CN101270128B - 8-羟基喹啉铝纳米晶的制备方法 - Google Patents

8-羟基喹啉铝纳米晶的制备方法 Download PDF

Info

Publication number
CN101270128B
CN101270128B CN200710073648.1A CN200710073648A CN101270128B CN 101270128 B CN101270128 B CN 101270128B CN 200710073648 A CN200710073648 A CN 200710073648A CN 101270128 B CN101270128 B CN 101270128B
Authority
CN
China
Prior art keywords
preparation
solution
oxine
nanocrystalline
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710073648.1A
Other languages
English (en)
Other versions
CN101270128A (zh
Inventor
李亚栋
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN200710073648.1A priority Critical patent/CN101270128B/zh
Priority to US12/002,142 priority patent/US7880003B2/en
Publication of CN101270128A publication Critical patent/CN101270128A/zh
Application granted granted Critical
Publication of CN101270128B publication Critical patent/CN101270128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;将表面活性剂溶解于水中,得到溶液B;将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时以去除有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。该制备方法操作简单、能耗低、适于工业化生产,且该方法制备所得的8-羟基喹啉铝纳米晶易于通过简单的旋涂法形成均一、致密的膜。

Description

8-羟基喹啉铝纳米晶的制备方法
技术领域
本发明涉及一种8-羟基喹啉铝的制备方法,尤其涉及8-羟基喹啉铝纳米晶的制备方法。
背景技术
8-羟基喹啉铝(Alq3)具有很高的热稳定性、良好的化学稳定性、优异的电子传输性能和发光性能,被广泛地应用于有机发光二极管、大屏幕显示器、场发射薄膜、荧光标记等。随着当今纳米科学与技术的不断推广,Alq3纳米晶的制备已成为人们关注的热点。
现有的Alq3纳米晶的制备主要是气相法,如:Pemg Tsong-Pyng等人采用蒸汽浓缩的方法制备Alq3纳米球和纳米线,但是未得到结晶的纳米球;YaoJiannian等人采用吸附辅助物理气相沉积的方法制备Alq3纳米线。上述制备Alq3纳米晶的方法操作复杂,需要特殊的仪器设备,还需要较高的的反应温度及消耗大量的保护气体,有些甚至是价格昂贵的稀有气体,这些都大大增加了Alq3纳米晶的制备成本,所以不利于大规模生产。同时,上述方法制备的Alq3纳米晶难于通过简单的方法形成形貌均一、致密的膜,因些又限制了其实际应用。
有鉴于此,提供一种操作简单、低能耗、易于工业化且产物易于简单成膜的Alq3纳米晶是必要的。
发明内容
一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;将适量表面活性剂溶解于水中,得到溶液B,且所述表面活性剂为十六烷基三甲基溴化铵或十二烷基硫酸钠;将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时;离心分离后即得到8-羟基喹啉铝纳米晶。
所述A溶液中8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间。
所述B溶液中表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间。
所述有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。
本发明采用液相法合成8-羟基喹啉铝纳米晶,与现有技术相比,该制备方法具有如下优点:操作简单、无需特殊的仪器设备、实验条件温和,因而可节约大量的能源;该制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用,因而可节约大量的原材料;该方法制备的Alq3纳米晶易于分散在水中以形成Alq3的胶体,而后通过旋涂的方法即可形成均一、致密的膜,从而避免了传统真空蒸镀法形成Alq3膜的高温及耗能问题。
