-11-02 | 2013-11-19 | GM Global Technology Operations LLC | Control system for engine torque management for a hybrid powertrain system |
US8133151B2 (en) | 2007-11-02 | 2012-03-13 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint |
US8224539B2 (en) | 2007-11-02 | 2012-07-17 | GM Global Technology Operations LLC | Method for altitude-compensated transmission shift scheduling |
US8131437B2 (en) | 2007-11-02 | 2012-03-06 | GM Global Technology Operations LLC | Method for operating a powertrain system to transition between engine states |
US8825320B2 (en) | 2007-11-02 | 2014-09-02 | GM Global Technology Operations LLC | Method and apparatus for developing a deceleration-based synchronous shift schedule |
US8010247B2 (en) | 2007-11-03 | 2011-08-30 | GM Global Technology Operations LLC | Method for operating an engine in a hybrid powertrain system |
US8868252B2 (en) | 2007-11-03 | 2014-10-21 | GM Global Technology Operations LLC | Control architecture and method for two-dimensional optimization of input speed and input power including search windowing |
US8296021B2 (en) | 2007-11-03 | 2012-10-23 | GM Global Technology Operations LLC | Method for determining constraints on input torque in a hybrid transmission |
US8204664B2 (en) | 2007-11-03 | 2012-06-19 | GM Global Technology Operations LLC | Method for controlling regenerative braking in a vehicle |
US8224514B2 (en) | 2007-11-03 | 2012-07-17 | GM Global Technology Operations LLC | Creation and depletion of short term power capability in a hybrid electric vehicle |
US8068966B2 (en) | 2007-11-03 | 2011-11-29 | GM Global Technology Operations LLC | Method for monitoring an auxiliary pump for a hybrid powertrain |
US8260511B2 (en) | 2007-11-03 | 2012-09-04 | GM Global Technology Operations LLC | Method for stabilization of mode and fixed gear for a hybrid powertrain system |
US8155814B2 (en) | 2007-11-03 | 2012-04-10 | GM Global Technology Operations LLC | Method of operating a vehicle utilizing regenerative braking |
US8406970B2 (en) | 2007-11-03 | 2013-03-26 | GM Global Technology Operations LLC | Method for stabilization of optimal input speed in mode for a hybrid powertrain system |
US8135526B2 (en) | 2007-11-03 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling regenerative braking and friction braking |
US8002667B2 (en) | 2007-11-03 | 2011-08-23 | GM Global Technology Operations LLC | Method for determining input speed acceleration limits in a hybrid transmission |
US8285431B2 (en) | 2007-11-03 | 2012-10-09 | GM Global Technology Operations LLC | Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle |
US8098041B2 (en) | 2007-11-04 | 2012-01-17 | GM Global Technology Operations LLC | Method of charging a powertrain |
US8214093B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system |
US7988594B2 (en) | 2007-11-04 | 2011-08-02 | GM Global Technology Operations LLC | Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system |
US8630776B2 (en) | 2007-11-04 | 2014-01-14 | GM Global Technology Operations LLC | Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode |
US8248023B2 (en) | 2007-11-04 | 2012-08-21 | GM Global Technology Operations LLC | Method of externally charging a powertrain |
US8346449B2 (en) | 2007-11-04 | 2013-01-01 | GM Global Technology Operations LLC | Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system |
US8138703B2 (en) | 2007-11-04 | 2012-03-20 | GM Global Technology Operations LLC | Method and apparatus for constraining output torque in a hybrid powertrain system |
US8118903B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system |
US8374758B2 (en) | 2007-11-04 | 2013-02-12 | GM Global Technology Operations LLC | Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system |
US8414449B2 (en) | 2007-11-04 | 2013-04-09 | GM Global Technology Operations LLC | Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system |
US8204656B2 (en) | 2007-11-04 | 2012-06-19 | GM Global Technology Operations LLC | Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system |
US8145397B2 (en) | 2007-11-04 | 2012-03-27 | GM Global Technology Operations LLC | Optimal selection of blended braking capacity for a hybrid electric vehicle |
