CN101275236A - 利用组合功率进行电解降低可再生氢燃料生产成本的设备 - Google Patents

利用组合功率进行电解降低可再生氢燃料生产成本的设备 Download PDF

Info

Publication number
CN101275236A
CN101275236A CNA2008100874147A CN200810087414A CN101275236A CN 101275236 A CN101275236 A CN 101275236A CN A2008100874147 A CNA2008100874147 A CN A2008100874147A CN 200810087414 A CN200810087414 A CN 200810087414A CN 101275236 A CN101275236 A CN 101275236A
Authority
CN
China
Prior art keywords
electrolyzer
photovoltaic array
power
variable
power network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100874147A
Other languages
English (en)
Other versions
CN101275236B (zh
Inventor
T·L·吉布森
N·A·凯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101275236A publication Critical patent/CN101275236A/zh
Application granted granted Critical
Publication of CN101275236B publication Critical patent/CN101275236B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及利用组合功率进行电解降低可再生氢燃料生产成本的设备。本发明的一个实施例包括光生伏打阵列和电解器,所述光生伏打阵列和电解器被操作性地连接在一起并且分别被操作性地连接至公用电力网,从而使得由所述光生伏打阵列生产的电力被选择性地传输至所述公用电力网和所述电解器。所产生的工艺使得提高了利用太阳能生产氢的工艺的效率,并且导致可再生氢的成本变得更低。