附图说明
图1是本发明第一实施例制备的8-羟基喹啉铝纳米棒的扫描电镜(SEM)照片。
图2是本发明第一实施例制备的8-羟基喹啉铝纳米棒的透射电镜(TEM)照片。
图3是本发明第一实施例制备的8-羟基喹啉铝纳米棒的多晶X射线衍射(XRD)图。
图4是本发明第二实施例制备的8-羟基喹啉铝纳米棒的SEM照片。
图5是本发明第三实施例制备的8-羟基喹啉铝纳米球的SEM照片。
图6是图5的放大图。
图7是本发明第三实施例制备的8-羟基喹啉铝纳米球的质谱图。
具体实施方式
本发明提供一种Alq3纳米晶的制备方法,其具体步骤包括:(1)将8-羟基喹啉铝粉末溶解于有机溶剂中,得到8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间的溶液A;(2)将适量表面活性剂溶解于水中,得到表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间的溶液B,;(3)将溶液A与溶液B通过剧烈搅拌或强力超声均匀混合后,得到均一的乳液C;(4)在40℃至90℃的温度下,将乳液C搅拌蒸发或减压蒸馏2至8小时以充分去除有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。最后,将8-羟基喹啉铝纳米晶分散于水中,以避免其再次团聚。
表面活性剂为聚乙烯基吡咯烷酮(PVP)、十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)及十二烷基苯磺酸钠(SDBS)中至少一种。有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用。
制得的Alq3纳米晶可为直径为300纳米至1000纳米、长度为1至10微米的纳米棒或者直径为50纳米至300纳米的纳米球。Alq3纳米晶的形貌可通过控制表面活性剂的种类及添加量来控制,如:采用CTAB为表面活性剂,可制得Alq3纳米棒;采用SDS为表面活性剂,可制得Alq3纳米球;表面活性剂的添加量多,制得的Alq3纳米棒的长径比(长度/直径)大、Alq3纳米球的直径小;表面活性剂的添加量少,制得的Alq3纳米棒的长径比小、Alq3纳米球的直径大。该方法制备的Alq3纳米晶具有较好的分散性。
下面将结合附图对本发明实施例作进一步的详细说明。
实施例一:
将8毫克(mg)Alq3粉末溶解于1毫升(ml)氯仿(CHCl3)中,30mg CTAB溶解于16ml水中,将上述两溶液混合后以120瓦(w)功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3,高速离心分离,即得到直径约为650纳米(nm),长度约为5至10微米(μm)的Alq3纳米棒。最后,将所得Alq3纳米棒分散于水中,以避免其再次团聚。请参阅图1及图2分别为第一实施例制备的Alq3纳米棒的扫描电镜及透射电镜照片。请参阅图3为第一实施例制备的Alq3纳米棒的多晶X射线衍射(XRD)图,由图3可知Alq3纳米晶为α相晶体。
实施例二:
将20mgAlq3粉末溶解于2ml CHCl3中,50mg CTAB溶解于20ml水中,将上述两溶液混合后以120w功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3及水,高速离心分离,即得到直径约为900nm,长度约为1.5至2μm的Alq3纳米棒。最后,将所得Alq3纳米棒分散于水中,以避免其再次团聚。请参阅图4为第二实施例制备的Alq3纳米棒的扫描电镜照片。
实施例三:
将8mgAlq3粉末溶解于1ml CHCl3中,60mg SDS溶解于16ml水中,将上述两溶液混合后以120w功率超声并不断搅拌,得到均一的乳液,将所得乳液在60℃温度下搅拌蒸发约4小时以充分去除CHCl3,高速离心分离,即得到直径约为100至270nm的Alq3纳米球。最后,将所得Alq3纳米球分散于水中,以避免其再次团聚。请参阅图5及图6为第三实施例制备的Alq3纳米球的扫描电镜照片。请参阅图7为第三实施例制备的Alq3纳米球的质谱图,由图7可知纳米球的成分为Alq3
与现有技术相比较,该制备方法具有如下优点:操作简单、无需特殊的仪器设备、实验条件温和,因而可节约大量的能源;该制备过程中蒸发出的有机溶剂经冷却、收集并稍作分离后便可重复利用,因而可节约大量的原材料;该方法制备的Alq3纳米晶易于分散在水中以形成Alq3的胶体,而后通过旋涂的方法即可形成均一、致密的膜,从而避免了传统真空蒸镀法形成Alq3膜的高温及耗能问题。因此该方法可广泛地应用于大规模地工业化生产中。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (6)

