CN101270128B - 8-羟基喹啉铝纳米晶的制备方法 - Google Patents
8-羟基喹啉铝纳米晶的制备方法 Download PDFInfo
- Publication number
- CN101270128B CN101270128B CN200710073648.1A CN200710073648A CN101270128B CN 101270128 B CN101270128 B CN 101270128B CN 200710073648 A CN200710073648 A CN 200710073648A CN 101270128 B CN101270128 B CN 101270128B
- Authority
- CN
- China
- Prior art keywords
- preparation
- solution
- oxine
- nanocrystalline
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 title abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 35
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 7
- 239000004094 surface-active agent Substances 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 28
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 claims description 28
- 239000004411 aluminium Substances 0.000 claims description 14
- 239000000839 emulsion Substances 0.000 claims description 13
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 7
- 239000013543 active substance Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 6
- 239000004141 Sodium laurylsulphate Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 5
- 229960001701 chloroform Drugs 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000004821 distillation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims description 3
- 239000008240 homogeneous mixture Substances 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000002159 nanocrystal Substances 0.000 abstract description 4
- 238000004528 spin coating Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000004816 latex Substances 0.000 abstract 2
- 229920000126 latex Polymers 0.000 abstract 2
- 238000005292 vacuum distillation Methods 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000000703 high-speed centrifugation Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/24—Oxygen atoms attached in position 8
- C07D215/26—Alcohols; Ethers thereof
- C07D215/30—Metal salts; Chelates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/54—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/788—Of specified organic or carbon-based composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/895—Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
- Y10S977/896—Chemical synthesis, e.g. chemical bonding or breaking
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Colloid Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明提供一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;将表面活性剂溶解于水中,得到溶液B;将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时以去除有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。该制备方法操作简单、能耗低、适于工业化生产,且该方法制备所得的8-羟基喹啉铝纳米晶易于通过简单的旋涂法形成均一、致密的膜。
Description
技术领域
本发明涉及一种8-羟基喹啉铝的制备方法,尤其涉及8-羟基喹啉铝纳米晶的制备方法。
背景技术
8-羟基喹啉铝(Alq3)具有很高的热稳定性、良好的化学稳定性、优异的电子传输性能和发光性能,被广泛地应用于有机发光二极管、大屏幕显示器、场发射薄膜、荧光标记等。随着当今纳米科学与技术的不断推广,Alq3纳米晶的制备已成为人们关注的热点。
现有的Alq3纳米晶的制备主要是气相法,如:Pemg Tsong-Pyng等人采用蒸汽浓缩的方法制备Alq3纳米球和纳米线,但是未得到结晶的纳米球;YaoJiannian等人采用吸附辅助物理气相沉积的方法制备Alq3纳米线。上述制备Alq3纳米晶的方法操作复杂,需要特殊的仪器设备,还需要较高的的反应温度及消耗大量的保护气体,有些甚至是价格昂贵的稀有气体,这些都大大增加了Alq3纳米晶的制备成本,所以不利于大规模生产。同时,上述方法制备的Alq3纳米晶难于通过简单的方法形成形貌均一、致密的膜,因些又限制了其实际应用。