Description

利用组合功率进行电解降低可再生氢燃料生产成本的设备
技术领域
本发明的披露内容主要涉及的领域包括通过电解器产生氢,且更特别地,包括降低可再生氢燃料的生产成本。
背景技术
产生氢的装置通过在电解器中对水进行电解而利用电力来生产氢(和氧)。所产生的氢被贮存起来以便用作燃料,所述燃料可用于燃料电池和内燃机中。氧被排到大气中。可通过太阳能为电解器供电。通过光生伏打电解器(PV电解器)而利用太阳能产生的氢是一种可再生且对环境有利的能源。将美国的燃料供应物转换成可再生能源对于可持续运输、可持续经济增长、降低温室气体排放以及通过取代从不稳定的海外区域进口的污染性的矿物燃料而实现的国家能量安全而言是很关键的。
尽管在光生伏打阵列的最大功率点电压与电解器的运行电压相匹配的情况下,利用直接接通的方法将提供太阳能向氢的最高效的转换,但直接接通仅来自光生伏打阵列(PV阵列)的太阳能电力而为电解器供电并生产出独有的可再生的氢燃料是不经济的。造成缺乏经济性的原因在于:从固定角度的光生伏打系统有效地生产太阳能功率的时间平均每天仅有约六小时,这使得每天剩余了18小时,在这18小时的时间里,利用太阳能生产的电力不足以产生氢且无法利用电解器。因此,电解器在大多数时间内是闲置的,这使得增加了实现所需的日常燃料产率而需要的电解器的尺寸和成本。此外,电解器目前是氢产生器系统中最为昂贵的部分。因此,需要提供其它解决方案而使得由太阳能供电的以电解方式生产氢的过程在经济上是可行的。
发明内容
本发明的一个实施例包括光生伏打阵列和电解器,所述光生伏打阵列和电解器被操作性地连接在一起并且分别被操作性地连接至公用电力网(utility power grid),从而使得由所述光生伏打阵列生产的电力被选择性地传输至所述公用电力网和所述电解器。
通过下文提供的对典型实施例进行的详细描述将易于理解本发明的其它典型实施例。应该理解:尽管该详细描述和特定实例示出了本发明的典型实施例,但它们仅旨在示例性的目的且并不旨在限制本发明的范围。
附图说明
通过详细描述和附图将更充分地理解本发明的典型实施例。
图1是根据本发明的一个实施例的将来自光生伏打阵列的电力选择性地传输至公用电力网和电解器的功率控制系统的框图;
图2示出了对于公用电力网、光生伏打阵列和电解器而言在24小时期间内每小时的能量(kWh)与时间之间的关系;
图3示出了通过绘制出氢的成本($/kg)与电解器运行电流(A)之间的关系而实现的电解器的最优化的运行电流(Iopt);和
图4示出了对于仅通过太阳能功率进行的电解、通过利用净计量的太阳能功率和电力网功率进行的电解以及通过利用可变电价的太阳能功率和电力网功率进行的电解而言氢的成本($/kg)与电解器运行电流(A)之间的关系。
具体实施方式
下面对实施例进行的描述在本质上仅是示例性的且绝不旨在限制本发明及其应用或使用。
图1是包括功率控制系统12的产品10的框图。功率控制系统12将来自光生伏打阵列14的光生伏打功率(直流电流)或来自公用电力网16的交流功率中的至少一种结合在一起以便为电解器18供电。光生伏打阵列14可以是任何适当的光生伏打阵列,其包括,但不限于,基于晶体硅、非晶硅、碲化镉和铜铟二硒化物的光生伏打模块。这些光生伏打模块可包括,但不限于,由Sharp Electronics Corp.HuntingtonBeach,California制造的可从AAPS Alternative Power Systems,Carlsbad,California,USA获得的Sharp NT-S5E1U模块;由SanyoSolar(Sanyo Electric Co.,Ltd,Japan的一部分)制造的可从Alternative Energy Store,LLC,Hudson,Massachusetts得到的SanyoHIP-190BA3模块;以及其它适当的光生伏打模块。
电解器18通过对水进行电解而生产氢和氧。电解器18可以是任何适当的电解器。电解器18可以是包括阳极、阴极以及位于其间的膜的质子交换膜(PEM)电解器或者任何其它适当的电解器。电解器18可以是高压电解器。
电解器18的氢输出物34在任何适当的压力下被收集和贮存并被用作燃料。通过将太阳能功率与另一种电力来源如来自公用电力网(utility)的电力网电力结合在一起,如果需要,则电解器18可每天运行24小时,且由太阳能供电的以电解方式生产氢在经济上是可行的,原因在于降低了用来生产所需量的氢燃料的成本。
在一个实施例中,光生伏打功率被连通至可变直流-直流转换器20,在所述转换器中电流和电压被转换成用于电解器18的预定最优化运行电流(Iopt)和最优化运行电压(Vopt)。可变直流-直流转换器20可以是包括内部电位计、线盘、半导体和其它电子器件的可变输出直流功率供应电路。可变直流-直流转换器20的输出被电连接至电解器18。