1.一种8-羟基喹啉铝纳米晶的制备方法,其包括以下步骤:将8-羟基喹啉铝粉末溶解于有机溶剂中,得到溶液A;
将表面活性剂溶解于水中,得到溶液B,且所述表面活性剂为十六烷基三甲基溴化铵或十二烷基硫酸钠;
将溶液A与溶液B均匀混合后,得到均一的乳液C;
在40℃至90℃的温度下去除乳液C中的有机溶剂,离心分离后即得到8-羟基喹啉铝纳米晶。
2.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,A溶液中8-羟基喹啉铝的浓度范围为6.0毫克/毫升至10.0毫克/毫升之间。
3.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,B溶液中表面活性剂的浓度范围为1.5毫克/毫升至4.0毫克/毫升之间。
4.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,有机溶剂为丙酮、N,N-二甲基甲酰胺、三氯甲烷、二氯甲烷及二甲亚砜中至少一种。
5.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,均匀混合溶液A与溶液B的方法为剧烈搅拌或强力超声。
6.如权利要求1所述的8-羟基喹啉铝纳米晶的制备方法,其特征在于,去除乳液C中有机溶剂的方法为搅拌蒸发或减压蒸馏,时间为2至8小时。
CN200710073648.1A 2007-03-23 2007-03-23 8-羟基喹啉铝纳米晶的制备方法 Active CN101270128B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200710073648.1A CN101270128B (zh) 2007-03-23 2007-03-23 8-羟基喹啉铝纳米晶的制备方法
US12/002,142 US7880003B2 (en) 2007-03-23 2007-12-14 Method for making tris (8-hydroxyquinoline) nano-crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710073648.1A CN101270128B (zh) 2007-03-23 2007-03-23 8-羟基喹啉铝纳米晶的制备方法

Publications (2)

Publication Number Publication Date
CN101270128A CN101270128A (zh) 2008-09-24
CN101270128B true CN101270128B (zh) 2012-05-23

Family

ID=39775419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710073648.1A Active CN101270128B (zh) 2007-03-23 2007-03-23 8-羟基喹啉铝纳米晶的制备方法

Country Status (2)

Country Link
US (1) US7880003B2 (zh)
CN (1) CN101270128B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818906B (zh) * 2014-01-29 2016-08-17 浙江工业大学 碳阻超细纳米碳化钨材料及其制备方法和应用
CN104529892B (zh) * 2015-01-28 2017-02-01 山东大学 一种自组装8‑羟基喹啉铝结晶微/纳米颗粒的制备方法
CN104630897B (zh) * 2015-01-28 2017-05-31 山东大学 一种8‑羟基喹啉金属配合物结晶微/纳米棒的制备方法
CN105200524B (zh) * 2015-09-11 2018-05-15 山东大学 一种8-羟基喹啉金属配合物微/纳米管及其制备方法
CN105780125B (zh) * 2016-01-18 2019-05-17 上海多磨新材料科技有限公司 介观尺度线条状有机晶体的制备方法
KR102112842B1 (ko) * 2018-02-09 2020-05-19 (주) 파마젠 리튬 퀴놀레이트 및 리튬 퀴놀레이트 나노로드 결정의 제조방법
CN111117605B (zh) * 2019-12-26 2021-01-05 北京理工大学 一种有机铝纳米晶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427001A (zh) * 2002-09-27 2003-07-02 山西至诚科技有限公司 有机电致发光材料8-羟基喹啉铝的制备方法
CN1483724A (zh) * 2003-06-25 2004-03-24 山东大学 高纯8-羟基喹啉铝类化合物及其制备方法与应用
CN1597669A (zh) * 2004-07-19 2005-03-23 太原理工大学 发蓝光的8-羟基喹啉铝及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060003012A9 (en) 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
US20050165120A1 (en) 2004-01-22 2005-07-28 Ashavani Kumar Process for phase transfer of hydrophobic nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427001A (zh) * 2002-09-27 2003-07-02 山西至诚科技有限公司 有机电致发光材料8-羟基喹啉铝的制备方法
CN1483724A (zh) * 2003-06-25 2004-03-24 山东大学 高纯8-羟基喹啉铝类化合物及其制备方法与应用
CN1597669A (zh) * 2004-07-19 2005-03-23 太原理工大学 发蓝光的8-羟基喹啉铝及制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
C.-P. Cho, C.-A. Wu, and T.-P. Perng,.Low Temperature Crystallization of AmorphousAlQ3Nanoparticles and the Transformation to Nanowires.Adv. Funct. Mater.16.2006,16819-823. *
C.-P.Cho C.-A. Wu
J.-J. Chu, W.-S. Wang, C.-C. Kei, and T.-P. Perng.Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared byvapor condensation.Appl. Phys. Lett.83.2003,83347-349. *
J.-J. Chu, W.-S. Wang, C.-C. Kei, C.-P. Cho, T.-P. Perng, P.-K. Wei, and S.-Y. Chiu,.Room temperature vibrational photoluminescence and fieldemission of nanoscaled tris-(8-hydroxyquinoline) aluminumcrystalline film.Appl. Phys. Lett.83.2003,834607-4609. *
J.-J.Chu W.-S. Wang
费进波等.8-羟基喹啉铝的制备工艺改进及其老化.化工进展25 1.2006,25(1),51-53.
费进波等.8-羟基喹啉铝的制备工艺改进及其老化.化工进展25 1.2006,25(1),51-53. *
费进波等.8-羟基喹啉铝纳米结构的可控制备.材料科学与工程学报24 2.2006,24(2),934-936.
费进波等.8-羟基喹啉铝纳米结构的可控制备.材料科学与工程学报24 2.2006,24(2),934-936. *