US8095282B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system |
US8200383B2 (en) | 2007-11-04 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon torque machine temperature |
US8396634B2 (en) | 2007-11-04 | 2013-03-12 | GM Global Technology Operations LLC | Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system |
US8594867B2 (en) | 2007-11-04 | 2013-11-26 | GM Global Technology Operations LLC | System architecture for a blended braking system in a hybrid powertrain system |
US8214114B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Control of engine torque for traction and stability control events for a hybrid powertrain system |
US8002665B2 (en) | 2007-11-04 | 2011-08-23 | GM Global Technology Operations LLC | Method for controlling power actuators in a hybrid powertrain system |
US8092339B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system |
US8112192B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for managing electric power within a powertrain system |
US8818660B2 (en) | 2007-11-04 | 2014-08-26 | GM Global Technology Operations LLC | Method for managing lash in a driveline |
US8126624B2 (en) | 2007-11-04 | 2012-02-28 | GM Global Technology Operations LLC | Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation |
US8504259B2 (en) | 2007-11-04 | 2013-08-06 | GM Global Technology Operations LLC | Method for determining inertia effects for a hybrid powertrain system |
US8000866B2 (en) | 2007-11-04 | 2011-08-16 | GM Global Technology Operations LLC | Engine control system for torque management in a hybrid powertrain system |
US8494732B2 (en) | 2007-11-04 | 2013-07-23 | GM Global Technology Operations LLC | Method for determining a preferred engine operation in a hybrid powertrain system during blended braking |
US8897975B2 (en) | 2007-11-04 | 2014-11-25 | GM Global Technology Operations LLC | Method for controlling a powertrain system based on penalty costs |
US8121766B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for operating an internal combustion engine to transmit power to a driveline |
US8214120B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method to manage a high voltage system in a hybrid powertrain system |
US8135532B2 (en) | 2007-11-04 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling output power of an energy storage device in a powertrain system |
US8079933B2 (en) | 2007-11-04 | 2011-12-20 | GM Global Technology Operations LLC | Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system |
US9008926B2 (en) | 2007-11-04 | 2015-04-14 | GM Global Technology Operations LLC | Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system |
US8112206B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon energy storage device temperature |
US8221285B2 (en) | 2007-11-04 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system |
US8067908B2 (en) | 2007-11-04 | 2011-11-29 | GM Global Technology Operations LLC | Method for electric power boosting in a powertrain system |
US8165777B2 (en) | 2007-11-05 | 2012-04-24 | GM Global Technology Operations LLC | Method to compensate for transmission spin loss for a hybrid powertrain system |
US8448731B2 (en) | 2007-11-05 | 2013-05-28 | GM Global Technology Operations LLC | Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system |
US8285462B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system |
US8073601B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system |
US8160761B2 (en) | 2007-11-05 | 2012-04-17 | GM Global Technology Operations LLC | Method for predicting an operator torque request of a hybrid powertrain system |
US8155815B2 (en) | 2007-11-05 | 2012-04-10 | Gm Global Technology Operation Llc | Method and apparatus for securing output torque in a distributed control module system for a powertrain system |
US8219303B2 (en) | 2007-11-05 | 2012-07-10 | GM Global Technology Operations LLC | Method for operating an internal combustion engine for a hybrid powertrain system |
US8249766B2 (en) | 2007-11-05 | 2012-08-21 | GM Global Technology Operations LLC | Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state |
US8135519B2 (en) | 2007-11-05 | 2012-03-13 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state |
US8112207B2 (en) | 2007-11-05 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode |
US8121768B2 (en) | 2007-11-05 | 2012-02-21 | GM Global Technology Operations LLC | Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity |
US8321100B2 (en) | 2007-11-05 | 2012-11-27 | GM Global Technology Operations LLC | Method and apparatus for dynamic output torque limiting for a hybrid powertrain system |
US8285432B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control |
US8099204B2 (en) | 2007-11-05 | 2012-01-17 | GM Global Technology Operatons LLC | Method for controlling electric boost in a hybrid powertrain |
US8229633B2 (en) | 2007-11-05 | 2012-07-24 | GM Global Technology Operations LLC | Method for operating a powertrain system to control engine stabilization |
US8070647B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping |
US8281885B2 (en) | 2007-11-06 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to monitor rotational speeds in an electro-mechanical transmission |
US8179127B2 (en) | 2007-11-06 | 2012-05-15 | GM Global Technology Operations LLC | Method and apparatus to monitor position of a rotatable shaft |
US8195349B2 (en) | 2007-11-07 | 2012-06-05 | GM Global Technology Operations LLC | Method for predicting a speed output of a hybrid powertrain system |
US8224544B2 (en) * | 2007-11-07 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to control launch of a vehicle having an electro-mechanical transmission |
US8277363B2 (en) | 2007-11-07 | 2012-10-02 | GM Global Technology Operations LLC | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain |
US8209097B2 (en) | 2007-11-07 | 2012-06-26 | GM Global Technology Operations LLC | Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system |
US8073610B2 (en) | 2007-11-07 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain |
US8433486B2 (en) | 2007-11-07 | 2013-04-30 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search |
US8271173B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus for controlling a hybrid powertrain system |
US8005632B2 (en) * | 2007-11-07 | 2011-08-23 | GM Global Technology Operations LLC | Method and apparatus for detecting faults in a current sensing device |
US8267837B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus to control engine temperature for a hybrid powertrain |
HUP0800048A2 (en) * | 2008-01-25 | 2009-08-28 | Istvan Dr Janosi | Frying device for making fried cake specially for household |
US8509974B2 (en) | 2010-08-23 | 2013-08-13 | Cummins Inc. | Hybrid power train rate control |
US8549838B2 (en) | 2010-10-19 | 2013-10-08 | Cummins Inc. | System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system |
US8516806B2 (en) | 2010-10-19 | 2013-08-27 | Cummins, Inc. | Control of aftertreatment regeneration in a hybrid powered vehicle |
US8742701B2 (en) | 2010-12-20 | 2014-06-03 | Cummins Inc. | System, method, and apparatus for integrated hybrid power system thermal management |
CN117048579A (zh) | 2011-01-13 | 2023-11-14 | 卡明斯公司 | 用于控制混合动力传动系中的功率输出分布的系统、方法和装置 |
US9132725B2 (en) | 2011-05-09 | 2015-09-15 | Cummins Inc. | Vehicle and hybrid drive system |
US8827865B2 (en) | 2011-08-31 | 2014-09-09 | GM Global Technology Operations LLC | Control system for a hybrid powertrain system |
US8801567B2 (en) | 2012-02-17 | 2014-08-12 | GM Global Technology Operations LLC | Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission |
US9421967B2 (en) * | 2012-03-13 | 2016-08-23 | Nissan Motor Co., Ltd. | Control device for hybrid vehicle |
US9605615B2 (en) * | 2015-02-12 | 2017-03-28 | GM Global Technology Operations LLC | Model Predictive control systems and methods for increasing computational efficiency |
EP3974638A1 (en) * | 2013-09-06 | 2022-03-30 | Cummins, Inc. | Thermal management of exhaust gas via cylinder deactivation |
WO2017095425A1 (en) | 2015-12-03 | 2017-06-08 | Allison Transmission, Inc. | System and method to control the operation of a transmission using engine patterns |
WO2017095426A1 (en) | 2015-12-03 | 2017-06-08 | Allison Transmission, Inc. | System and method to control the operation of a transmission using engine fuel consumption data |
US10848090B2 (en) | 2018-06-28 | 2020-11-24 | Toyota Motor Engineering & Manufacturing North America, Inc. | Control methodology to reduce motor drive loss |
CN113027606B (zh) * | 2020-02-17 | 2022-05-03 | 陆忠利 | 发动机自动智能监控系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719025A (en) * | 1984-08-07 | 1988-01-12 | Toyota Jidosha Kabushiki Kaisha | Synthetic lubrication oil compositions |
US5751571A (en) * | 1993-07-05 | 1998-05-12 | Siemens Aktiengesellschaft | Process and apparatus for determining optimum values for manipulated variables of a technical system |
DE10020448B4 (de) * | 2000-04-26 | 2005-05-04 | Daimlerchrysler Ag | Verfahren und Vorrichtung zur Optimierung des Betriebs eines Verbrennungsmotors |
US6959241B2 (en) * | 2002-10-29 | 2005-10-25 | Komatsu Ltd. | Engine control device |
CN1877112A (zh) * | 2006-07-07 | 2006-12-13 | 虞选勇 | 汽车发动机启动节能预热系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100369135B1 (ko) * | 1999-12-28 | 2003-01-24 | 현대자동차주식회사 | 하이브리드 전기 자동차용 동력 전달 장치 |
-
2007
- 2007-04-19 US US11/737,211 patent/US7487030B2/en not_active Expired - Fee Related
-
2008
- 2008-04-16 DE DE102008019133A patent/DE102008019133B4/de not_active Expired - Fee Related
- 2008-04-18 CN CN200810092194.7A patent/CN101289985B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719025A (en) * | 1984-08-07 | 1988-01-12 | Toyota Jidosha Kabushiki Kaisha | Synthetic lubrication oil compositions |
US5751571A (en) * | 1993-07-05 | 1998-05-12 | Siemens Aktiengesellschaft | Process and apparatus for determining optimum values for manipulated variables of a technical system |
DE10020448B4 (de) * | 2000-04-26 | 2005-05-04 | Daimlerchrysler Ag | Verfahren und Vorrichtung zur Optimierung des Betriebs eines Verbrennungsmotors |
US6959241B2 (en) * | 2002-10-29 | 2005-10-25 | Komatsu Ltd. | Engine control device |
CN1877112A (zh) * | 2006-07-07 | 2006-12-13 | 虞选勇 | 汽车发动机启动节能预热系统 |
Also Published As
Publication number | Publication date |
---|---|
US20080262694A1 (en) | 2008-10-23 |
DE102008019133B4 (de) | 2011-03-31 |
US7487030B2 (en) | 2009-02-03 |
CN101289985A (zh) | 2008-10-22 |
DE102008019133A1 (de) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101289985B (zh) | 优化发动机预热的方法和设备 | |
CN101289968B (zh) | 确定动力系统的瞬时发动机动力损失的方法和装置 | |
CN101446238B (zh) | 控制混合动力系的排气后处理系统的升温的方法和装置 | |
CN101519070B (zh) | 控制混合动力系的发动机温度的方法和装置 | |
US7730984B2 (en) | Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device | |
US7638980B2 (en) | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle | |
US7538520B2 (en) | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device | |
US6242873B1 (en) | Method and apparatus for adaptive hybrid vehicle control | |
US8277363B2 (en) | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain | |
US7647205B2 (en) | Method and apparatus for management of an electric energy storage device to achieve a target life objective | |
US7639018B2 (en) | Method and apparatus for predicting change in an operating state of an electric energy storage device | |
US8091667B2 (en) | Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device | |
CN110388275A (zh) | 广义冷启动减排策略 | |
CN106066222A (zh) | 一种发动机转矩估计的方法和系统 | |
CN102383947B (zh) | 控制混合动力传动系统中内燃发动机的方法 | |
CN101806256A (zh) | 起动发动机的方法 | |
Schaub et al. | Diesel hybrid powertrains–enabling lowest emissions, minimum CO 2 and fun-to-drive | |
Wancura et al. | From virtual to reality–How 48V systems and operating strategies improve Diesel emission | |
EP2165904B1 (en) | Method and apparatus to control engine temperature for a hybrid powertrain | |
JP6679990B2 (ja) | ハイブリッド車両の制御装置 | |
US11794717B2 (en) | Power management for hybrid electric vehicles | |
EP2058204B1 (en) | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain | |
Rieger et al. | Analysis of Conventional Motorcycles with the Focus on Hybridization | |
Rieger et al. | Comparison of Optimal and Real-Time Operation Strategy for a Hybrid Electric Motorcycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130710 Termination date: 20210418 |