可变直流-直流转换器20受到预编程控制器(逻辑系统)22的控制,所述预编程控制器包括例如主计算机或微处理器以及相关联的电路、开关和配线。被连接至电解器18和控制器22的安培计24测量出输入电解器18的总的直流电流输入。控制器22利用来自安培计的对应于输入电解器18的该总的直流电流输入的信号来设定源于光生伏打阵列14的电流(被限定为IDCA)和源于公用电力网16的电流(被限定为IDCB),以使得到达电解器18的总电流(IDCA+IDCB)等于电解器的最优化运行电流(Iopt)。最优化电流是基于成本的,且Iopt是由太阳能供电的电解器以最低成本生产氢所处的运行电流。
在另一实施例中,光生伏打阵列14通过电位计26而不是通过可变直流-直流转换器20被直接连通至电解器18。进行直接接通的该可选电路具有更低的电阻且允许实现比具有可变直流-直流转换器20的电路更高的系统效率。开关32可被手动操作且电位计26可受到控制器22的控制。开关32决定了电流是通过电位计26或是通过可变直流-直流转换器20被连通。当光生伏打阵列14已经被设计和构造成在不利用可变直流-直流转换器20的情况下供应电解器18所需的最优化运行电压(Vopt)时,利用通过电位计进行的直接接通。当利用该可选(直接接通)电路时,安培计24测量输入电解器18的总的直流电流输入。控制器22利用输入电解器18的该总的直流电流输入来设定来自光生伏打阵列14的电流(被限定为IDCA)和来自公用电力网16的电流(被限定为IDCB),以使得到达电解器18的总电流(IDCA+IDCB)等于电解器的最优化运行电流(Iopt)。
光生伏打阵列14被电连接至可变直流-交流逆变器30的输入端。可变直流-交流逆变器30将太阳能直流电转换成具有出售给公用电力网16的电力所需的电流、电压和波形的交流电。可变直流-交流逆变器30是包括内部电位计、线盘、半导体和其它电子器件的可变输出交流功率供应装置或变压器电路。可变直流-交流逆变器30的输出被连接至公用电力网16以便出售对于运行电解器18而言并不立即需要的过多的光生伏打功率。输出给电力网的该交流电流输出也受到控制器22的控制。
当有必要通过可变直流-交流逆变器30来控制流至电解器18的电流与流至公用电力网16的电流之比从而保持预定Iopt时,可利用电位计26。电位计26可在一定的电阻范围内被调节从而控制直接流至电解器18的总的以光生伏打方式产生的电流的百分比和流至可变直流-交流逆变器30的以光生伏打方式产生的电流的百分比。电位计26可被设定为约零欧姆电阻以便在光生伏打阵列14与电解器18之间建立直接连接。另一种可选方式是,电位计26可被调节成在电解器18与可变直流-交流逆变器30之间以任何所需比率拆分以光生伏打方式产生的电流所需要的任何电阻值。在一个实施例中,总的光生伏打电功率中的约75%被连通至可变直流-交流逆变器30且总的光生伏打电流中的约25%被直接传送至电解器18。这种拆分比率可在日间将足够的可再生光生伏打功率提供给电力网以便等于在由于阳光不足而使得无法获得光生伏打功率时取自电力公用电力网的用来使电解器运行的电力网功率并使所述电力网功率平衡。为了使功率损失最小化,电位计26的可变电阻被保持尽可能地小从而符合保持电解器18与可变直流-交流逆变器30之间的所需拆分比率的需要。
由于光生伏打阵列14仅可在日照时间生产用来使电解器18运行的太阳能电力,因此需要利用来自公用电力网16的功率而以成本有效的方式产生氢燃料。然而,由于制造和利用氢燃料的主要原因是为了环境,因此,除非以可再生的方式产生电力网电力,否则优选应该避免利用电力网电力。为了以完全可再生的方式生产氢,可利用超型号的光生伏打阵列14而在日照时间产生足够的太阳能功率来使电解器18运行并且产生过剩的太阳能功率以便被传送(出售)给公用电力网16。该过剩的太阳能可被视作被贮存在公用电力网中以便稍后利用的类似银行存款的能量。公用电力网16随后在晚间将等量的功率返售给氢产生系统以便使电解器18在黑暗时间运行。这种从公用电力网16被返售给氢产生系统的功率被认为是“可再生的”或“绿色的”能量,原因在于,在日间出售给公用电力网的太阳能光生伏打电力使该功率得到了同等地平衡。在充足日照期间,光生伏打输出可大于电解器所需的最优化电流:部分的光生伏打输出通过可变直流-直流转换器来使电解器运行,且剩余的光生伏打输出通过可变直流-交流逆变器以便被出售给公用电力网。因此,由电解器产生的氢可被完全归类为可再生燃料。在一个实施例中,从光生伏打系统到达公用电力网的总的可再生电力流对应于为了运行电解器和生产所需量的可再生氢燃料所需的可再生电能的量。
图2示出了每天24小时为电解器供电的太阳能功率和电力网功率的组合。如图2所示,在24小时期间的中间,过多的太阳能功率(来自光生伏打阵列)被出售给公用电力网。在24小时期间开始和结束时,功率从公用电力网被出售给系统以便在光生伏打阵列不能生产出足够功率时为电解器供电。
在一个实施例中,来自公用电力网的功率在晚间和其它低日照时间进入功率控制系统12。公用电力网16被连接至可变交流-直流转换器28,所述可变交流-直流转换器将来自电力网的交流功率(IAC)转换成最优化的直流电流和电压以便在与当时可得的任何光生伏打电流相结合时使电解器18运行。可变交流-直流转换器28是包括内部电位计、线盘、半导体和其它电子器件的可变输出直流功率供应电路。可变交流-直流转换器28也受到控制器22的控制从而使得到达电解器18的相结合的光生伏打电流(IDCA)和电力网电流输入(IDCB)等于用于电解器的最优化运行电流(Iopt)。