Also Published As

Publication number Publication date
CN101270128A (zh) 2008-09-24
US7880003B2 (en) 2011-02-01
US20080234484A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
CN101270128B (zh) 8-羟基喹啉铝纳米晶的制备方法
CN103100724A (zh) 银纳米线的制备方法
CN110611014A (zh) 一种Cs3Cu2I5紫外探测器及其薄膜制备方法
CN103466590A (zh) 一种SiCO空心纳米球的制备方法
Ding et al. Zero-and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission
Xu et al. Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties
Zheng et al. Electrospinning preparation and photoluminescence properties of SrAl 2 O 4: Ce 3+ nanowires
Yu et al. Precursor induced synthesis of hierarchical nanostructured ZnO
Jiu et al. The synthesis and photoluminescence property of YPO4: Eu3+ hollow microspheres
CN108047472A (zh) 一种基于石墨烯量子点掺杂的聚合物复合薄膜的制备方法
CN114539566B (zh) 一种聚(9,9-二正辛基芴基-2,7-二基)纳米颗粒的制备方法
CN104946251A (zh) 一种直接热分解法合成氮掺杂碳纳米粒子的方法
Yang et al. Anodized oxidative electrosynthesis of magnesium silicate whiskers
CN104529892A (zh) 一种自组装8-羟基喹啉铝结晶微/纳米颗粒的制备方法
Shrestha et al. Mixing antisolvents induced modulation in the morphology of crystalline C60
CN1299999C (zh) 一种碱土金属锡酸盐纳米管及制备方法
Wang et al. Hybrid nanostructure formation on hollow glass microparticles as thermally insulating composite elements
Zhang et al. Large scale synthesis of carbon hollow spheres from metal zinc powder and ethanol
Xiao et al. A simple route to form straw-like carbon microbundles
Vimalanathan et al. Vortex fluidic high shear induced crystallisation of fullerene C 70 into nanotubules
CN104649312A (zh) 一种纳米棒组装的氧化锌/硅酸锌核壳型超结构的合成方法
Alassafi et al. Synthesis and optical properties of luminescent carbon dots from Haloxylon seeds
CN110695371B (zh) 一种制备超高长径比铜纳米线/石墨烯复合物的方法
Yang et al. High throughput growth of zinc oxide nanowires from zinc powder with the assistance of sodium chloride
CN1225335C (zh) 纳米尺寸金属短纤维的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant