WO2020121441A1 - 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法 - Google Patents

水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法 Download PDF

Info

Publication number
WO2020121441A1
WO2020121441A1 PCT/JP2018/045709 JP2018045709W WO2020121441A1 WO 2020121441 A1 WO2020121441 A1 WO 2020121441A1 JP 2018045709 W JP2018045709 W JP 2018045709W WO 2020121441 A1 WO2020121441 A1 WO 2020121441A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
control system
time
power
energy
Prior art date
Application number
PCT/JP2018/045709
Other languages
English (en)
French (fr)
Inventor
秋葉 剛史
史之 山根
新 加藤
浩史 森田
田上 哲治
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2018/045709 priority Critical patent/WO2020121441A1/ja
Priority to EP18943297.4A priority patent/EP3896816A4/en
Priority to JP2020559609A priority patent/JP7177854B2/ja
Publication of WO2020121441A1 publication Critical patent/WO2020121441A1/ja
Priority to US17/345,924 priority patent/US11784335B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04305Modeling, demonstration models of fuel cells, e.g. for training purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • Embodiments of the present invention relate to a hydrogen energy control system and a control method for the hydrogen energy control system.
  • Hydrogen energy is attracting attention as a new energy.
  • Hydrogen is produced by the hydrogen production device of the hydrogen system and stored in the hydrogen tank.
  • the hydrogen stored in the hydrogen tank can be converted into electric power again by the hydrogen power generator. Therefore, by connecting the devices of the hydrogen system to the power grid, power can be supplied from the power grid or can be supplied to the power grid.
  • a fuel cell is an example of a hydrogen power generation device.
  • the hydrogen system makes it possible to stabilize the power grid and meet the hydrogen demand.
  • the problem to be solved by the present invention is to provide a hydrogen energy control system capable of adjusting the required processing independently of the power grid control system and the hydrogen transportation system according to the operation plan of the hydrogen energy system.
  • a hydrogen energy control system a hydrogen energy system that generates at least hydrogen by electric power, a power grid control system that plans power generation of a power generation facility that supplies power to a power grid, and a hydrogen transport system that manages hydrogen transport.
  • a hydrogen energy integrated management system comprising: the power grid control system; and a hydrogen energy integrated management system that controls the hydrogen energy system based on communication information with the power grid control system, the hydrogen energy integrated management system comprising: A first communication unit that performs communication of at least charge request data among the charge and discharge requests with the power grid control system, and a second communication unit that communicates hydrogen demand data with the hydrogen transportation system, A target hydrogen amount acquisition unit that acquires a target hydrogen generation amount based on the hydrogen demand data, and an operation planning unit that generates an operation plan in the hydrogen energy system based on the target hydrogen generation amount and the data of the charging request.
  • the block diagram which shows the structure of a hydrogen energy control system The conceptual diagram which represented the structure of a hydrogen energy system as a battery.
  • Liquid hydrogen demand and target liquid hydrogen residual amount calculation processing conceptual diagram.
  • the figure which shows the numerical example of the constraint conditions used in FIG. The figure which shows an example of the charging/discharging request
  • FIG. 1 is a block diagram showing a configuration of a hydrogen energy control system 1 according to an embodiment.
  • a hydrogen energy system 1 according to this embodiment includes a hydrogen energy system 10, a power grid control system 20, a hydrogen transportation system 30, a renewable energy control system 40, and a hydrogen energy integrated management system 50. And a renewable energy-derived power generation facility 60.
  • a fossil fuel-derived power generation facility 70, a hydrogen distribution network 80, and a hot water network 90 are further illustrated.
  • the hydrogen energy system 10 generates at least hydrogen with electric power.
  • the detailed configuration of the hydrogen energy system 10 will be described later.
  • the power grid control system 20 makes a power generation plan for a power generation facility that supplies power to the power grid 74, for example, a thermal power plant 72.
  • the power grid control system 20 performs communication of at least charge request data among charge/discharge requests with the hydrogen energy integrated management system 50.
  • the hydrogen transportation system 30 manages hydrogen transportation.
  • the hydrogen transportation system 30 communicates hydrogen demand data with the hydrogen energy integrated management system 50.
  • the renewable energy control system 40 controls the renewable energy-derived power generation equipment 60.
  • the renewable energy control system 40 communicates with the hydrogen energy integrated management system 50 the data of the renewable energy power generation prediction result.
  • the integrated hydrogen energy management system 50 controls the hydrogen energy system 10 based on communication information of the power grid control system 20, the hydrogen transportation system 30, and the renewable energy control system 40. The detailed configuration of the hydrogen energy integrated management system 50 will be described later.
  • the renewable energy-derived power generation facility 60 has a power generation facility derived from natural energy.
  • the renewable energy-derived power generation facility 60 includes a solar power generation device 62 that uses sunlight and a wind power generation device 64 that generates power using wind power.
  • This renewable energy-derived power generation facility 60 does not require fuel such as fossil fuel, but its power generation amount is unstable because it is affected by the environment such as weather and wind power.
  • the renewable energy-derived power generation facility 60 may be a power generation facility that uses new energy such as biomass or biomass-derived waste.
  • the fossil fuel-derived power generation facility 70 has a thermal power plant 72 and a power grid 74.
  • the thermal power plant 72 generates electricity using fossil fuel.
  • the power network 74 is a power network to which the renewable energy-derived power generation equipment 60, the fossil fuel-derived power generation equipment 70, and the hydrogen power generation apparatus 114 are connected, and the renewable energy-derived power generation equipment 60, the fossil fuel-derived power generation equipment 70, and the hydrogen power generation.
  • the electric power generated by the device 114 is supplied.
  • the hydrogen distribution network 80 has a liquid hydrogen distribution network 82 and a gas hydrogen distribution network 84.
  • the liquid hydrogen distribution network 82 is a distribution network that transports hydrogen as a liquid and supplies it to meet the demand for hydrogen.
  • the gas hydrogen distribution network 84 is a distribution network that transports hydrogen as a gas and supplies the hydrogen to meet the demand for hydrogen.
  • the hydrogen energy system 10 includes a power conditioner device 100, a hydrogen production device 102, a gaseous hydrogen tank 104, a liquefaction device 106, a liquid hydrogen tank 108, a liquid hydrogen discharge device 110, a vaporization device 112, and hydrogen power generation. And a device 114.
  • the power conditioner device 100 includes, for example, a converter. This converter converts the DC power output from the renewable energy-derived power generation equipment 60 into a predetermined AC power.
  • the hydrogen production apparatus 102 produces hydrogen from electricity and water by electrolysis of water. That is, the hydrogen production apparatus 102 produces hydrogen by electrolysis of water using electric power supplied from at least one of the renewable energy-derived power generation equipment 60 and the electric power network 74, and uses the produced hydrogen as gaseous hydrogen. Store in the tank 104.
  • the hydrogen production device 102 is, for example, an electrohydrolysis device that produces hydrogen and oxygen by passing an electric current through an alkaline solution. Further, the hydrogen production device 102 stores the produced hydrogen in the gaseous hydrogen tank 104 via the hydrogen pipe.
  • the gaseous hydrogen tank 104 stores the gaseous hydrogen produced by the hydrogen producing apparatus 102.
  • the gaseous hydrogen tank 104 is connected to the hydrogen production apparatus 102, the liquefaction apparatus 106, and the gaseous hydrogen distribution network 6 via piping. Further, the gaseous hydrogen tank 104 supplies gaseous hydrogen to the liquefaction device 106 and the gaseous hydrogen distribution network 84.
  • the liquefaction device 106 converts the gaseous hydrogen supplied from the gaseous hydrogen tank 104 into liquid hydrogen.
  • the liquefaction device 106 converts hydrogen supplied from the gas hydrogen tank 104 into liquid hydrogen and supplies the liquid hydrogen to the liquid hydrogen tank 108 via a pipe.
  • the liquid hydrogen tank 108 stores the liquid hydrogen supplied from the liquefaction device 106.
  • the liquid hydrogen tank 108 stores the liquid hydrogen supplied from the liquefaction device 106 and also supplies the liquid hydrogen to the liquid hydrogen discharge device 110 via a pipe.
  • the liquid hydrogen discharger 110 supplies the liquid hydrogen supplied from the liquid hydrogen tank 108 to the liquid hydrogen distribution network 82 and the vaporizer 112.
  • the liquid hydrogen discharge device 110 may be integrated with the liquid hydrogen tank 108.
  • the vaporizer 112 converts the liquid hydrogen supplied from the liquid hydrogen discharge device 110 into gaseous hydrogen. That is, the vaporizer 112 converts the liquid hydrogen supplied from the liquid hydrogen discharge device 110 into gaseous hydrogen, and supplies the gaseous hydrogen to the gaseous hydrogen tank 104 through the pipe.
  • the hydrogen power generation device 114 uses hydrogen supplied from the gaseous hydrogen tank 104 to generate electric power and heat.
  • the heat here is supplied to the hot water net 90 as hot water, for example.
  • the hydrogen power generation device 114 has, for example, a fuel cell. That is, the hydrogen power generation device 114 uses hydrogen supplied from the gaseous hydrogen tank 104 to generate electricity and generate heat.
  • the oxygen in the air may be used as the oxygen, or the oxygen produced by the hydrogen production apparatus 102 in the hydrogen production may be stored in the oxygen tank.
  • the hydrogen energy system 10 charges by generating hydrogen by the electric power supplied from the renewable energy-derived power generation equipment 60 and the fossil fuel-derived power generation equipment 70. That is, charging the hydrogen energy system 10 according to the present embodiment means converting electric power into gaseous hydrogen. The amount of chargeable electric power depends on the free capacity of the gaseous hydrogen tank 104.
  • the amount of electric power that can be discharged depends on the storage capacities of the gaseous hydrogen tank 104 and the liquid hydrogen tank 108. In this case, it is affected by the demand for gaseous hydrogen and the demand for liquid hydrogen. Further, the dischargeable electric power amount of the hydrogen energy system 10 is also affected by the supply amount of hot water to the hot water net 90. Further, the discharging of the hydrogen energy system 10 according to the present embodiment means converting hydrogen in the gaseous hydrogen tank 104 into electric power.
  • the hydrogen energy system 10 is provided with restrictions such as a chargeable time zone, a dischargeable time zone, a chargeable electric energy, and a dischargeable electric energy.
  • FIG. 3 is a block diagram showing a detailed configuration of the hydrogen energy integrated management system 50.
  • the hydrogen energy integrated management system 50 includes a first communication unit 502, a second communication unit 504, a third communication unit 506, a management unit 508, and a storage unit 510.
  • the first communication unit 502 is a first interface between the power grid control system 20 and the hydrogen energy integrated management system 50.
  • the second communication unit 504 is a second interface between the hydrogen transportation system 30 and the hydrogen energy integrated management system 50.
  • the third communication unit 506 is a third interface between the renewable energy control system 40 and the hydrogen energy integrated management system 50. The detailed communication contents of the first communication unit 502, the second communication unit 504, and the third communication unit 506 will be described later.
  • the management unit 508 is configured to include, for example, a CPU (Central Processing Unit), and manages the hydrogen energy system 10, the power grid control system 20, the hydrogen transportation system 30, and the renewable energy control system 40.
  • the management unit 508 includes a target hydrogen amount acquisition unit 508a, a constraint condition setting unit 508b, and an operation planning unit 508c.
  • the target hydrogen amount acquisition unit 508a acquires the target hydrogen production amount based on the hydrogen demand data transmitted from the hydrogen transportation system 30.
  • the constraint condition setting unit 508b calculates time-series constraint conditions of the hydrogen system for generating the target hydrogen generation amount based on at least the hydrogen generation characteristic of the hydrogen energy system 10 or the hydrogen power generation characteristic.
  • the operation planning unit 508c generates an operation plan in the hydrogen energy system 10 based on the target hydrogen generation amount acquired by the target hydrogen amount acquisition unit 508a and the charging request data transmitted from the power grid control system 20. Details of the target hydrogen amount acquisition unit 508a, the constraint condition setting unit 508b, and the operation planning unit 508c will be described later.
  • the storage unit 510 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory device such as a flash memory, a hard disk, or the like.
  • the storage unit 510 stores a program executed by the management unit 508 and various control data.
  • FIG. 4 is a diagram showing communication information between the power grid control system 20, the hydrogen transportation system 30, the renewable energy control system 40, and the hydrogen energy integrated management system 50. These pieces of communication information are information transmitted and received between the systems in advance.
  • the first communication unit 502 (FIG. 3) performs communication of at least charging request data among charging/discharging requests with the power grid control system 20. More specifically, the first communication unit 502 receives the constraint calculation parameter and the charge/discharge request from the power grid control system 20.
  • the first communication unit 502 transmits the hydrogen system restriction and the answer back (OK/NG) from the hydrogen energy integrated management system 50 to the power grid control system 20.
  • the constraint calculation parameter, charge/discharge request, hydrogen system constraint, and answerback (OK/NG) are communicated at a predetermined cycle such as once a day.
  • the second communication unit 504 (FIG. 3) communicates hydrogen demand data with the hydrogen transportation system 30.
  • the hydrogen demand data is communicated at a fixed cycle such as once a week.
  • the third communication unit 506 (FIG. 3) communicates with the renewable energy control system 40 the data of the renewable energy power generation prediction result.
  • the data of the prediction result of renewable energy power generation is communicated at a predetermined cycle such as once a day.
  • the communication information of the first communication unit 502, the second communication unit 504, and the third communication unit 506 at the time of real-time control will be described later.
  • FIG. 5A is a diagram showing the importance of the discharge time zone in the constraint calculation parameters.
  • FIG. 5B is a diagram showing the importance of the charging time zone in the constraint calculation parameters.
  • FIG. 5C is a diagram showing the degree of importance for the constraints of discharge and charge in the constraint calculation parameters.
  • the constraint calculation parameters transmitted from the power grid control system 20 side to the hydrogen energy integrated management system 50 include discharge time zone importance, charge time zone importance, discharge, and charge constraint. The importance of is included.
  • the importance of the discharge time zone is a constraint condition indicating the time zone in which the electric power network 74 can be discharged by the importance degree.
  • the importance is A, which means that it is most desirable. That is, the power demand on the power network 74 is highest from 10:00 to 11:59.
  • the next is the importance B of 17:00 to 18:59, and the next is the importance C of 8:00 to 9:59.
  • the importance of discharge increases during the time when there is a large demand for power and there is a shortage of power.
  • the importance of the charging time period is a constraint condition indicating the time period in which the hydrogen energy system 10 can be charged with the importance.
  • the importance level is A, which shows that it is the most desirable. That is, the time period when the electric power network 74 is excessively supplied is 13:00 to 15:59.
  • the time period when the power supply becomes excessive is the importance B of 16:00 to 16:59.
  • the degree of importance with respect to the restrictions on discharge and charge is a constraint condition indicating the dischargeable time zone, the dischargeable power amount, the chargeable time zone, and the chargeable power amount with the importance degree. For example, if the dischargeable time zone has an importance of 100, the dischargeable power amount has an importance level of 20, the chargeable time period has an importance level of 1, and the chargeable power amount has an importance level of 2, the dischargeable time band has an important level. It can be seen that the frequency is highest, followed by dischargeable electric energy, chargeable electric energy, and chargeable time zone.
  • FIG. 6 is a process conceptual diagram of liquid hydrogen demand and target liquid hydrogen remaining amount calculation, and the process concept of the target hydrogen amount acquisition unit 508a (FIG. 3) will be described based on FIG.
  • the target hydrogen amount acquisition unit 508a for example, based on the hydrogen demand of liquid hydrogen received by the second communication unit 504 (FIG. 3) from the renewable energy control system 40, a predetermined time for each day, for example, The target hydrogen remaining amount of the liquid hydrogen tank 108 (FIG. 1) at 0:00 which is the start of the day and the target hydrogen remaining amount at the shipping time are set.
  • the hydrogen demand includes information on shipping date, shipping time, and shipping amount.
  • the target remaining hydrogen amount is the shipping amount+the surplus amount.
  • the target hydrogen amount acquisition unit 508a divides the target liquid hydrogen remaining amount at the time of shipment by the number of days in which the hydrogen energy system 10 can operate, and starts the day, for example, 0:00 of the liquid hydrogen tank 108 (FIG. 1). ) Target liquid hydrogen remaining amount of is acquired.
  • the target hydrogen amount acquisition unit 508a for example, based on the hydrogen demand for gaseous hydrogen received by the second communication unit 504 (FIG. 3) from the renewable energy control system 40, a predetermined time for each day, for example, the start of the day.
  • the target hydrogen remaining amount of the gas hydrogen tank 104 (FIG. 1) at 0:00 and the target hydrogen remaining amount at the shipping time are set. That is, the target hydrogen amount acquisition unit 508a divides the target gas hydrogen remaining amount at the time of shipment by the number of days in which the hydrogen energy system 10 can operate, and starts the day, for example, the target gas in the gas hydrogen tank 104 at 0:00. Get the remaining amount of hydrogen.
  • the target liquid hydrogen remaining amount and the target gas hydrogen remaining amount may be set by other methods, not limited to the method based on the current division based on the operable days. Further, only one of the target liquid hydrogen remaining amount and the target gas hydrogen remaining amount may be set.
  • FIG. 7 is a diagram showing an example (discharging) of the hydrogen system restriction.
  • the vertical axis of FIG. 7 indicates the discharge power of the hydrogen energy system 10 on the positive side, and the charging power on the negative side.
  • the horizontal axis represents the elapsed time during the discharge operation.
  • FIG. 8 is a diagram showing a numerical example of the constraint conditions used in FIG. 7.
  • the constraint condition setting unit 508b uses the target liquid hydrogen remaining amount and the target gas hydrogen remaining amount obtained by the target hydrogen amount acquisition unit 508a and the constraint calculation parameters supplied from the power grid control system 20. Using and, the dischargeable power with respect to the elapsed time is set as a constraint condition.
  • the “minimum keep time before discharge”, “dischargeable time zone”, “minimum keep time after discharge”, and “dischargeable electric energy” with underbars are constraints that dynamically change due to hydrogen demand and the like.
  • the “minimum keep time before discharge” includes the time to start driving the hydrogen power generation device 114 (FIG. 1 ), and is, for example, the time in which the amount of hydrogen stored in the gaseous hydrogen tank 104 (FIG. 1) is taken into consideration.
  • the “dischargeable time zone” is a time zone based on the importance of the discharge time zone in the constraint calculation parameters.
  • the “minimum keep time after discharge” includes a time for stopping the driving of the hydrogen power generation device 114 (FIG. 1), and is a time considering the amount of hydrogen stored in the gaseous hydrogen tank 104 (FIG. 1), for example.
  • the “dischargeable power amount” is a power amount that takes into consideration the importance of the dischargeable power amount in the constraint calculation parameters, the amount of hydrogen stored in the gaseous hydrogen tank 104 (FIG. 1), and the like.
  • discharge power change rate upper limit value “discharge minimum keep time”, and “discharge power change rate lower limit value” are constraints determined by static specifications of discharge characteristics in the hydrogen energy system 10. More specifically, it is a constraint determined by static specifications of discharge characteristics in the hydrogen power generation device 114 (FIG. 1).
  • FIG. 9 is a diagram illustrating an example (charging) of the hydrogen system restriction.
  • the vertical axis of FIG. 9 indicates the discharge power of the hydrogen energy system 10 on the positive side, and the charging power on the negative side. Further, the horizontal axis indicates the elapsed time after 11 operations.
  • FIG. 10 is a diagram showing numerical examples of the constraint conditions used in FIG.
  • the constraint condition setting unit 508b uses the target liquid hydrogen remaining amount and target gas hydrogen remaining amount obtained by the target hydrogen amount acquiring unit 508a, and the constraint calculation parameters supplied from the power grid control system 20. Using and, the chargeable power with respect to the elapsed time is set as a constraint condition.
  • the "minimum keep time before charging”, “chargeable time zone”, “minimum keep time after charging”, and “chargeable electric energy” with underbars are constraints that change dynamically depending on hydrogen demand.
  • the “minimum keep time before charging” can be obtained, for example, from the operating state of the hydrogen production device 102 (FIG. 1) or the state of the remaining amount in the gaseous hydrogen tank 104.
  • the “chargeable time zone” is a time zone based on the importance of the charge time zone in the constraint calculation parameters.
  • the “minimum keep time after charging” includes a time for stopping the driving of the hydrogen production device 102 (Fig. 1), and is a time in consideration of the amount of hydrogen stored in the gaseous hydrogen tank 104 (Fig. 1), for example.
  • the “chargeable power amount” is a power amount that takes into consideration the importance of the chargeable power amount in the constraint calculation parameters, the amount of hydrogen stored in the gaseous hydrogen tank 104 (FIG. 1), and the like.
  • the “charge change rate lower limit value”, “discharge minimum keep time”, and “charge change rate upper limit value” are constraints determined by static specifications of charge characteristics in the hydrogen energy system 10. More specifically, the “charge change rate lower limit value”, “discharge minimum keep time”, and “charge change rate upper limit value” are constraints determined by static specifications of charge characteristics in the hydrogen production apparatus 102 (FIG. 1 ). Is.
  • FIG. 11 is a diagram showing an example of a charge/discharge request from the power grid control system 20.
  • the power grid control system 20 schedules time-series charge/discharge requests based on the hydrogen system constraint set by the constraint condition setting unit 508b.
  • the charging/discharging request includes a plurality of discharging requests having different discharging amounts from the time period and a plurality of charging requests having different charging amounts from the time period. That is, the power grid control system 20 can have a plurality of discharge requests and a plurality of charge requests.
  • the power grid control system 20 preliminarily notifies the hydrogen energy integrated management system 50 via the second communication unit 504 of any one of a plurality of charging requests during a charging time period when the power supply of the power grid 74 exceeds the demand. Request.
  • the unit is MW in this example, it may be MWh.
  • the charge/discharge request may be a demand response.
  • FIG. 12 is a diagram showing an example of data of a renewable energy power generation prediction result of the renewable energy control system 40. As shown in FIG. 12, the renewable energy control system 40 transmits the data of the prediction result of the renewable energy power generation in time series to the hydrogen energy integrated management system 50.
  • FIG. 13 is a diagram showing an example of answer back (OK/NG) based on the operation plan by the operation planning unit 508c (FIG. 3).
  • the operation planning unit 508c makes a time-series plan of charge/discharge power based on the charge/discharge request from the power grid control system 20 and the renewable energy power generation prediction result of the renewable energy control system 40. To do. Then, when the hydrogen energy integrated management system 50 can answer the charge/discharge request from the power grid control system 20, the hydrogen energy integrated management system 50 sends a signal including OK information as an answerback to the power grid control system 20.
  • the hydrogen energy integrated management system 50 transmits a signal including information of NG and insufficient power amount to the power grid control system 20 as an answerback. ..
  • the operation planning unit 508c may make an operation plan for the next day on the previous day, or if the hydrogen demand and the renewable energy power generation forecast can obtain long-term data, it is not limited to the next day and may be several weeks or several weeks. A long-term operation plan of monthly or several years may be performed.
  • FIG. 14 is a diagram showing a protocol of data to be transmitted and received between systems in advance and a flow of processing.
  • the hydrogen transportation system 30 transmits the demand amounts of gaseous hydrogen and liquid hydrogen and the shipping date and time to the hydrogen energy integrated management system 50 via the second communication unit 504 (protocol P100). ..
  • the target hydrogen amount acquisition unit 508a of the integrated hydrogen energy management system 50 uses the target hydrogen remaining amount of the liquid hydrogen tank 108 at a predetermined time every day and the shipping time based on the demand amounts of gaseous hydrogen and liquid hydrogen.
  • the target hydrogen remaining amount of is set (protocol P102).
  • the power grid control system 20 calculates a constraint calculation parameter and sends it to the hydrogen energy integrated management system 50 (protocol P104).
  • the constraint condition setting unit 508b of the integrated hydrogen energy management system 50 calculates and sets the time-series hydrogen system constraint of the hydrogen energy system 10 using the constraint calculation parameter and the target remaining hydrogen amount (protocol P106). .. Subsequently, the constraint condition setting unit 508b transmits the calculated hydrogen system constraint to the power grid control system 20.
  • the power grid control system 20 plans a time-series charge/discharge request using the hydrogen system constraint, and sends it to the operation planning unit 508c of the integrated hydrogen energy management system 50 (protocol P108). Further, the renewable energy control system 40 transmits the renewable energy power generation prediction result to the operation planning unit 508c of the hydrogen energy integrated management system 50 (protocol P110).
  • the operation planning unit 508c generates an operation plan of the hydrogen energy system 10 based on the time-series charge/discharge request and the renewable energy power generation prediction result, and transmits the answerback to the power grid control system 20 (protocol P112). ).
  • the power network control system 20 determines whether the answerback is OK at all times (protocol P114). If all are OK (OK of protocol P114), control according to the operation plan planned by protocol P108 is performed. On the other hand, if NG is partially included (NG in protocol P114), the process from protocol P108 including the change of the operation plan is repeated.
  • the operation planning unit 508c may suspend the answerback until a predetermined time elapses, and may perform the answerback after the response conditions are met.
  • the renewable energy power generation prediction result may be changed, and the entire operation plan may be OK.
  • the processing efficiency may be improved as a whole by waiting for a predetermined time rather than repeating the processing from the protocol P202 including the change of the operation plan.
  • FIG. 15 is a diagram showing an example of data transmitted/received between systems in real time.
  • the first communication unit 502 receives a real-time discharge request, a real-time charge request, and a real-time short-cycle power request from the power grid control system 20.
  • cycle Ta is on the order of several minutes, for example.
  • the real-time discharge request and the real-time charge request are request signals in the cycle Ta, and the real-time short-cycle power request is a request signal in the cycle Td.
  • FIG. 16A is a diagram showing an example of a real-time discharge request.
  • FIG. 16B is a diagram showing an example of a real-time charging request.
  • the first communication unit 502 (FIG. 3) transmits the real-time hydrogen system constraint and the real-time answerback (OK/NG) from the hydrogen energy integrated management system 50 to the power grid control system 20.
  • These real-time hydrogen system restrictions and real-time answerback (OK/NG) are transmission signals at the cycle Ta.
  • FIG. 16C is a diagram showing an example of the reactive power request of the real-time short-cycle power request.
  • FIG. 16D is a diagram illustrating a different example of the reactive power request of the real-time short-cycle power request.
  • FIG. 16E is a diagram illustrating an example of an LFC (load frequency control: load frequency control) request of a real-time short-cycle power request.
  • the real-time short-cycle power request represents, for example, a short-cycle power request for Td minutes after Td minutes.
  • the reactive power request may be a pair of active power and reactive power as shown in FIG. 16C or a pair of power factor and reactive power as shown in FIG. 16D.
  • the real-time short-cycle power request refers to, for example, reactive power request for voltage stabilization of the grid and LFC, which is a short-cycle request for frequency stabilization. Since there is a possibility that calculation of constraints and operation plans will not be in time for these, only check whether it is possible or not, and if it is not possible, do not correspond. Therefore, in the cycle Td, the real-time hydrogen system restriction and the real-time answerback (OK/NG) may not be transmitted to the power grid control system 20. ..
  • the third communication unit 506 receives the real-time renewable energy power generation prediction result from the renewable energy control system 40.
  • This real-time renewable energy power generation prediction result is received by communication in the cycle Ta.
  • FIG. 17 is a diagram showing an example of a sequence of real-time processing.
  • the processing cycle is set to Ta.
  • Ta is arbitrary. That is, the intervals of t0 to t1, t1 to t2, t2 to t3, and t3 to t4 are Ta minutes.
  • the time from the stop state to the power generation enabled state for the hydrogen power generation device 114 to generate power is calculated by adding Tb minutes to the extra time.
  • Tc a time obtained by adding an extra time to the time required for the hydrogen production apparatus to reach a manufacturable state in order to perform charging from the stopped state.
  • Tc The smaller value of Tb and Tc is set as Tbc.
  • Real-time hydrogen system constraints represent the constraints after Tbc minutes.
  • the real-time hydrogen system constraint transmitted to the power grid control system 20 at t0 minutes is set as a constraint after t0+Tbc minutes.
  • the constraint condition setting unit 508b (FIG. 3) uses the actual hydrogen production record, the renewable energy generation record, the discharge request after the present, and the charge request after the present to restrict the real-time hydrogen system. Calculate and set.
  • the current and subsequent discharge requests use a real-time discharge request before Tb minutes
  • the current and subsequent charge requests use a real-time charge request before Tc minutes.
  • the real-time discharge request makes a request after Tb minutes
  • the real-time charge request makes a request after Tc minutes.
  • the real-time renewable energy power generation prediction result is the same as the renewable energy power generation prediction result, but is the prediction result after the present.
  • FIG. 18 is a diagram showing a protocol of data to be transmitted and received between systems in real time and a flow of processing.
  • a protocol for real-time processing in the case of cycle Ta will be described first, and then a protocol for real-time processing in the case of cycle Td will be described.
  • the constraint condition setting unit 508b of the integrated hydrogen energy management system 50 first calculates and sets the real-time hydrogen system constraint using the constraint calculation parameter, the target hydrogen remaining amount, the charging request after the present and the discharging request. (Protocol P200). Subsequently, the constraint condition setting unit 508b transmits the calculated real-time hydrogen system constraint to the power grid control system 20.
  • the power grid control system 20 plans a real-time charge/discharge request using the real-time hydrogen system constraint, and sends the real-time charge request and the real-time discharge request to the operation planning unit 508c of the integrated hydrogen energy management system 50 (protocol). P202). Moreover, the renewable energy control system 40 transmits the real-time renewable energy power generation prediction result to the operation planning unit 508c of the hydrogen energy integrated management system 50 (protocol P204).
  • the operation planning unit 508c generates a real-time operation plan of the hydrogen energy system 10 based on the real-time charge/discharge request and the real-time renewable energy power generation prediction result, and transmits the answerback to the power grid control system 20 (protocol P206). ). In this way, the operation planning unit 508c further generates an operation plan having a shorter cycle than the operation plan (FIG. 14).
  • the power network control system 20 determines whether the answerback is OK at all times (protocol P208). If all are OK (OK in protocol P208), real-time control according to the power generation plan planned in protocol P202 is performed. On the other hand, if NG is partially included (NG in protocol P208), the process from protocol P202 including the change of the operation plan is repeated.
  • the operation planning unit 508c may suspend the answerback until a predetermined time elapses, and may perform the answerback after the response conditions are satisfied. By the elapse of a predetermined time, the real-time renewable energy power generation prediction result may be changed, and the entire operation plan may be OK. In this case, the processing efficiency may be improved as a whole by waiting for a predetermined time rather than repeating the processing from the protocol P202 including the change of the operation plan.
  • the power grid control system 20 calculates the short cycle power demand and sends it to the operation planning unit 508c of the integrated hydrogen energy management system 50 (protocol P210).
  • the operation planning unit 508c checks the short cycle power request from the power grid control system 20 (protocol P212) and determines whether or not it is possible (protocol P214). If it is possible (protocol P214 is possible), the power grid control system 20 performs control to cope with short cycle power (protocol P216). On the other hand, when it is not possible to cope (protocol P214 is impossible), the control is put on hold and waits until a predetermined time elapses.
  • the target hydrogen amount acquisition unit 508a of the hydrogen energy integrated management system 50 acquires the target hydrogen production amount based on the hydrogen demand data of the hydrogen transportation system 30, and the hydrogen energy integrated management system 50. It is decided that the operation plan unit 508c of FIG. 1 creates an operation plan in the hydrogen energy system 10 based on the target hydrogen generation amount and the data of the charging request of the power grid control system 20. As a result, even when the power grid control system 20 and the hydrogen transportation system 30 are independently controlled, independent control of the power grid control system 20 and the hydrogen transportation system 30 is performed by the control based on the operation plan of the hydrogen energy system 10. The processing can be adjusted.
  • Modification 1 of an embodiment The modified example 1 of the embodiment is different from the embodiment in that a display control unit 512 that causes the monitor to display the operating state of the hydrogen energy system 10 is further provided. The points different from the embodiment will be described below.
  • FIG. 19 is a block diagram showing a detailed configuration of the hydrogen energy integrated management system 50 according to the modified example 1 of the embodiment. As shown in FIG. 19, the hydrogen energy integrated management system 50 is different from the one embodiment in that it has a display control unit 512.
  • the display control unit 512 controls the display unit, for example, a monitor to display the operating state of the hydrogen energy system 10.
  • FIG. 20 is a diagram showing an example of a display screen of the charge/discharge status of the hydrogen energy system 10. As shown in FIG. 20, the display control unit 512 displays a screen on a monitor together with a numerical value indicating the charge/discharge status of the hydrogen energy system 10.
  • FIG. 21 is a diagram showing a display screen example of constraints of the hydrogen energy system 10.
  • the display control unit 512 displays a screen on a monitor together with a numerical value indicating a constraint at the time of discharging the hydrogen energy system 10.
  • the display control unit 512 can also change the numerical value by the input process of the operation unit.
  • the display control unit 512 can display the same screen for charging.
  • the display screen of the charging/discharging status on the monitor by displaying the display screen of the charging/discharging status on the monitor, it is easy to understand the status and it becomes easy to find a defect. Further, by displaying the display screen on the monitor together with the numerical value indicating the constraint at the time of discharging, it becomes easier to understand the constraint situation at the time of discharging, and it becomes possible to reduce the setting error. ..
  • the modified example 2 of the embodiment is different from the embodiment in that the hydrogen energy system 10 further includes a storage battery 116 and a heat storage tank 118.
  • the points different from the embodiment will be described below.
  • FIG. 22 is a block diagram showing a detailed configuration of the hydrogen energy system 10 according to Modification 2 of the embodiment. As shown in FIG. 22, the hydrogen energy system 10 differs from the one embodiment in that it has a storage battery 116 and a heat storage tank 118.
  • the storage battery 116 supplements the power supply to the power grid 74 when the generated power of the hydrogen power generation device 114 is insufficient. As a result, the power supply to the hydrogen power generation device 114 can be performed more stably. Further, since the storage battery 116 has a faster response speed than the hydrogen power generation device 114, it becomes possible to effectively utilize renewable energy.
  • the heat storage tank 118 stores the heat of the hydrogen power generation device 114.
  • the hydrogen energy system 10 since the hydrogen energy system 10 includes the storage battery 116, it is possible to effectively use the renewable energy and reduce the power consumption of the entire hydrogen energy system 10. Can be suppressed. Further, since the hydrogen energy system 10 includes the heat storage tank 118, it becomes possible to supply the exhaust heat from the hydrogen power generation device 114 in accordance with the time when heat can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Fuel Cell (AREA)

Abstract

本実施形態に係る水素エネルギー制御システムは、水素エネルギーシステムと、電力網制御システムと、水素輸送システムと、電力網制御システムとの通信情報に基づき、水素エネルギーシステムを制御する水素エネルギー統合管理システムと、を備える、水素エネルギー制御システムであって、水素エネルギー統合管理システムは、充放電要求の内の少なくとも充電要求のデータの通信を電力網制御システムとの間で行う第1通信部と、水素需要データの通信を水素輸送システムとの間で行う第2通信部と、水素需要データに基づき、目標水素生成量を取得する目標水素量取得部と、目標水素生成量と充電要求のデータとに基づき、水素エネルギーシステムにおける運転計画を生成する運転計画部と、を有する。

Description

水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
 本発明の実施形態は、水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法に関する。
 新たなエネルギーとして水素エネルギーが注目されつつある。水素システムの水素製造装置により水素が生成され、水素タンクに貯蔵される。この水素タンクに貯蔵された水素を、水素発電装置により再び電力に変換することが可能である。このため、水素システムの装置群を電力網に接続することで、電力網から電力を供給されることも、電力網に電力を供給することも可能である。水素発電装置の例として、燃料電池がある。こように、水素システムにより、電力網の安定化と、水素需要への対応を行うことが可能となる。
 さらに将来、水素を燃料とする燃料電池車両の増加や、家庭用の純水素燃料電池の増加などにより、水素自体の需要も増加していくと予想されている。この場合、水素を輸送したり、パイプラインで送ったりすることになる。このため、水素と電力のエネルギー管理を効率的に行うことが求められている。
 ところが、電力網の管理、水素需要の管理、水素システムの管理を1つの管理制御システムにより行う場合、処理が複雑になってしまう恐れがある。
特許第3801898号公報
 本発明が解決しようとする課題は、水素エネルギーシステムの運転計画により電力網制御システムと水素輸送システムとの独立した要求処理の調整が可能な水素エネルギー制御システムを提供することである。
 本実施形態に係る水素エネルギー制御システムは、電力により少なくとも水素を生成する水素エネルギーシステムと、電力網に電力を供給する発電設備の発電計画を行う電力網制御システムと、水素輸送を管理する水素輸送システムと、前記電力網制御システムと、電力網制御システムとの通信情報に基づき、前記水素エネルギーシステムを制御する水素エネルギー統合管理システムと、を備える、水素エネルギー制御システムであって、前記水素エネルギー統合管理システムは、充放電要求の内の少なくとも充電要求のデータの通信を前記電力網制御システムとの間で行う第1通信部と、水素需要データの通信を前記水素輸送システムとの間で行う第2通信部と、前記水素需要データに基づき、目標水素生成量を取得する目標水素量取得部と、前記目標水素生成量と前記充電要求のデータとに基づき、前記水素エネルギーシステムにおける運転計画を生成する運転計画部と、を有する。
 本実施形態によれば、電力網制御システムと水素輸送システムとの独立した要求処理の調整を行うことができる。
水素エネルギー制御システムの構成を示すブロック図。 水素エネルギーシステムの構成を電池として表した概念図。 水素エネルギー統合管理システムの詳細な構成を示すブロック図。 システム間の通信情報を示す図。 制約計算用パラメータ中の放電時間帯の重要度を示す図。 制約計算用パラメータ中の充電時間帯の重要度を示す図。 放電、充電の制約に対する重要度を示す図。 液体水素需要と目標液体水素残量計算の処理概念図。 水素システム制約の例(放電)を示す図。 図7内で使用される制約条件の数値例を示す図。 水素システム制約の例(充電)を示す図。 図9内で使用される制約条件の数値例を示す図。 電力網制御システムからの充放電要求の一例を示す図。 再生可能エネルギー発電予測結果のデータの一例を示す図。 アンサーバック(OK/NG)の一例を示す図。 データのプロトコルと処理の流れを示す図。 リアルタイムにシステム間で送受信するデータ例を示す図。 リアルタイム放電要求の例を示す図。 リアルタイム充電要求の例を示す図。 アルタイム短周期電力要求の無効電力要求の例を示す図。 無効電力要求の異なる例を示す図。 リアルタイム短周期電力要求のLFC要求の例を示す図。 リアルタイム処理のシーケンスの例を示す図。 リアルタイムにシステム間で送受信するデータのプロトコルと処理の流れを示す図。 一実施形態の変形例1に係る水素エネルギー統合管理システムの詳細な構成を示すブロック図。 水素エネルギーシステムの充放電状況の表示画面例を示す図。 水素エネルギーシステムの制約の表示画面例を示す図。 一実施形態の変形例2に係る水素エネルギーシステムの詳細な構成を示すブロック図。
 以下、本発明の実施形態に係る水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
 (一実施形態)
 図1は、一実施形態に係る水素エネルギー制御システム1の構成を示すブロック図である。図1に示すように、本実施形態に係る水素エネルギーシステム1は、水素エネルギーシステム10と、電力網制御システム20と、水素輸送システム30と、再生可能エネルギー制御システム40と、水素エネルギー統合管理システム50と、再生可能エネルギー由来発電設備60とを備えて構成されている。図1では、更に化石燃料由来発電設備70と、水素流通網80と、温水網90とが図示されている。
 水素エネルギーシステム10は、電力により少なくとも水素を生成する。水素エネルギーシステム10の詳細な構成は、後述する。
 電力網制御システム20は、電力網74に電力を供給する発電設備、例えば火力発電所72の発電計画を行う。この電力網制御システム20は、充放電要求の内の少なくとも充電要求のデータの通信を水素エネルギー統合管理システム50との間で行う。
 水素輸送システム30は、水素輸送を管理する。この水素輸送システム30は、水素需要データの通信を水素エネルギー統合管理システム50との間で行う。
 再生可能エネルギー制御システム40は、再生可能エネルギー由来発電設備60を制御する。この再生可能エネルギー制御システム40は、再生可能エネルギー発電予測結果のデータの通信を水素エネルギー統合管理システム50との間で行う。
 水素エネルギー統合管理システム50は、電力網制御システム20と、水素輸送システム30と、再生可能エネルギー制御システム40との通信情報に基づき、水素エネルギーシステム10を制御する。水素エネルギー統合管理システム50の詳細な構成は、後述する。
 再生可能エネルギー由来発電設備60は、自然エネルギー由来の発電設備を有する。この再生可能エネルギー由来発電設備60は、太陽光を用いた太陽光発電装置62と、風力を用いて発電する風力発電装置64とを有する。この再生可能エネルギー由来発電設備60は、化石燃料などの燃料が不要であるが、その発電量は天候や風力などの環境の影響を受けるため不安定である。なお、再生可能エネルギー由来発電設備60は、バイオマスやバイオマス由来廃棄物などの新エネルギーを利用した発電設備でもよい。
 化石燃料由来発電設備70は、火力発電所72と、電力網74とを有する。火力発電所72は、化石燃料を用いて発電する。電力網74は、再生可能エネルギー由来発電設備60、化石燃料由来発電設備70、及び水素発電装置114が接続された電力網であり、再生可能エネルギー由来発電設備60、化石燃料由来発電設備70、及び水素発電装置114が発電した電力が供給される。
 水素流通網80は、液体水素流通網82と、気体水素流通網84とを有する。液体水素流通網82は、水素を液体として輸送して、水素需要に対して供給する流通網である。気体水素流通網84は、水素を気体として輸送して、水素需要に対して供給する流通網である。
 ここで、水素エネルギーシステム10の詳細な構成を説明する。水素エネルギーシステム10は、パワーコンディショナ装置100と、水素製造装置102と、気体水素タンク104と、液化装置106と、液体水素タンク108と、液体水素排出装置110と、気化装置112と、水素発電装置114とを備えて構成されている。
 パワーコンディショナ装置100は、例えばコンバータを含んで構成される。このコンバータは、再生可能エネルギー由来発電設備60が出力した直流電力を所定の交流電力に変換する。
 水素製造装置102は、電気と水から、水電解により水素を製造する。すなわち、この水素製造装置102は、再生可能エネルギー由来発電設備60、及び電力網74の少なくともいずれかから供給された電力を用いて、水の電気分解により水素を製造し、この製造した水素を気体水素タンク104に蓄える。水素製造装置102は、例えば、アルカリ性の溶液に電流を流すことにより、水素と酸素とを製造する電気水分解装置である。また、水素製造装置102は、水素配管を介して、生成した水素を気体水素タンク104に蓄える。
 気体水素タンク104は、水素製造装置102により製造された気体の水素を蓄える。この気体水素タンク104は、水素製造装置102と、液化装置106と、気体水素流通網6に配管を介して接続されている。また、この気体水素タンク104は、液化装置106と、気体水素流通網84に気体の水素を供給する。
 液化装置106は、気体水素タンク104から供給された気体水素を液体水素に変換する。この液化装置106は、気体水素タンク104から供給された水素を液体水素に変換し、配管を介して液体水素タンク108に供給する。
 液体水素タンク108は、液化装置106から供給された液体水素を貯蔵する。この液体水素タンク108は、液化装置106から供給された液体水素を蓄えると共に、液体水素排出装置110に配管を介して液体水素を供給する。
 液体水素排出装置110は、液体水素タンク108から供給された液体水素を液体水素流通網82、及び気化装置112に供給する。なお、液体水素排出装置110は、液体水素タンク108と一体的に構成されてもよい。
 気化装置112は、液体水素排出装置110から供給された液体水素を気体の水素に変換する。すなわち、この気化装置112は、液体水素排出装置110から供給された液体水素を気体の水素に変換し、配管を介して気体水素タンク104に供給する。
 水素発電装置114は、気体水素タンク104から供給される水素を用いて、電力と、熱とを生成する。ここでの熱は、例えば温水として温水網90へ供給される。水素発電装置114は、例えば燃料電池を有している。すなわち、この水素発電装置114は、気体水素タンク104から供給される水素を用いて電気を発電すると共に、熱を生成する。酸素は空気中の酸素を利用してもよいし、水素製造装置102が水素製造に伴い生成する酸素を酸素タンクに蓄積したものを使用してもよい。
 図2は、水素エネルギーシステム10の構成を電池として表した概念図である。図2に示すように、水素エネルギーシステム10は、再生可能エネルギー由来発電設備60及び化石燃料由来発電設備70から供給される電力により水素を生成することにより充電する。すなわち、本実施形態に係る水素エネルギーシステム10の充電とは、電力を気体の水素に変換することを意味する。充電可能電力量は、気体水素タンク104の空き容量に依存する。
 一方で、放電可能電力量は、気体水素タンク104及び液体水素タンク108の蓄積容量に依存する。この場合、気体水素の需要及び液体水素の需要の影響を受ける。また、水素エネルギーシステム10の放電可能電力量は、温水網90への温水の供給量の影響も受ける。また、本実施形態に係る水素エネルギーシステム10の放電とは、気体水素タンク104の水素を電力に変換することを意味する。
 このように、水素エネルギーシステム10の充放電は、電力だけではなく、熱量や水素量を考慮する必要があるため、常に電力需給要求に応えられるとは限らない。そのため、水素エネルギーシステム10には、充電可能時間帯、放電可能時間帯、充電可能電力量、放電可能電力量などの制約が設けられる。
 図3は、水素エネルギー統合管理システム50の詳細な構成を示すブロック図である。図3に示すように、水素エネルギー統合管理システム50は、第1通信部502と、第2通信部504と、第3通信部506と、管理部508と、記憶部510とを、有する。
 第1通信部502は、電力網制御システム20と水素エネルギー統合管理システム50との間の第1インターフェースである。 
 第2通信部504は、水素輸送システム30と水素エネルギー統合管理システム50との間の第2インターフェースである。 
 第3通信部506は、再生可能エネルギー制御システム40と水素エネルギー統合管理システム50との間の第3インターフェースである。なお、第1通信部502、第2通信部504、及び第3通信部506の詳細な通信内容は後述する。
 管理部508は、例えばCPU(Central Processing Unit)を含んで構成され、水素エネルギーシステム10と、電力網制御システム20と、水素輸送システム30と、再生可能エネルギー制御システム40と、を管理する。この管理部508は、目標水素量取得部508aと、制約条件設定部508bと、運転計画部508cと、を有する。
 目標水素量取得部508aは、水素輸送システム30から送信された水素需要データに基づき、目標水素生成量を取得する。
 制約条件設定部508bは、水素エネルギーシステム10の水素生成特性、又は水素発電特性に少なくとも基づき、目標水素生成量を生成するための時系列な水素システムの制約条件を演算する。 
 運転計画部508cは、目標水素量取得部508aが取得した目標水素生成量と、電力網制御システム20から送信された充電要求のデータとに基づき、水素エネルギーシステム10における運転計画を生成する。なお、目標水素量取得部508a、制約条件設定部508b、及び運転計画部508cの詳細も後述する。
 記憶部510は、例えばRAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク等により実現される。この記憶部510は、管理部508が実行するプログラムと、各種の制御用のデータを記憶する。
 図4に基づき、第1通信部502、第2通信部504、及び第3通信部506の通常制御時の詳細な通信情報に関して説明する。 
 図4は、電力網制御システム20と、水素輸送システム30と、再生可能エネルギー制御システム40と、水素エネルギー統合管理システム50との間の通信情報を示す図である。これらの通信情報は、事前にシステム間で送受信される情報である。
 図4に示すように、第1通信部502(図3)は、充放電要求の内の少なくとも充電要求のデータの通信を電力網制御システム20との間で行う。より具体的には、第1通信部502は、電力網制御システム20から制約計算用パラメータと、充放電要求を受信する。
 一方で、この第1通信部502は、水素エネルギー統合管理システム50から水素システム制約と、アンサーバック(OK/NG)とを電力網制御システム20へ送信する。制約計算用パラメータ、充放電要求、水素システム制約、およびアンサーバック(OK/NG)は、例えば、1日に1回などの決められた周期で通信される。
 第2通信部504(図3)は、水素需要データの通信を水素輸送システム30との間で行う。水素需要データは、例えば、週に1回などの決められた周期で通信される。
 第3通信部506(図3)は、再生可能エネルギー発電予測結果のデータの通信を再生可能エネルギー制御システム40との間で行う。再生可能エネルギー発電予測結果のデータは、例えば、1日に1回などの決められた周期で通信される。なお、リアルタイム制御時の第1通信部502、第2通信部504、及び第3通信部506の通信情報に関しては、後述する。
 ここで、図5A乃至5Cに基づき、上述の制約計算用パラメータの詳細を説明する。図5Aは、制約計算用パラメータ中の放電時間帯の重要度を示す図である。図5Bは、制約計算用パラメータ中の充電時間帯の重要度を示す図である。図5Cは、制約計算用パラメータ中の放電、充電の制約に対する重要度を示す図である。図5A乃至5Cに示すように、電力網制御システム20側から水素エネルギー統合管理システム50に送信する制約計算用パラメータには、放電時間帯の重要度、充電時間帯の重要度、放電、充電の制約に対する重要度が含まれる。
 図5Aに示すように、放電時間帯の重要度は、電力網74に放電可能な時間帯を重要度で示す制約条件である。例えば、10:00~11:59に放電する場合には、重要度がAであり最も望ましいことを示している。すなわち、電力網74での電力需要が10:00~11:59で最も高くなる。次が重要度Bである17:00~18:59であり、その次が重要度Cである8:00~9:59である。これらから分かるように、電力需要が多く、電力不足がある時間帯には放電の重要度が上がる。
 図5Bに示すように、充電時間帯の重要度は、水素エネルギーシステム10に充電可能な時間帯を重要度で示す制約条件である。例えば、13:00~15:59に充電する場合には、重要度がAであり最も望ましいことを示している。すなわち、電力網74での供給過多になる時間帯が13:00~15:59である。次に電力供給が過多になる時間帯が重要度Bである16:00~16:59である。これらから分かるように、電力需要が少なく、供給過多になる時間帯には充電の重要度が上がる。
 図5Cに示すように、放電、充電の制約に対する重要度は、放電可能時間帯、放電可能電力量、充電可能時間帯、充電可能電力量を重要度で示す制約条件である。例えば、放電可能時間帯の重要度は100、放電可能電力量の重要度は20、充電可能時間帯の重要度は1、充電可能電力量の重要度は2の場合、放電可能時間帯の重要度が最も高く、次に放電可能電力量、充電可能電力量、充電可能時間帯という順になることが分かる。
 図6は、液体水素需要と目標液体水素残量計算の処理概念図であり、図6に基づき、目標水素量取得部508a(図3)の処理概念を説明する。図6に示すように、目標水素量取得部508aは、例えば第2通信部504(図3)が再生可能エネルギー制御システム40から受信した液体水素の水素需要に基づき、日ごとの所定時刻、例えば1日の始まりである0:00の液体水素タンク108(図1)の目標水素残量と出荷時刻での目標水素残量を設定する。ここで、水素需要には、出荷日、出荷時刻、出荷量の情報が含まれる。また、目標水素残量は、出荷量+余裕量である。この余裕量は任意に設定可能である。すなわち、目標水素量取得部508aは、出荷時の目標液体水素残量を水素エネルギーシステム10の稼働可能日数で当分割りして、1日の始まり、例えば0:00の液体水素タンク108(図1)の目標液体水素残量を取得する。
 同様に、目標水素量取得部508aは、例えば第2通信部504(図3)が再生可能エネルギー制御システム40から受信した気体水素の水素需要に基づき、日ごとの所定時刻、例えば1日の始まり、例えば0:00の気体水素タンク104(図1)の目標水素残量と出荷時刻とでの目標水素残量を設定する。すなわち、目標水素量取得部508aは、出荷時の目標気体水素残量を水素エネルギーシステム10の稼働可能日数で当分割りして、1日の始まり、例えば0:00の気体水素タンク104の目標気体水素残量を取得する。なお、このような稼働可能日数での当分割りよる方法に限らず、他の方法で目標液体水素残量、目標気体水素残量を設定しても良い。また、目標液体水素残量、及び目標気体水素残量の内の一方だけを設定してもよい。
 まず、図7及び図8に基づき、制約条件設定部508b(図3)における放電時の水素エネルギーシステム10の水素システム制約について説明する。図7は、水素システム制約の例(放電)を示す図である。図7の縦軸はプラス側が水素エネルギーシステム10の放電電力を示し、マイナス側が充電電力を示している。また、横軸は放電動作時の経過時間を示している。図8は、図7内で使用される制約条件の数値例を示す図である。
 図7に示すように、制約条件設定部508bは、目標水素量取得部508aにより得られた目標液体水素残量、及び目標気体水素残量と、電力網制御システム20から供給された制約計算用パラメータと、を用いて、経過時間に対する放電可能電力を制約条件として設定する。アンダーバーが引かれている「放電前最低キープ時間」、「放電可能時間帯」、「放電後最低キープ時間」、「放電可能電力量」は水素需要などによって動的に変化する制約である。
 すなわち、「放電前最低キープ時間」は、水素発電装置114(図1)の駆動を開始する時間を含み、例えば気体水素タンク104(図1)の蓄積水素量を考慮した時間である。「放電可能時間帯」は、制約計算用パラメータ中の放電時間帯の重要度に基づく時間帯である。「放電後最低キープ時間」は、水素発電装置114(図1)の駆動を停止する時間を含み、例えば気体水素タンク104(図1)の蓄積水素量を考慮した時間である。「放電可能電力量」は、制約計算用パラメータ中の放電可能電力量の重要度、気体水素タンク104(図1)の蓄積水素量などを考慮した電力量である。
 一方で、「放電電力変化速度上限値」、「放電最低キープ時間」、「放電電力変化速度下限値」、は水素エネルギーシステム10における放電特性の静的な仕様で決まる制約である。より具体的には、水素発電装置114(図1)における放電特性の静的な仕様で決まる制約である。
 次に、図9及び図10に基づき、制約条件設定部508b(図3)における充電時の水素エネルギーシステム10の水素システム制約について説明する。図9は、水素システム制約の例(充電)を示す図である。図9の縦軸はプラス側が水素エネルギーシステム10の放電電力を示し、マイナス側が充電電力を示している。また、横軸は11動作時の経過時間を示している。図10は、図9内で使用される制約条件の数値例を示す図である。
 図9に示すように、制約条件設定部508bは、目標水素量取得部508aにより得られた目標液体水素残量、及び目標気体水素残量と、電力網制御システム20から供給された制約計算用パラメータとを用いて、経過時間に対する充電可能電力を制約条件として設定する。アンダーバーが引かれている「充電前最低キープ時間」、「充電可能時間帯」、「充電後最低キープ時間」、「充電可能電力量」は水素需要などによって動的に変化する制約である。
 すなわち、「充電前最低キープ時間」は、例えば水素製造装置102(図1)の稼働状態や気体水素タンク104における残量の状態などにより求めることができる。「充電可能時間帯」は、制約計算用パラメータ中の充電時間帯の重要度に基づく時間帯である。「充電後最低キープ時間」は、水素製造装置102(図1)の駆動を停止する時間を含み、例えば気体水素タンク104(図1)の蓄積水素量を考慮した時間である。「充電可能電力量」は、制約計算用パラメータ中の充電可能電力量の重要度、気体水素タンク104(図1)の蓄積水素量などを考慮した電力量である。
 一方で、「充電変化速度下限値」、「放電最低キープ時間」、及び「充電変化速度上限値」、は水素エネルギーシステム10における充電特性の静的な仕様で決まる制約である。より具体的には、「充電変化速度下限値」、「放電最低キープ時間」、及び「充電変化速度上限値」、は水素製造装置102(図1)における充電特性の静的な仕様で決まる制約である。
 図11は、電力網制御システム20からの充放電要求の一例を示す図である。図11に示すように、電力網制御システム20は、制約条件設定部508bにより設定された水素システム制約に基づき、時系列な充放電要求を計画する。この充放電要求の中には、時間帯と放電量が異なる複数の放電要求と、時間帯と充電量が異なる複数の充電要求とが含まれる。すなわち、電力網制御システム20は、複数の放電要求と、複数の充電要求を有することが可能である。例えば、電力網制御システム20は、電力網74の電力供給が需要を超える充電時間帯に対して、複数の充電要求の中のいずれかを水素エネルギー統合管理システム50に第2通信部504を介して予め要求する。これにより、電力網74の供給状態に応じた水素エネルギーシステム10への電力供給が可能となる。なお、この例では単位をMWとしたが、MWhでも良い。また充放電要求は、デマンドレスポンスでも良い。
 図12は、再生可能エネルギー制御システム40の再生可能エネルギー発電予測結果のデータの一例を示す図である。図12に示すように、再生可能エネルギー制御システム40は、時系列な再生可能エネルギー発電予測結果のデータを水素エネルギー統合管理システム50に送信する。
 図13は、運転計画部508c(図3)による運転計画に基づくアンサーバック(OK/NG)の一例を示す図である。図13に示すように、運転計画部508cは、電力網制御システム20からの充放電要求と、再生可能エネルギー制御システム40の再生可能エネルギー発電予測結果とに基づき、時系列な充放電電力の計画を行う。そして、水素エネルギー統合管理システム50は、電力網制御システム20からの充放電要求に答えられる場合には、アンサーバックとしてOKの情報を含む信号を電力網制御システム20に送信する。一方で、水素エネルギー統合管理システム50は、電力網制御システム20からの充放電要求に答えられない場合には、アンサーバックとしてNGと足りない電力量の情報を含む信号を電力網制御システム20に送信する。なお、運転計画部508cは、前日に翌日の運転計画を立てても良いし、水素需要と再生可能エネルギー発電予測が長期分のデータを入手できる場合は、翌日に限らず、数週間、数か月、数年、という長期の運転計画を行っても良い。
 図14は、事前にシステム間で送受信するデータのプロトコルと処理の流れを示す図である。図14に示すように、まず、水素輸送システム30は、第2通信部504を介して気体水素、及び液体水素の需要量と、出荷日時を水素エネルギー統合管理システム50に送信する(プロトコルP100)。
 次に、水素エネルギー統合管理システム50の目標水素量取得部508aは、気体水素、及び液体水素の需要量に基づき、日ごとの所定時刻における液体水素タンク108の目標水素残量と、出荷時刻での目標水素残量を設定する(プロトコルP102)。また、電力網制御システム20は、制約計算パラメータを算出し、水素エネルギー統合管理システム50に送信する(プロトコルP104)。
 次に、水素エネルギー統合管理システム50の制約条件設定部508bは、制約計算パラメータと目標水素残量とを用いて水素エネルギーシステム10の時系列な水素システム制約を演算し、設定する(プロトコルP106)。続いて、制約条件設定部508bは、演算した水素システム制約を電力網制御システム20に送信する。
 次に、電力網制御システム20は、水素システム制約を用いて時系列な充放電要求を計画し、水素エネルギー統合管理システム50の運転計画部508cに送信する(プロトコルP108)。また、再生可能エネルギー制御システム40は、再生可能エネルギー発電予測結果を水素エネルギー統合管理システム50の運転計画部508cに送信する(プロトコルP110)。
 次に、運転計画部508cは、時系列な充放電要求と再生可能エネルギー発電予測結果とに基づき、水素エネルギーシステム10の運転計画を生成し、アンサーバックを電力網制御システム20に送信する(プロトコルP112)。
 次に、電力網制御システム20は、アンサーバックが全ての時間でOKであるか否かを判定する(プロトコルP114)。全てがOKであれば(プロトコルP114のOK)、プロトコルP108で計画した運転計画に従った制御を行う。一方で、一部にNGが含まれていれば(プロトコルP114のNG)、運転計画の変更を含むプロトコルP108からの処理を繰り返す。なお、運転計画部508cは、運転計画の作成が失敗した場合に、所定の時間が経過するまでアンサーバックを保留し、返答条件がそろってからアンサーバックを行ってもよい。所定の時間が経過するまでに、再生可能エネルギー発電予測結果が変更され、運転計画の全てがOKになる場合がある。この場合、運転計画の変更を含むプロトコルP202からの処理を繰り返すよりも、所定時間待った方が、全体としての処理効率があがる可能性があるためである。
 次に、図15に基づき、リアルタイムにシステム間で送受信するデータについて説明する。図15は、リアルタイムにシステム間で送受信するデータ例を示す図である。図15に示すように、第1通信部502(図3)は、電力網制御システム20からリアルタイム放電要求、リアルタイム充電要求、リアルタイム短周期電力要求を受信する。ここで、周期Ta>周期Tdの関係があり、例えば周期Taは数分のオーダである。これらリアルタイム放電要求、およびリアルタイム充電要求は、周期Taでの要求信号であり、リアルタイム短周期電力要求は、周期Tdでの要求信号である。
 図16Aは、リアルタイム放電要求の例を示す図である。図16Bは、リアルタイム充電要求の例を示す図である。
 また、第1通信部502(図3)は、水素エネルギー統合管理システム50からリアルタイム水素システム制約と、リアルタイムのアンサーバック(OK/NG)とを電力網制御システム20へ送信する。これらリアルタイム水素システム制約と、リアルタイムのアンサーバック(OK/NG)とは周期Taでの送信信号である。
 図16Cは、リアルタイム短周期電力要求の無効電力要求の例を示す図である。図16Dは、リアルタイム短周期電力要求の無効電力要求の異なる例を示す図である。図16Eは、リアルタイム短周期電力要求のLFC(負荷周波数制御:load frequency control)要求の例を示す図である。図16C乃至図16Eに示すように、リアルタイム短周期電力要求は、例えば、Td分後のTd分間の短周期電力要求を表す。無効電力要求については、図16Cに示すように有効電力と無効電力の対でもよいし、図16Dに示すように力率と無効電力の対でも良い。
 このように、リアルタイム短周期電力要求は、例えば系統の電圧安定化のための無効電力要求や、周波数安定化のための短周期要求であるLFCなどを指す。これらは制約や運転計画の計算が間に合わない可能性があるため、対応可能か否かのチェックにとどめ、対応不可能であれば対応しない。このため、周期Tdでは、リアルタイム水素システム制約と、リアルタイムのアンサーバック(OK/NG)とは電力網制御システム20へ送信されない場合がある。 
 図15に示すように、第3通信部506(図3)は、再生可能エネルギー制御システム40からリアルタイム再生可能エネルギー発電予測結果を受信する。このリアルタイム再生可能エネルギー発電予測結果は、周期Taでの通信により受信される。
 図17は、リアルタイム処理のシーケンスの例を示す図である。ここでは、処理周期をTa分とする。Taは任意である。すなち、t0~t1、t1~t2、t2~t3、t3~t4の間隔はTa分である。また、水素発電装置114が発電を行うために停止状態から発電可能状態に至るまでの時間に余分時間を加算した時間をTb分とする。さらにまた、水素製造装置が停止状態から充電を行うために製造可能状態に至るまでの時間に余分時間を加算した時間をTc分とする。そして、TbとTcの小さい方の値をTbcとする。
 リアルタイム水素システム制約は、Tbc分後以降の制約を表す。例えばt0分に電力網制御システム20に送信されたリアルタイム水素システム制約は、t0+Tbc分後以降の制約として設定される。制約条件設定部508b(図3)は、リアルタイムの制約計算の際には、実際の水素製造実績、再生可能エネルギー発電実績、現在以降の放電要求、現在以降の充電要求を用いてリアルタイム水素システム制約を演算し、設定する。例えば、現在以降の放電要求は、Tb分前の、リアルタイム放電要求を利用し、現在以降の充電要求は、Tc分前の、リアルタイム充電要求を利用する。一方で、リアルタイム放電要求は、Tb分後以降の要求を行い、リアルタイム充電要求は、Tc分後以降の要求を行う。リアルタイム再生可能エネルギー発電予測結果は、再生可能エネルギー発電予測結果と同様であるが、現在以降の予測結果である。
 図18は、リアルタイムにシステム間で送受信するデータのプロトコルと処理の流れを示す図である。ここでは、まず周期Taの場合のリアルタイム処理のプロトコルを説明し、次に周期Tdの場合のリアルタイム処理のプロトコルを説明する。
 周期Taの場合、まず水素エネルギー統合管理システム50の制約条件設定部508bは、制約計算パラメータ、目標水素残量、現在以降の充電要求、および放電要求を用いてリアルタイム水素システム制約を演算し、設定する(プロトコルP200)。続いて、制約条件設定部508bは、演算したリアルタイム水素システム制約を電力網制御システム20に送信する。
 次に、電力網制御システム20は、リアルタイム水素システム制約を用いてリアルタイムな充放電要求を計画し、リアルタイム充電要求、およびリアルタイム放電要求を水素エネルギー統合管理システム50の運転計画部508cに送信する(プロトコルP202)。また、再生可能エネルギー制御システム40は、リアルタイム再生可能エネルギー発電予測結果を水素エネルギー統合管理システム50の運転計画部508cに送信する(プロトコルP204)。
 次に、運転計画部508cは、リアルタイム充放電要求とリアルタイム再生可能エネルギー発電予測結果とに基づき、水素エネルギーシステム10のリアルタイム運転計画を生成し、アンサーバックを電力網制御システム20に送信する(プロトコルP206)。このように、運転計画部508cは、運転計画(図14)よりも短周期の運転計画を更に生成する。
 次に、電力網制御システム20は、アンサーバックが全ての時間でOKであるか否かを判定する(プロトコルP208)。全てがOKであれば(プロトコルP208のOK)、プロトコルP202で計画した発電計画に従ったリアルタイム制御を行う。一方で、一部にNGが含まれていれば(プロトコルP208のNG)、運転計画の変更を含むプロトコルP202からの処理を繰り返す。運転計画部508cは、運転計画の作成が失敗した場合に、所定の時間が経過するまでアンサーバックを保留し、返答条件がそろってからアンサーバックを行ってもよい。所定の時間が経過するまでに、リアルタイム再生可能エネルギー発電予測結果が変更され、運転計画の全てがOKになる場合がある。この場合、運転計画の変更を含むプロトコルP202からの処理を繰り返すよりも、所定時間待った方が、全体としての処理効率があがる可能性があるためである。
 周期Tdの場合、電力網制御システム20は、短周期電力需要を算出し、水素エネルギー統合管理システム50の運転計画部508cに送信する(プロトコルP210)。運転計画部508cは、電力網制御システム20から短周期電力要求をチェックし(プロトコルP212)、対応可能か否かを判定する(プロトコルP214)。対応可能な場合(プロトコルP214の可能)、電力網制御システム20は、短周期電力への対応制御行う(プロトコルP216)。一方で、対応が不可能な場合(プロトコルP214の不可能)、制御を保留にして所定の時間が経過するまで待機する。
 以上のように本実施形態によれば、水素エネルギー統合管理システム50の目標水素量取得部508aが水素輸送システム30の水素需要データに基づき、目標水素生成量を取得し、水素エネルギー統合管理システム50の運転計画部508cが目標水素生成量と電力網制御システム20の充電要求のデータとに基づき、水素エネルギーシステム10における運転計画を生成することとした。これにより、電力網制御システム20と水素輸送システム30とが独立した制御を行っている場合にも、水素エネルギーシステム10の運転計画に基づく制御により電力網制御システム20と水素輸送システム30との独立した要求処理の調整が可能となる。
 (一実施形態の変形例1)
 一実施形態の変形例1は、モニターに水素エネルギーシステム10の動作状態を表示させる表示制御部512を更に備える点で一実施形態と相違する。以下に一実施形態と相違する点に関して説明する。
 図19は、一実施形態の変形例1に係る水素エネルギー統合管理システム50の詳細な構成を示すブロック図である。図19に示すように、水素エネルギー統合管理システム50は、表示制御部512を有する点で一実施形態と相違する。
 表示制御部512は、表示部、例えばモニターに水素エネルギーシステム10の動作状態を表示させる表示制御を行う。
 図20は、水素エネルギーシステム10の充放電状況の表示画面例を示す図である。図20に示すように、表示制御部512は、水素エネルギーシステム10の充放電状況を示す数値と共にモニターに画面を表示する。
 図21は、水素エネルギーシステム10の制約の表示画面例を示す図である。図21に示すように、表示制御部512は、水素エネルギーシステム10の放電時の制約を示す数値と共にモニターに画面を表示する。この場合、表示制御部512は、操作部の入力処理により数値の変更を行うことも可能である。表示制御部512は、充電も同等の画面を表示することが可能である。
 以上のように、一実施形態の変形例1によれば、充放電状況の表示画面をモニターに表示させることで、状況を理解しやすくなり不具合の発見が容易になる。また、放電時の制約を示す数値と共に表示画面をモニターに表示させることで、放電時の制約状況を理解しやすくなると共に、設定誤りを減少させることも可能となる。 
 (一実施形態の変形例2)
 一実施形態の変形例2は、水素エネルギーシステム10が蓄電池116と蓄熱槽118とを更に備える点で一実施形態と相違する。以下に一実施形態と相違する点に関して説明する。
 図22は、一実施形態の変形例2に係る水素エネルギーシステム10の詳細な構成を示すブロック図である。図22に示すように、水素エネルギーシステム10は、蓄電池116と蓄熱槽118とを有する点で一実施形態と相違する。
 蓄電池116は、水素発電装置114の発電電力が不足する場合に電力網74への電力供給を補う。これにより、水素発電装置114の電力供給をより安定して行うことができる。また、蓄電池116は、水素発電装置114よりも応答速度が速いため、再生可能エネルギーなどを有効活用することが可能となる。
 蓄熱槽118は、水素発電装置114を畜熱する。
 以上のように、一実施形態の変形例2によれば、水素エネルギーシステム10が蓄電池116を含むことで、再生可能エネルギーなどを有効活用することが可能となり、水素エネルギーシステム10全体の消費電力を抑えることができる。また、水素エネルギーシステム10が蓄熱槽118を含むことで、水素発電装置114からの排熱を、熱利用できる時間に合わせて供給することが可能となる。
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法及びプログラムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法及びプログラムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。

Claims (15)

  1.  電力により少なくとも水素を生成する水素エネルギーシステムと、
     電力網に電力を供給する発電設備の発電計画を行う電力網制御システムと、
     水素輸送を管理する水素輸送システムと、
     前記電力網制御システムと、電力網制御システムとの通信情報に基づき、前記水素エネルギーシステムを制御する水素エネルギー統合管理システムと、
     を備える、水素エネルギー制御システムであって、
     前記水素エネルギー統合管理システムは、
     充放電要求の内の少なくとも充電要求のデータの通信を前記電力網制御システムとの間で行う第1通信部と、
     水素需要データの通信を前記水素輸送システムとの間で行う第2通信部と、
     前記水素需要データに基づき、目標水素生成量を取得する目標水素量取得部と、
     前記目標水素生成量と前記充電要求のデータとに基づき、前記水素エネルギーシステムにおける運転計画を生成する運転計画部と、を有する、
     水素エネルギー制御システム。
  2.  前記電力網制御システムは、複数の充電要求を有し、
     前記電力網の電力供給が需要を超える充電時間帯に対して、前記複数の充電要求の中のいずれかを前記水素エネルギー統合管理システムに前記第2通信部を介して予め要求し、
     前記運転計画部は、前記充電時間帯において、前記第複数の充電要求の中のいずれかの充電要求に対応する水素製造工程を計画する、請求項1に記載の水素エネルギー制御システム。
  3.  再生可能エネルギーによる発電を制御する再生可能エネルギー制御システムを更に備え、
     前記水素エネルギー統合管理システムは、
     再生可能エネルギー発電予測結果のデータの通信を前記再生可能エネルギー制御システムとの間で行う第3通信部を更に有し、
     前記運転計画部は、前記再生可能エネルギー発電予測結果のデータにも基づき、前記水素エネルギーシステムにおける運転計画を生成する、請求項1又は2に記載の水素エネルギー制御システム。
  4.  前記水素エネルギー統合管理システムは、
     水素エネルギーシステムの水素生成特性に少なくとも基づき、前記目標水素生成量を生成するための時系列な水素システムの制約条件を演算する制約条件演算部を更に有し、
     前記電力網制御システムは、
     前記時系列な水素システムの制約条件に基づき、時系列な充放電要求を計画する、請求項1乃至3のいずれか一項に記載の水素エネルギー制御システム。
  5.  前記水素需要データには、出荷日、出荷時刻、及び出荷量の内の少なくとも一つが含まれ、
     前記目標水素生成量は、水素エネルギーシステムが有する水素タンクの目標残量に対応し、1日の所定時刻、及び出荷時刻の内の少なくとも一方に対する目標残量である、請求項1乃至4のいずれか一項に記載の水素エネルギー制御システム。
  6.  制約計算用パラメータとして、前記水素システムから系統への放電を行うべき放電時間帯の開始時間と終了時間、及び前記放電時間帯の重要度と、系統から水素システムへの充電を行うべき充電時間帯の開始時間と終了時間、及び前記充電時間帯の重要度と、放電可能時間帯、及び前記放電可能時間帯の重要度と、放電可能電力量、及び前記放電可能電力量の重要度と、充電可能時間帯及び前記充電可能時間帯の重要度と、充電可能電力量及び前記充電可能電力量の需要度とが含まれ、
     前記制約条件演算部は、前記時系列な水素システムの制約条件として、放電前最低キープ時間、放電可能時間帯、放電後最低キープ時間、放電可能電力量、充電前最低キープ時間、充電可能時間帯、充電後最低キープ時間、及び充電可能電力量のうちの少なくともいずれかを演算する、請求項4に記載の水素エネルギー制御システム。
  7.  前記運転計画部は、前記電力網制御システムに、水素エネルギーシステムの充放電の開始時間と終了時間、前記運転計画の成功又は失敗、及び水素エネルギーシステムの対応不能電力の内の少なくともいずれかを含む情報をアンサーバックとし送信する、請求項1乃至6のいずれか一項に記載の水素エネルギー制御システム。
  8.  前記運転計画部は、前記運転計画の作成が失敗した場合に、前記電力網制御システムからの充放電要求を再び受け付け、運転計画を再度実施する、請求項7に記載の水素エネルギー制御システム。
  9.  前記運転計画部は、前記運転計画の作成が失敗した場合に、所定の時間が経過するまでアンサーバックを保留し、返答条件がそろってからアンサーバックを行う、請求項7に記載の水素エネルギー制御システム。
  10.  前記運転計画部は、前記運転計画よりも短周期の運転計画を更に生成する、請求項1乃至9のいずれか一項に記載の水素エネルギー制御システム。
  11.  前記運転計画部は、前記電力網制御システムのアルタイムな充放電要求に対して、前記水素エネルギーシステムにおけるリアルタイムな運転計画を生成する、請求項1乃至10のいずれか一項に記載の水素エネルギー制御システム。
  12.  前記水素エネルギー統合管理システムは、充放電状況の表示画面、及び制約を設定するための表示画面の少なくとも一方を表示部に表示させる表示制御部を更に有する、請求項1乃至11のいずれか一項に記載の水素エネルギー制御システム。
  13.  前記水素エネルギーシステムは、蓄電池、及び蓄熱槽の少なくとも一方を有する、請求項1乃至12のいずれか一項に記載の水素エネルギー制御システム。
  14.  前記水素エネルギーシステムは、
     前記水素を製造する水素製造装置と、
     前記水素を気体として貯蔵する気体水素タンクと、
     前記気体水素タンクから気体水素を外部に抽出する気体水素排出装置と、
     前記水素から電力と熱を製造する水素発電装置と、
     を有する、請求項1乃至13のいずれか一項に記載の水素エネルギー制御システム。
  15.  電力により少なくとも水素を生成する水素エネルギーシステムと、
     電力網に電力を供給する発電設備の発電計画を行う電力網制御システムと、
     水素輸送を管理する水素輸送システムと、
     前記電力網制御システムと、電力網制御システムとの通信情報に基づき、前記水素エネルギーシステムを制御する水素エネルギー統合管理システムと、
     を備え
     前記水素エネルギー統合管理システムは、
     充放電要求の内の少なくとも充電要求のデータの通信を前記電力網制御システムとの間で行う第1通信部と、
     水素需要データの通信を前記水素輸送システムとの間で行う第2通信部と、
     を有する水素エネルギー制御システムの制御方法であって、
     前記水素需要データに基づき、目標水素生成量を取得する目標水素量取得工程と、
     前記目標水素生成量と前記充電要求のデータとに基づき、前記水素エネルギーシステムにおける運転計画を生成する運転計画工程と、を有する、
     水素エネルギー制御システムの制御方法。
PCT/JP2018/045709 2018-12-12 2018-12-12 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法 WO2020121441A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/045709 WO2020121441A1 (ja) 2018-12-12 2018-12-12 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
EP18943297.4A EP3896816A4 (en) 2018-12-12 2018-12-12 HYDROGEN ENERGY CONTROL SYSTEM AND CONTROL METHOD FOR HYDROGEN ENERGY CONTROL SYSTEM
JP2020559609A JP7177854B2 (ja) 2018-12-12 2018-12-12 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
US17/345,924 US11784335B2 (en) 2018-12-12 2021-06-11 Hydrogen-energy control system and control method for hydrogen-energy control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045709 WO2020121441A1 (ja) 2018-12-12 2018-12-12 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/345,924 Continuation US11784335B2 (en) 2018-12-12 2021-06-11 Hydrogen-energy control system and control method for hydrogen-energy control system

Publications (1)

Publication Number Publication Date
WO2020121441A1 true WO2020121441A1 (ja) 2020-06-18

Family

ID=71076029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045709 WO2020121441A1 (ja) 2018-12-12 2018-12-12 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法

Country Status (4)

Country Link
US (1) US11784335B2 (ja)
EP (1) EP3896816A4 (ja)
JP (1) JP7177854B2 (ja)
WO (1) WO2020121441A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088143A (zh) * 2022-01-24 2022-02-25 氢山科技有限公司 温室气体减排量的数据监测系统和监测方法
KR20220088980A (ko) * 2020-12-21 2022-06-28 이정용 수돗물을 원료로 하는 실시간 발생수소 충전시스템
EP4027474A1 (en) * 2021-01-12 2022-07-13 Toshiba Energy Systems & Solutions Corporation Power control device and power control method
US11913126B2 (en) 2018-12-12 2024-02-27 Toshiba Energy Systems & Solutions Corporation Hydrogen-system control device and hydrogen-system control method
WO2024053132A1 (ja) * 2022-09-07 2024-03-14 株式会社日立製作所 水素供給システムの管理装置及び水素供給調整方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109998A1 (en) 2022-11-24 2024-05-30 Everfuel Europe A/S Hydrogen production and distribution system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801898B2 (ja) 2001-10-18 2006-07-26 株式会社日立製作所 電力供給方法および電力供給システム
JP2011182516A (ja) * 2010-02-26 2011-09-15 Tamotsu Minagawa 電力需給平準化システム
JP2017076611A (ja) * 2016-09-30 2017-04-20 株式会社東芝 電力供給システムおよびその制御方法
WO2017158762A1 (ja) * 2016-03-16 2017-09-21 株式会社 東芝 水素管理システムおよび統合水素管理装置
WO2018078875A1 (ja) * 2016-10-31 2018-05-03 株式会社 東芝 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2271448A1 (en) * 1999-05-12 2000-11-12 Stuart Energy Systems Inc. Energy distribution network
EP1226618A2 (en) * 1999-10-12 2002-07-31 General Hydrogen Corporation Hydrogen/electric energy distribution system
JP2002095167A (ja) 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 余剰電力貯蔵供給装置
JP2002372199A (ja) 2001-06-18 2002-12-26 Tokyo Gas Co Ltd 水素供給システム
AU2003232164A1 (en) * 2002-06-14 2003-12-31 Zees A/S Energy bank
US7482078B2 (en) * 2003-04-09 2009-01-27 Bloom Energy Corporation Co-production of hydrogen and electricity in a high temperature electrochemical system
JP2004355838A (ja) * 2003-05-27 2004-12-16 Idemitsu Kosan Co Ltd 水素・電力供給システム
CA2455689A1 (en) * 2004-01-23 2005-07-23 Stuart Energy Systems Corporation System for controlling hydrogen network
JP4899294B2 (ja) 2004-06-10 2012-03-21 株式会社日立製作所 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
US7444189B1 (en) * 2004-06-15 2008-10-28 John Joseph Marhoefer Method and apparatus for simultaneous optimization of distributed generation and hydrogen production
US7216040B2 (en) * 2005-04-11 2007-05-08 Air Products And Chemicals, Inc. Intelligent network of hydrogen supply modules
US20080121525A1 (en) * 2005-10-11 2008-05-29 Doland George J Renewable Power Controller for Hydrogen Production
US20080127646A1 (en) * 2005-10-11 2008-06-05 Doland George J System and Method for Energy and Hydrogen Production
US7645931B2 (en) * 2007-03-27 2010-01-12 Gm Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
JP5306621B2 (ja) 2007-09-12 2013-10-02 高砂熱学工業株式会社 電力供給システム
JP5498191B2 (ja) 2009-02-16 2014-05-21 株式会社東芝 水素電力貯蔵システムおよび水素電力貯蔵方法
CA2797893C (en) * 2010-04-28 2017-01-10 Ingeteam Power Technology, S.A. Hydrogen production system for controlling the power output of power stations based on renewable energy sources and control process
WO2014159841A1 (en) * 2013-03-13 2014-10-02 Bunker Energy Partners, Llc Systems and methods for generating energy using a hydrogen cycle
EP3155237B1 (en) * 2014-06-16 2018-02-14 Siemens Aktiengesellschaft System and method for supplying an energy grid with energy from an intermittent renewable energy source
JPWO2016075770A1 (ja) 2014-11-12 2017-04-27 株式会社東芝 電力供給システム
US11043686B2 (en) * 2015-01-22 2021-06-22 Battelle Memorial Institute Systems and methods of long-duration energy storage and regeneration of energy-bearing redox pairs
US11050078B2 (en) * 2015-01-22 2021-06-29 Battelle Memorial Institute Systems and methods of decoupled hydrogen generation using energy-bearing redox pairs
JP6441542B2 (ja) 2016-11-04 2018-12-19 株式会社東芝 水素管理システムおよび水素管理方法
US10910838B1 (en) * 2018-03-30 2021-02-02 Honda Motor Co., Ltd. Energy management device, hydrogen utilization system, non-transitory computer readable medium, and energy management method
EP3896814A4 (en) * 2018-12-12 2022-08-24 Toshiba Energy Systems & Solutions Corporation CONTROL DEVICE, CONTROL METHOD AND PROGRAM
JP7058349B2 (ja) * 2018-12-12 2022-04-21 東芝エネルギーシステムズ株式会社 水素システムの制御装置、及び水素システムの制御方法
EP3896821A4 (en) * 2018-12-12 2022-07-27 Toshiba Energy Systems & Solutions Corporation CONTROL DEVICE FOR HYDROGEN SYSTEM AND CONTROL METHOD FOR HYDROGEN SYSTEM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801898B2 (ja) 2001-10-18 2006-07-26 株式会社日立製作所 電力供給方法および電力供給システム
JP2011182516A (ja) * 2010-02-26 2011-09-15 Tamotsu Minagawa 電力需給平準化システム
WO2017158762A1 (ja) * 2016-03-16 2017-09-21 株式会社 東芝 水素管理システムおよび統合水素管理装置
JP2017076611A (ja) * 2016-09-30 2017-04-20 株式会社東芝 電力供給システムおよびその制御方法
WO2018078875A1 (ja) * 2016-10-31 2018-05-03 株式会社 東芝 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913126B2 (en) 2018-12-12 2024-02-27 Toshiba Energy Systems & Solutions Corporation Hydrogen-system control device and hydrogen-system control method
KR20220088980A (ko) * 2020-12-21 2022-06-28 이정용 수돗물을 원료로 하는 실시간 발생수소 충전시스템
KR102434904B1 (ko) * 2020-12-21 2022-08-19 이정용 수돗물을 원료로 하는 실시간 발생수소 충전시스템
EP4027474A1 (en) * 2021-01-12 2022-07-13 Toshiba Energy Systems & Solutions Corporation Power control device and power control method
JP7485465B2 (ja) 2021-01-12 2024-05-16 東芝エネルギーシステムズ株式会社 電力制御装置、及び電力制御方法
CN114088143A (zh) * 2022-01-24 2022-02-25 氢山科技有限公司 温室气体减排量的数据监测系统和监测方法
CN114088143B (zh) * 2022-01-24 2022-04-12 氢山科技有限公司 温室气体减排量的数据监测系统和监测方法
WO2024053132A1 (ja) * 2022-09-07 2024-03-14 株式会社日立製作所 水素供給システムの管理装置及び水素供給調整方法

Also Published As

Publication number Publication date
US11784335B2 (en) 2023-10-10
JPWO2020121441A1 (ja) 2021-10-07
EP3896816A1 (en) 2021-10-20
EP3896816A4 (en) 2022-07-20
JP7177854B2 (ja) 2022-11-24
US20210305605A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020121441A1 (ja) 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
Ban et al. Integration of power-to-hydrogen in day-ahead security-constrained unit commitment with high wind penetration
US9847648B2 (en) Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system
Rezaei et al. Economic–environmental hierarchical frequency management of a droop-controlled islanded microgrid
Qiu et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties
EP2919079A2 (en) Optimization and control method for a distributed micro-generation energy plant
WO2011111475A1 (ja) 太陽光発電システム及び給電システム
Morin et al. Evaluation of performance improvement by model predictive control in a renewable energy system with hydrogen storage
JP6830598B2 (ja) 電力供給システムおよび電力供給システムの制御方法
JPWO2018078875A1 (ja) 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム
US11782399B1 (en) Application for priority-switching dual-use renewable power plant
Rey et al. Sizing of an autonomous microgrid considering droop control
US9985437B2 (en) Combined electrical power plant
JP5453288B2 (ja) ナトリウム−硫黄電池の制御方法
AU2021340055B2 (en) Power regulation method and power regulation device
Braam et al. Grid-oriented operation of photovoltaic-battery systems
JP6705319B2 (ja) 統括制御装置、統括制御システム、統括制御方法および統括制御プログラム
KR102268723B1 (ko) 충전율 제어가 가능한 에너지 저장 시스템 및 이의 제어 방법
Ishigaki et al. Optimal energy management system for isolated micro grids
Aurangzeb et al. A Novel Hybrid Approach for Power Quality Improvement in a Vehicle‐to‐Grid Setup Using Droop‐ANN Model
JP2012165622A (ja) 給電システム
Nguyen-Hong et al. Joint optimization of energy storage and wind power generation for an islanded system
WO2009128475A1 (ja) 分散電源システムの運転計画作成装置と作成方法
Nguyen-Hong et al. Optimal scheduling of an isolated wind-diesel-battery system considering forecast error and frequency response
Zhuo Control of wind power smoothing with battery energy storage system and thermostatically controlled loads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943297

Country of ref document: EP

Effective date: 20210712