因此,光生伏打系统可被构建得足够大以便产生足够电力从而使电解器基于氢成本的最小化而每天24小时且每年365天在其最优化电流下运行。由于每天的日照小时数随着季节产生变化且可随着天气条件而有小时上的变化,因此光生伏打阵列的总面积可最好被制成用于平均条件的尺寸。为位置和光生伏打模块取向而预计的总的每年的光生伏打输出应该等于电解器在其最优化电流下的总的每年的功率输入。因此,在给定年份中,由光生伏打系统生产的可再生太阳能可存在过剩或不足,但长期的可再生能量供应将达到平均以便等于为了实现100%的可再生氢燃料生产而所需的电解器输入。美国的Energy National RenewableEnergy Laboratory部门已经测量并在标准表格中公开了对于多个美国位置的各种光生伏打系统而言的日射(入射的太阳辐射)的峰值日照时间的年平均数。每年的光生伏打模块输出可由在各种季节条件下的功率输出测量值决定,或者制造者提供了他们的产品在标准太阳辐射下的功率、电流和电压输出的数据,可在正常运行条件下对所述数据进行温度校正。可通过使平均峰值日照时间与平均的光生伏打模块功率输出相乘而估计平均每日的光生伏打系统输出(kWh),前提是如果对于所有季节均确定了这两个平均值的话。
在另一实施例中,将被贮存在公用电力网16中且被回收以便稍后利用的光生伏打能量产生容量(kWh)的量可增加10-20%以便应对两个功率转换步骤以及所需的更长的配线中的更大的损失。电路中的每个直流-直流或交流-直流转换器或者直流-交流逆变器的预期功率损失预期为5-10%。
电解器的最优化运行电流(Iopt)是对应于每单位量的最小氢成本的电解器运行电流(Ioper)。Iopt的值被用作使由太阳能和电力网供电的电解器系统每天24小时运行的恒定运行电流。如图3所示,对于给定的电解器而言,可能通过绘制出单位氢成本($/kg)与Ioper的关系图并选择使成本最小化的Ioper值来确定用于电解器的最优化运行电流(Iopt)。由于每天生产的氢的质量随着Ioper的增加而增加,但通过每单位的输入电解器的电能所生产的氢的质量(kg/kWh)测得的电解器效率随着Ioper的增加而降低,因此使得成本曲线可通过最小值。
在太阳能电力被出售给公用电力网的情况下生产氢的成本是通过公式1计算出来的,其中Popt是电解器的最优化功率:
H2生产成本($/kg)=[光生伏打系统成本+电解器成本+(购电价格0 24∫购买的电力网功率×dt)-(售电价格0 24∫出售的电力网功率×dt)]×33.35kWh/kg/(Popt×电解器效率×24h)(公式1)
利用氢的低热值(LHV)(33.35kWh/kg),利用公式2来计算总的氢产量,其中Iopt是最优化电流、Vopt是电解器的最优化电压、并且Popt是电解器的最优化功率:
总的H2产量
=[Iopt×Vopt×电解器效率(%)×24h/33.35kWh/kg]×1/100%
=[Popt×电解器效率(%)×24h/33.35kWh/kg]×1/100%(公式2)
必须利用在低热值下的1.23伏特的水电解电位来一致性地确定电解器效率,其中Voper是电解器的运行电压(公式3):
电解器效率(LHV)=100%×串联的电解器电池的数量×1.23伏特/Voper(公式3)。
在本发明的一个实施例中,以恒定的电价($/kWh)将通过由太阳能和电力网供电的氢产生器所生产的太阳能电力出售给公用电力网。当在一天中的任何时间向公用电力网购电或售电的电价均相同时,该政策被称作净计量(net metering)。在净计量的公用电力网政策下,这种政策已存在于美国的多个州中,电表使得光生伏打系统的所有者为介于购买的电力网电力与出售的光生伏打电力之间的净差值,即在由公用电力网设定的当前价格下购买的电力减去出售的电力,做出支付。
在另一实施例中,以可变的电价($/kWh)将太阳能电力出售给公用电力网。如果可基于一天中当时的电力需求与公用电力网公司协商用于向公用电力网购买或出售电力的电价,则该政策可被称作可变定价。具有潜在的高电价的峰值电力需求通常出现在寒冷天气的约正午时以及温暖气候中的夏季的下午中最热的部分时。晚间的电力需求是最低的,且潜在地降低了电价。在假设的“可变比率计划”中,光生伏打系统的所有者将需要请求公用电力网在峰值需求时间支付比用于出售给公用电力网的光生伏打功率的净计量比率更高的比率,并且在夜间和任何其它的低需求时间以比用于电力网功率的净计量比率更低的比率出售光生伏打所有者功率从而使电解器运行。
如图4所示,单位氢成本($/kg)根据功率控制系统12是仅利用太阳能功率或是利用太阳能功率和来自公用电力网的功率的组合而产生变化。此外,如图4所示,当光生伏打系统利用基于在一天中变化的电需求的可变电价时而并不是利用净计量时,单位氢成本是降低的。图4所示的实施例所基于的是在Las Vegas利用来自固定角度的光生伏打阵列的电力而每天运行24小时的20个电池的电解器。
上面对本发明的实施例进行的描述在本质上仅是示例性的,且因此对其做出的变化不被视为偏离了本发明的精神和范围。

Claims (22)

1、一种产品,所述产品包括:
光生伏打阵列和电解器,所述光生伏打阵列和电解器被操作性地连接在一起并且分别被操作性地连接至公用电力网,从而使得由所述光生伏打阵列生产的电力被选择性地传输至所述公用电力网和所述电解器。
2、根据权利要求1所述的产品,其中当来自所述光生伏打阵列的电力的至少一部分并未被所述电解器需要时,由所述光生伏打阵列生产的电力的至少一部分被传输至所述公用电力网。
3、根据权利要求1所述的产品,进一步包括控制器来控制电力流从而使得电力从所述光生伏打阵列或所述公用电力网中的至少一种被选择性地传输至所述电解器。
4、根据权利要求3所述的产品,其中到达所述电解器的总的电力流对应于被预先确定以使生产氢的成本最小化的用于所述电解器的最优化运行电流。
5、根据权利要求1所述的产品,进一步包括被电连接至所述光生伏打阵列和所述公用电力网的可变直流-交流逆变器。
6、根据权利要求1所述的产品,进一步包括被电连接至所述电解器的安培计。
7、根据权利要求1所述的产品,进一步包括被电连接至所述公用电力网和所述安培计的可变交流-直流转换器。
8、根据权利要求1所述的产品,进一步包括被电连接至所述光生伏打阵列和所述安培计的电位计。
9、根据权利要求1所述的产品,进一步包括被电连接至所述光生伏打阵列和所述安培计的可变直流-直流转换器。
10、根据权利要求1所述的产品,进一步包括介于所述光生伏打阵列与所述电位计或所述可变直流-直流转换器中的至少一种之间的开关。
11、一种产品,所述产品包括:
光生伏打阵列;
被电连接至所述光生伏打阵列的可变直流-交流逆变器;
被电连接至所述可变直流-交流逆变器的公用电力网;
被电连接至所述公用电力网的可变交流-直流转换器;
被电连接至所述光生伏打阵列的可变直流-直流转换器或电位计中的至少一种;
被电连接至所述可变交流-直流转换器且被电连接至所述可变直流-直流转换器或所述电位计中的至少一种的安培计;
被连接至所述安培计的电解器;和
被构造和布置成控制从所述光生伏打阵列和所述公用电力网到达所述电解器的电力流的控制器。
12、根据权利要求11所述的产品,其中所述可变直流-直流转换器和所述电位计通过开关被连接至所述光生伏打阵列。
13、一种工艺,所述工艺包括:将来自公用电力网和来自光生伏打阵列的电力选择性地传输至电解器。
14、根据权利要求13所述的工艺,其中当来自所述光生伏打阵列的电力的至少一部分并未被所述电解器需要时,来自所述光生伏打阵列的电力的至少一部分被传输至所述公用电力网。
15、根据权利要求14所述的工艺,其中利用可变直流-交流逆变器将电力从所述光生伏打阵列传输至所述公用电力网。
16、根据权利要求13所述的工艺,其中利用电位计或可变直流-直流转换器中的至少一种将电力从所述光生伏打阵列传输至所述电解器。
17、根据权利要求13所述的工艺,进一步包括在将电力传输至所述电解器之前将来自所述公用电力网的电力转换成直流。
18、根据权利要求17所述的工艺,其中所述转换是利用可变交流-直流转换器实现的。
19、根据权利要求13所述的工艺,进一步包括利用控制器来控制到达所述电解器的总的电力流,所述控制器包括主计算机或微处理器以及相关联的电路、开关和配线。
20、根据权利要求19所述的工艺,其中到达所述电解器的所述总的电力流对应于用于所述电解器的最优化运行电流。
21、根据权利要求14所述的工艺,其中从所述光生伏打系统到达所述公用电力网的总的可再生电力流对应于为了使所述电解器运行且为了生产所需量的可再生氢燃料所需要的可再生电能的量。
22、根据权利要求19所述的工艺,其中在所述光生伏打系统与所述公用电力网之间进行的可再生电力流的传递使得光生伏打电解器系统能够连续地、可再生地并且可持续地运行,同时使得在降低了每单位量的成本的情况下产生氢燃料。
CN2008100874147A 2007-03-27 2008-03-27 利用组合功率进行电解降低可再生氢燃料生产成本的设备 Expired - Fee Related CN101275236B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/691571 2007-03-27
US11/691,571 US7645931B2 (en) 2007-03-27 2007-03-27 Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power