有鉴于此,提供一种操作简单、低能耗、易于工业化且产物易于简单成膜的Alq3纳米晶是必要的。
发明内容
一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;将适量表面活性剂溶解于水中,得到溶液B,且所述表面活性剂为十六烷基三甲基溴化铵或十二烷基硫酸钠;将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时;离心分离后即得到8-羟基喹啉铝纳米晶。
所述A溶液中8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间。
所述B溶液中表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间。
所述有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。
本发明采用液相法合成8-羟基喹啉铝纳米晶,与现有技术相比,该制备方法具有如下优点:操作简单、无需特殊的仪器设备、实验条件温和,因而可节约大量的能源;该制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用,因而可节约大量的原材料;该方法制备的Alq3纳米晶易于分散在水中以形成Alq3的胶体,而后通过旋涂的方法即可形成均一、致密的膜,从而避免了传统真空蒸镀法形成Alq3膜的高温及耗能问题。
附图说明
图1是本发明第一实施例制备的8-羟基喹啉铝纳米棒的扫描电镜(SEM)照片。
图2是本发明第一实施例制备的8-羟基喹啉铝纳米棒的透射电镜(TEM)照片。
图3是本发明第一实施例制备的8-羟基喹啉铝纳米棒的多晶X射线衍射(XRD)图。
图4是本发明第二实施例制备的8-羟基喹啉铝纳米棒的SEM照片。
图5是本发明第三实施例制备的8-羟基喹啉铝纳米球的SEM照片。
图6是图5的放大图。
图7是本发明第三实施例制备的8-羟基喹啉铝纳米球的质谱图。
具体实施方式
本发明提供一种Alq3纳米晶的制备方法,其具体步骤包括:(1)将8-羟基喹啉铝粉末溶解于有机溶剂中,得到8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间的溶液A;(2)将适量表面活性剂溶解于水中,得到表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间的溶液B,;(3)将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;(4)在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时以充分去除有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。最后,将8-羟基喹啉铝纳米晶分散于水中,以避免其再次团聚。
表面活性剂为聚乙烯基吡咯烷酮(PVP)、十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)及十二烷基苯磺酸钠(SDBS)中至少一种。有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用。
制得的Alq3纳米晶可为直径为300纳米至1000纳米、长度为1至10微米的纳米棒或者直径为50纳米至300纳米的纳米球。Alq3纳米晶的形貌可通过控制表面活性剂的种类及添加量来控制,如:采用CTAB为表面活性剂,可制得Alq3纳米棒;采用SDS为表面活性剂,可制得Alq3纳米球;表面活性剂的添加量多,制得的Alq3纳米棒的长径比(长度/直径)大、Alq3纳米球的直径小;表面活性剂的添加量少,制得的Alq3纳米棒的长径比小、Alq3纳米球的直径大。该方法制备的Alq3纳米晶具有较好的分散性。
下面将结合附图对本发明实施例作进一步的详细说明。
实施例一:
将8毫克(mg)Alq3粉末溶解于1毫升(ml)氯仿(CHCl3)中,30mg CTAB溶解于16ml水中,将上述两溶液混合后以120瓦(w)功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3,高速离心分离,即得到直径约为650纳米(nm),长度约为5至10微米(μm)的Alq3纳米棒。最后,将所得Alq3纳米棒分散于水中,以避免其再次团聚。请参阅图1及图2分别为第一实施例制备的Alq3纳米棒的扫描电镜及透射电镜照片。请参阅图3为第一实施例制备的Alq3纳米棒的多晶X射线衍射(XRD)图,由图3可知Alq3纳米晶为α相晶体。
实施例二:
将20mgAlq3粉末溶解于2ml CHCl3中,50mg CTAB溶解于20ml水中,将上述两溶液混合后以120w功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3及水,高速离心分离,即得到直径约为900nm,长度约为1.5至2μm的Alq3纳米棒。最后,将所得Alq3纳米棒分散于水中,以避免其再次团聚。请参阅图4为第二实施例制备的Alq3纳米棒的扫描电镜照片。
实施例三:
将8mgAlq3粉末溶解于1ml CHCl3中,60mg SDS溶解于16ml水中,将上述两溶液混合后以120w功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3,高速离心分离,即得到直径约为100至270nm的Alq3纳米球。最后,将所得Alq3纳米球分散于水中,以避免其再次团聚。请参阅图5及图6为第三实施例制备的Alq3纳米球的扫描电镜照片。请参阅图7为第三实施例制备的Alq3纳米球的质谱图,由图7可知纳米球的成分为Alq3。
与现有技术相比较,该制备方法具有如下优点:操作简单、无需特殊的仪器设备、实验条件温和,因而可节约大量的能源;该制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用,因而可节约大量的原材料;该方法制备的Alq3纳米晶易于分散在水中以形成Alq3的胶体,而后通过旋涂的方法即可形成均一、致密的膜,从而避免了传统真空蒸镀法形成Alq3膜的高温及耗能问题。因此该方法可广泛地应用于大规模地工业化生产中。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (6)
1.一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;
将表面活性剂溶解于水中,得到溶液B,且所述表面活性剂为十六烷基三甲基溴化铵或十二烷基硫酸钠;