Publications (2)

Publication Number Publication Date
CN101275236A true CN101275236A (zh) 2008-10-01
CN101275236B CN101275236B (zh) 2012-05-30

Family

ID=39332198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100874147A Expired - Fee Related CN101275236B (zh) 2007-03-27 2008-03-27 利用组合功率进行电解降低可再生氢燃料生产成本的设备

Country Status (6)

Country Link
US (1) US7645931B2 (zh)
EP (1) EP1975279B1 (zh)
JP (1) JP2008240152A (zh)
KR (1) KR101067761B1 (zh)
CN (1) CN101275236B (zh)
DE (1) DE602008002000D1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336453A (zh) * 2010-07-28 2012-02-01 中国科学院大连化学物理研究所 一种光电解池分解水产氢装置
CN102959131A (zh) * 2010-04-28 2013-03-06 英格蒂姆能源科技公司 用于控制基于可再生能源的发电站的功率输出的制氢系统及其控制方法
CN103441564A (zh) * 2013-08-07 2013-12-11 沈建跃 无需水源的太阳能离网制氢储能供电系统
CN106032782A (zh) * 2016-07-26 2016-10-19 汤成霖 减少内燃机有害排放物的处理装置及方法
CN113529118A (zh) * 2020-03-30 2021-10-22 西门子歌美飒可再生能源公司 电解装置