将溶液A与溶液B均匀混合后,得到均一的乳液C;
在40℃至90℃的温度下去除乳液C中的有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。
2.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,A溶液中8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间。
3.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,B溶液中表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间。
4.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。
5.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,均匀混合溶液A与溶液B的方法为剧烈搅拌或强力超声。
6.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,去除乳液C中有机溶剂的方法为搅拌蒸发或减压蒸馏,时间为2至8小时。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710073648.1A CN101270128B (zh) | 2007-03-23 | 2007-03-23 | 8-羟基喹啉铝纳米晶的制备方法 |
US12/002,142 US7880003B2 (en) | 2007-03-23 | 2007-12-14 | Method for making tris (8-hydroxyquinoline) nano-crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710073648.1A CN101270128B (zh) | 2007-03-23 | 2007-03-23 | 8-羟基喹啉铝纳米晶的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101270128A CN101270128A (zh) | 2008-09-24 |
CN101270128B true CN101270128B (zh) | 2012-05-23 |
Family
ID=39775419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710073648.1A Active CN101270128B (zh) | 2007-03-23 | 2007-03-23 | 8-羟基喹啉铝纳米晶的制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7880003B2 (zh) |
CN (1) | CN101270128B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103818906B (zh) * | 2014-01-29 | 2016-08-17 | 浙江工业大学 | 碳阻超细纳米碳化钨材料及其制备方法和应用 |
CN104529892B (zh) * | 2015-01-28 | 2017-02-01 | 山东大学 | 一种自组装8‑羟基喹啉铝结晶微/纳米颗粒的制备方法 |
CN104630897B (zh) * | 2015-01-28 | 2017-05-31 | 山东大学 | 一种8‑羟基喹啉金属配合物结晶微/纳米棒的制备方法 |
CN105200524B (zh) * | 2015-09-11 | 2018-05-15 | 山东大学 | 一种8-羟基喹啉金属配合物微/纳米管及其制备方法 |
CN105780125B (zh) * | 2016-01-18 | 2019-05-17 | 上海多磨新材料科技有限公司 | 介观尺度线条状有机晶体的制备方法 |
KR102112842B1 (ko) * | 2018-02-09 | 2020-05-19 | (주) 파마젠 | 리튬 퀴놀레이트 및 리튬 퀴놀레이트 나노로드 결정의 제조방법 |
CN111117605B (zh) * | 2019-12-26 | 2021-01-05 | 北京理工大学 | 一种有机铝纳米晶及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427001A (zh) * | 2002-09-27 | 2003-07-02 | 山西至诚科技有限公司 | 有机电致发光材料8-羟基喹啉铝的制备方法 |
CN1483724A (zh) * | 2003-06-25 | 2004-03-24 | 山东大学 | 高纯8-羟基喹啉铝类化合物及其制备方法与应用 |
CN1597669A (zh) * | 2004-07-19 | 2005-03-23 | 太原理工大学 | 发蓝光的8-羟基喹啉铝及制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060003012A9 (en) | 2001-09-26 | 2006-01-05 | Sean Brynjelsen | Preparation of submicron solid particle suspensions by sonication of multiphase systems |
US20050165120A1 (en) | 2004-01-22 | 2005-07-28 | Ashavani Kumar | Process for phase transfer of hydrophobic nanoparticles |
-
2007
- 2007-03-23 CN CN200710073648.1A patent/CN101270128B/zh active Active
- 2007-12-14 US US12/002,142 patent/US7880003B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427001A (zh) * | 2002-09-27 | 2003-07-02 | 山西至诚科技有限公司 | 有机电致发光材料8-羟基喹啉铝的制备方法 |
CN1483724A (zh) * | 2003-06-25 | 2004-03-24 | 山东大学 | 高纯8-羟基喹啉铝类化合物及其制备方法与应用 |
CN1597669A (zh) * | 2004-07-19 | 2005-03-23 | 太原理工大学 | 发蓝光的8-羟基喹啉铝及制备方法 |