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
WO2009073868A1 (en) 2007-12-05 2009-06-11 Solaredge, Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
MX2010009438A (es) * 2008-02-29 2011-03-11 Cbe Global Holdings Inc Accionador metamorfico multi-ejes y su sistema de transmision y metodo.
EP2269290B1 (en) 2008-03-24 2018-12-19 Solaredge Technologies Ltd. Switch mode converter including active clamp for achieving zero voltage switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
US20100122723A1 (en) * 2008-11-14 2010-05-20 Arkadiusz Rudy Sadkowski Photovoltaic Power for Communications Networks
ITRE20080123A1 (it) * 2008-12-31 2010-07-01 Orles Ferretti Gestione di un sistema di alimentazione di un forno industriale
US8352091B2 (en) * 2009-01-02 2013-01-08 International Business Machines Corporation Distributed grid-interactive photovoltaic-based power dispatching
US9758881B2 (en) * 2009-02-12 2017-09-12 The George Washington University Process for electrosynthesis of energetic molecules
CN102395709B (zh) 2009-02-17 2014-09-17 麦卡利斯特技术有限责任公司 在电解过程中用于气体捕获的装置和方法
US8075750B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
US9040012B2 (en) 2009-02-17 2015-05-26 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis
JP5411299B2 (ja) * 2009-02-17 2014-02-12 マクアリスター テクノロジーズ エルエルシー 電解セルおよびその使用方法
BRPI1008695A2 (pt) 2009-02-17 2016-03-08 Mcalister Technologies Llc aparelho e método para controlar nucleação durante eletrólise
JP2012527767A (ja) 2009-05-22 2012-11-08 ソラレッジ テクノロジーズ リミテッド 電気絶縁された熱放散接続箱
WO2011035326A1 (en) * 2009-09-21 2011-03-24 Renewable Energy Solution Systems, Inc. Solar power distribution system
JP5344759B2 (ja) * 2009-09-30 2013-11-20 パナソニック株式会社 配電システム
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
JP5192001B2 (ja) 2010-01-25 2013-05-08 本田技研工業株式会社 水電解システムの運転方法
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8525369B2 (en) 2010-06-02 2013-09-03 GM Global Technology Operations LLC Method and device for optimizing the use of solar electrical power
US20120053867A1 (en) * 2010-08-24 2012-03-01 Atonometrics, Inc. System and methods for high-precision string-level measurement of photovoltaic array performance
US20120073982A1 (en) * 2010-09-23 2012-03-29 Lambie John M Electrolytic conversion of waste water to potable water
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10571135B2 (en) 2012-04-09 2020-02-25 David Kreutzman Renewable energy hot water heater with heat pump
US8909033B2 (en) * 2012-04-09 2014-12-09 David Kreutzman Control systems for renewable hot water heating systems
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10435800B2 (en) 2012-05-28 2019-10-08 Hydrogenics Corporation Electrolyser and energy system
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
WO2014140962A1 (en) * 2013-03-14 2014-09-18 Koninklijke Philips N.V. Solar power supply system
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9127244B2 (en) 2013-03-14 2015-09-08 Mcalister Technologies, Llc Digester assembly for providing renewable resources and associated systems, apparatuses, and methods
EP2779251B1 (en) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Bypass mechanism
CN105284026A (zh) * 2013-06-18 2016-01-27 皇家飞利浦有限公司 使用燃料电池的电力供应系统、用于所述电力供应系统的控制器和控制方法
US10044183B2 (en) * 2013-07-18 2018-08-07 Philips Lighting Holding B.V. DC power distribution system
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP7085838B2 (ja) 2015-02-26 2022-06-17 シーツーシーエヌティー エルエルシー カーボンナノファイバー製造のための方法及びシステム
US10844494B2 (en) 2015-09-18 2020-11-24 The Trustees Of Columbia University In The City Of New York Membraneless electrochemical flow-through reactor
WO2017066295A1 (en) 2015-10-13 2017-04-20 Clarion Energy Llc Methods and systems for carbon nanofiber production
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
WO2017184877A1 (en) 2016-04-21 2017-10-26 Fuelcell Energy, Inc. High efficiency fuel cell system with hydrogen and syngas export
US20180257499A1 (en) * 2016-09-23 2018-09-13 Faraday&Future Inc. Dual charging station
US10541433B2 (en) 2017-03-03 2020-01-21 Fuelcell Energy, Inc. Fuel cell-fuel cell hybrid system for energy storage
US10573907B2 (en) 2017-03-10 2020-02-25 Fuelcell Energy, Inc. Load-following fuel cell system with energy storage
KR20190066857A (ko) 2017-12-06 2019-06-14 주식회사 오버플러스파워 태양광-수소 기반의 소형 전력 발생 장치 및 그 방법
EP3556905A1 (de) * 2018-04-19 2019-10-23 Siemens Aktiengesellschaft Schaltungsanordnung, verfahren zum betrieb einer schaltungsanordnung und elektrolyseeinrichtung
JP7237500B2 (ja) * 2018-09-21 2023-03-13 旭化成株式会社 計画装置、方法、およびプログラム
WO2020121441A1 (ja) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
DE102018133641A1 (de) 2018-12-27 2020-07-02 Sma Solar Technology Ag Elektrolysevorrichtung mit einem umrichter und verfahren zur bereitstellung von momentanreserveleistung für ein wechselspannungsnetz
EP4060084A1 (en) * 2021-03-18 2022-09-21 Siemens Energy Global GmbH & Co. KG Electrolysis system and method
WO2023129480A1 (en) * 2021-12-27 2023-07-06 Electric Hydrogen Co. Power supply system for an electrochemical stack
WO2023225066A1 (en) * 2022-05-20 2023-11-23 Alfred Sklar Green hydrogen for the generation of electricity and other uses
WO2023222676A1 (en) 2022-05-20 2023-11-23 Shell Internationale Research Maatschappij B.V. Methods and systems to provide electric power from solar energy equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404472A (en) * 1981-12-28 1983-09-13 General Electric Company Maximum power control for a solar array connected to a load
JPH05203687A (ja) * 1992-01-28 1993-08-10 Shimadzu Corp 抵抗/電圧変換器
JP3352334B2 (ja) * 1996-08-30 2002-12-03 キヤノン株式会社 太陽電池の電力制御装置
JP3554116B2 (ja) * 1996-09-06 2004-08-18 キヤノン株式会社 電力制御装置及びそれを用いた太陽光発電システム
JP2002180281A (ja) * 2000-12-19 2002-06-26 Shinko Pantec Co Ltd 水素利用システム
US7510640B2 (en) * 2004-02-18 2009-03-31 General Motors Corporation Method and apparatus for hydrogen generation
US20060088739A1 (en) * 2004-10-26 2006-04-27 Energy Conversion Devices, Inc. Power generation and supply system
CN2773994Y (zh) * 2004-12-17 2006-04-19 新疆新能源股份有限公司 太阳能单相并网型正弦波逆变器
US7411308B2 (en) * 2005-02-26 2008-08-12 Parmley Daniel W Renewable energy power systems
JP4796798B2 (ja) * 2005-08-10 2011-10-19 本田技研工業株式会社 水素供給方法
US20070079611A1 (en) * 2005-10-11 2007-04-12 Doland George J Renewable Power Controller for Hydrogen Production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959131A (zh) * 2010-04-28 2013-03-06 英格蒂姆能源科技公司 用于控制基于可再生能源的发电站的功率输出的制氢系统及其控制方法
CN102959131B (zh) * 2010-04-28 2015-08-26 英格蒂姆能源科技公司 用于控制基于可再生能源的发电站的功率输出的制氢系统及其控制方法
CN102336453A (zh) * 2010-07-28 2012-02-01 中国科学院大连化学物理研究所 一种光电解池分解水产氢装置
CN102336453B (zh) * 2010-07-28 2013-06-19 中国科学院大连化学物理研究所 一种光电解池分解水产氢装置
CN103441564A (zh) * 2013-08-07 2013-12-11 沈建跃 无需水源的太阳能离网制氢储能供电系统
CN106032782A (zh) * 2016-07-26 2016-10-19 汤成霖 减少内燃机有害排放物的处理装置及方法
CN113529118A (zh) * 2020-03-30 2021-10-22 西门子歌美飒可再生能源公司 电解装置
US11643738B2 (en) 2020-03-30 2023-05-09 Siemens Gamesa Renewable Energy A/S Electrolysis arrangement
CN113529118B (zh) * 2020-03-30 2024-07-09 西门子歌美飒可再生能源公司 电解装置

Also Published As

Publication number Publication date
KR101067761B1 (ko) 2011-09-28
CN101275236B (zh) 2012-05-30
US20080236647A1 (en) 2008-10-02
EP1975279A1 (en) 2008-10-01
JP2008240152A (ja) 2008-10-09
DE602008002000D1 (de) 2010-09-16
EP1975279B1 (en) 2010-08-04
KR20080087760A (ko) 2008-10-01
US7645931B2 (en) 2010-01-12

Similar Documents

Publication Publication Date Title
CN101275236B (zh) 利用组合功率进行电解降低可再生氢燃料生产成本的设备
Castañeda et al. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system
Ma et al. Long term performance analysis of a standalone photovoltaic system under real conditions
CN106849190A (zh) 一种基于Rollout算法的多能互补微网实时调度方法
Vidueira et al. PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses
CN106408131A (zh) 一种基于需求侧管理的光伏微网多目标调度方法
CN106779471A (zh) 一种多能互联交直流混合微电网系统及优化配置方法
Shiroudi et al. Demonstration project of the solar hydrogen energy system located on Taleghan-Iran: Technical-economic assessments
CN110611336A (zh) 包含双级需求侧响应的园区综合能源系统优化运行方法
Yadav et al. Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER
CN215419614U (zh) 一种基于需求侧负荷的家用太阳能分布光伏并网发电系统
CN117410958A (zh) 一种基于urfc的微电网容量配置优化方法
CN115693793B (zh) 一种区域微电网能源优化控制方法
Mansur et al. Optimal sizing and economic analysis of self-consumed solar PV system for a fully DC residential house
CN116305810A (zh) 一种含氢能和需求响应的低碳建筑能源系统容量配置方法
Bartolucci et al. Hybrid renewable energy systems: Impact of thermal storage on systems optimal design and performance
Tudorache et al. Optimum design of wind/PV/diesel/batteries hybrid systems
CN111064188B (zh) 一种基于净现值计算的光储系统容量配置方法
Tawil et al. A Sizing and Dynamic Model for a Green Hydrogen as Energy Storage Technique for the Hybrid System 50KW Solar PV with PEM Fuel Cell
Mathews et al. Grid tied roof top solar: problems, learnings and solutions
CN110797892B (zh) 一种家庭光伏储能系统的容量配置方法
Danlami et al. Simulation of a Hybrid Power Generation System (A Case Study of Oke Eda, Akure, Ondo State, Nigeria)
Bülow et al. A techno-economic assessment of implementing an electric vehicle and stationary storage to increase the domestic self-consumption of a prosumer with photovoltaic installation
Yudha et al. Design of 600 WP Solar Power Plant for Juice Vendors Through Off-Grid System
Morozova et al. The Application of Solar Power Plant for Power Supply of the Cottage Complex

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20130327