Non-Patent Citations (9)
Title |
---|
C.-P. Cho, C.-A. Wu, and T.-P. Perng,.Low Temperature Crystallization of AmorphousAlQ3Nanoparticles and the Transformation to Nanowires.Adv. Funct. Mater.16.2006,16819-823. * |
C.-P.Cho C.-A. Wu |
J.-J. Chu, W.-S. Wang, C.-C. Kei, and T.-P. Perng.Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared byvapor condensation.Appl. Phys. Lett.83.2003,83347-349. * |
J.-J. Chu, W.-S. Wang, C.-C. Kei, C.-P. Cho, T.-P. Perng, P.-K. Wei, and S.-Y. Chiu,.Room temperature vibrational photoluminescence and fieldemission of nanoscaled tris-(8-hydroxyquinoline) aluminumcrystalline film.Appl. Phys. Lett.83.2003,834607-4609. * |
J.-J.Chu W.-S. Wang |
费进波等.8-羟基喹啉铝的制备工艺改进及其老化.化工进展25 1.2006,25(1),51-53. |
费进波等.8-羟基喹啉铝的制备工艺改进及其老化.化工进展25 1.2006,25(1),51-53. * |
费进波等.8-羟基喹啉铝纳米结构的可控制备.材料科学与工程学报24 2.2006,24(2),934-936. |
费进波等.8-羟基喹啉铝纳米结构的可控制备.材料科学与工程学报24 2.2006,24(2),934-936. * |
Also Published As
Publication number | Publication date |
---|---|
CN101270128A (zh) | 2008-09-24 |
US7880003B2 (en) | 2011-02-01 |
US20080234484A1 (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101270128B (zh) | 8-羟基喹啉铝纳米晶的制备方法 | |
CN103100724A (zh) | 银纳米线的制备方法 | |
CN110611014A (zh) | 一种Cs3Cu2I5紫外探测器及其薄膜制备方法 | |
CN103466590A (zh) | 一种SiCO空心纳米球的制备方法 | |
Ding et al. | Zero-and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission | |
Xu et al. | Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties | |
Zheng et al. | Electrospinning preparation and photoluminescence properties of SrAl 2 O 4: Ce 3+ nanowires | |
Yu et al. | Precursor induced synthesis of hierarchical nanostructured ZnO | |
Jiu et al. | The synthesis and photoluminescence property of YPO4: Eu3+ hollow microspheres | |
CN108047472A (zh) | 一种基于石墨烯量子点掺杂的聚合物复合薄膜的制备方法 | |
CN114539566B (zh) | 一种聚(9,9-二正辛基芴基-2,7-二基)纳米颗粒的制备方法 | |
CN104946251A (zh) | 一种直接热分解法合成氮掺杂碳纳米粒子的方法 | |
Yang et al. | Anodized oxidative electrosynthesis of magnesium silicate whiskers | |
CN104529892A (zh) | 一种自组装8-羟基喹啉铝结晶微/纳米颗粒的制备方法 | |
Shrestha et al. | Mixing antisolvents induced modulation in the morphology of crystalline C60 | |
CN1299999C (zh) | 一种碱土金属锡酸盐纳米管及制备方法 | |
Wang et al. | Hybrid nanostructure formation on hollow glass microparticles as thermally insulating composite elements | |
Zhang et al. | Large scale synthesis of carbon hollow spheres from metal zinc powder and ethanol | |
Xiao et al. | A simple route to form straw-like carbon microbundles | |
Vimalanathan et al. | Vortex fluidic high shear induced crystallisation of fullerene C 70 into nanotubules | |
CN104649312A (zh) | 一种纳米棒组装的氧化锌/硅酸锌核壳型超结构的合成方法 | |
Alassafi et al. | Synthesis and optical properties of luminescent carbon dots from Haloxylon seeds | |
CN110695371B (zh) | 一种制备超高长径比铜纳米线/石墨烯复合物的方法 | |
Yang et al. | High throughput growth of zinc oxide nanowires from zinc powder with the assistance of sodium chloride | |
CN1225335C (zh) | 纳米尺寸金属短纤维的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |