CN101255591B - 一种碳纳米管/纳米镍复合薄膜材料的制备方法 - Google Patents

一种碳纳米管/纳米镍复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN101255591B
CN101255591B CN2008100708645A CN200810070864A CN101255591B CN 101255591 B CN101255591 B CN 101255591B CN 2008100708645 A CN2008100708645 A CN 2008100708645A CN 200810070864 A CN200810070864 A CN 200810070864A CN 101255591 B CN101255591 B CN 101255591B
Authority
CN
China
Prior art keywords
carbon nanotube
preparation
composite film
nickel composite
nano nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100708645A
Other languages
English (en)
Other versions
CN101255591A (zh
Inventor
王周成
祁正兵
廖齐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN2008100708645A priority Critical patent/CN101255591B/zh
Publication of CN101255591A publication Critical patent/CN101255591A/zh
Application granted granted Critical
Publication of CN101255591B publication Critical patent/CN101255591B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳纳米管/纳米镍复合薄膜材料的制备方法,涉及一种在金属箔表面制备碳纳米管/纳米镍复合薄膜材料的方法。提供一种采用采用电泳沉积法在乙酰丙酮中制备碳纳米管薄膜,然后用电沉积法在碳纳米管薄膜上电沉积金属镍纳米颗粒,在金属箔表面制备具有良好催化、耐蚀性能的碳纳米管/纳米镍复合薄膜材料的方法。将经表面抛光、丙酮除油脱脂处理过的金属箔,在含碳纳米管的乙酰丙酮悬浮液中电泳沉积,采用直流电源进行电泳沉积,然后在镍电镀液中电沉积,采用恒电流电沉积,电沉积完毕后,烘干得到碳纳米管/纳米镍复合薄膜材料。

Description

一种碳纳米管/纳米镍复合薄膜材料的制备方法
技术领域
本发明涉及一种复合薄膜材料,尤其是涉及一种在金属箔表面制备碳纳米管/纳米镍复合薄膜材料的方法。
背景技术
纳米材料中最具典型的应用是碳纳米管。碳纳米管是由单层或多层石墨卷曲而成的无缝纳米管状物质,每层纳米管是由一个碳原子通过sp2杂化与周围三个碳原子完全键合而成的由六边形平面组成的圆柱面,由于其近乎完美的键合结构,阻碍了不纯物质及缺陷的介入,使其具有超强的力学性能和很高的化学稳定性,其化学活性则比石墨还低。碳纳米管由于具有较高的长度直径比(直径为几十纳米以内,长度为几个微米到几百个微米),是目前最细的纤维材料,它已表现出优异的力学性能和独特的电学性能。同时由于它是具有中空结构的一维材料,因此可用它做模板制备新一类一维材料。理论研究表明,单根多层碳纳米管的杨氏模量可达1.8GPa。同时,其弯曲强度可达14.2GPa,显示出其超强韧性。除此之外,碳纳米管作为一维分子材料,质量轻,具有良好的导热和导电性能,而且还与石墨一样具有自润滑性能。
但低维纳米材料本身存在许多缺陷,分散性也比较差。特别是碳纳米管的表面结构往往影响电学、力学、光学等诸多性能,为了改善碳纳米管表面结构,一般采用碳纳米管复合化,从而改善或改变纳米管的分散性、稳定性以及与其他物质的相容性,可以使其得到新的物理、化学和机械性能。碳纳米管复合材料的研究已经成为一个极为重要的领域。在这些复合材料中,碳纳米管体现了优异的增强效果。考虑到表面镀层的广泛应用,碳纳米管作为增强相在其它材料表面形成复合镀层,将极大地改善表面的综合性能。其中,碳纳米管金属复合薄膜材料具有耐磨、减磨等优异力学性能以及导电、耐腐蚀等物理化学性能,成为碳纳米管复合材料研究热点之一。
目前制备碳纳米管/纳米镍复合薄膜材料的工艺主要有复合电镀法、复合化学镀法及复合电刷镀等,这些方法在制备工艺上有差别,各有优缺点。复合镀法制备碳纳米管/纳米镍复合薄膜材料取得很大的进展,但仍然存在一些问题,研究的难点主要在于复合镀中由于碳纳米管在水溶液中沉积极易团聚,而导致镀层表面粗糙和不均匀,限制了碳纳米管在复合材料中的增强作用。电泳沉积(Electrophoretic deposition,简称EPD)是一种新型的薄膜、涂层制备方法,广泛应用于磁性、超导及生物活性陶瓷涂层的制备,由于EPD在涂层、薄膜的制备过程表现出了显著的优势,沉积条件温和,一般在常温下即可进行;所需设备简单,成本低;通过调节电压或电流,易于对沉积速率以及涂层的微观结构进行控制;沉积过程是一个非直线过程,适于形状复杂,表面多孔的多种基材。因此选取具有优异分散性能及电泳沉积能力的有机溶剂介质,在介质中配制分散均匀的碳纳米管悬浮液,采用电泳沉积法在该体系中制备分散均匀的碳纳米管薄膜,然后用电沉积法在薄膜上沉积均匀覆盖的金属纳米颗粒,可获得具有良好催化、耐蚀性能的复合薄膜材料。
发明内容
本发明的目的旨在提供一种具有良好催化、耐蚀性能的碳纳米管/纳米镍复合薄膜材料的制备方法。
本发明的技术方案是采用电泳沉积法在非水体系中制备了碳纳米管薄膜,然后用电沉积法在碳纳米管薄膜上镀上金属镍纳米颗粒,在金属箔表面制备碳纳米管/纳米镍复合薄膜材料。
所述的一种在金属箔表面制备碳纳米管/纳米镍复合薄膜材料的方法其步骤如下:
1)金属箔基底预处理:金属箔基底预处理包括表面抛光和除油脱酯;
2)电泳悬浮液的配制:采用乙酰丙酮作为电泳悬浮液的介质,将碳纳米管和乙酰丙酮加入容器中,将容器封盖,采用超声清洗器超声后备用,在电泳悬浮液中碳纳米管的含量为0.2~0.4g/L;
3)电泳沉积:电泳沉积前,先将悬浮液超声,以金属箔基底为阴极,不锈钢薄片作为对电极,金属箔基底置于阴极与对电极之间,采用直流电源进行电泳沉积,电泳沉积完毕后,取出试样,平放,烘干;
4)电沉积液的配制:镍电镀液用水配制,其组成如下:
NiSO4·6H2O     250~300g/L
NiCl2·H2O      35~40g/L
HBO3            40~45g/L
5)电沉积:以步骤3制备的试样为工作阴极,铂电极为对电极,采用恒电位仪进行电镀,电镀完毕后,取出试样,用水清洗试样表面,烘干,干燥,得碳纳米管/纳米镍复合薄膜材料。
表面抛光可将金属箔基底用由粗到细的金相砂纸打磨至表面均匀光亮,所述的金属箔基底为铝箔、钛箔或不锈钢箔等。
除油脱酯可将磨光后的金属箔基底经超声清洗后,放入丙酮中处理3~5min,除去表面油污,取出用水清洗,烘干。
将乙酰丙酮封盖可采用薄膜,例如塑料薄膜等封盖,用超声清洗器超声的时间为至少1h。
电泳沉积前,先将悬浮液超声的时间最好为15~30min,作为对电极的不锈钢薄片最好为圆柱形不锈钢薄片,电泳沉积的沉积电压最好为50~100V,沉积时间最好为30~150s。
采用恒电位仪进行电镀的沉积电流密度最好为2~20mA/cm2,沉积时间最好为60~1800s。
本发明采用电泳沉积法在非水体系中制备了碳纳米管薄膜,然后用电沉积法在碳纳米管薄膜上镀上金属镍纳米颗粒,制得碳纳米管/纳米镍复合薄膜材料。复合材料中纳米金属镍颗粒均匀分布在碳纳米管上,形成具有良好催化、耐蚀性能的碳纳米管/纳米镍复合薄膜材料。
附图说明
图1为实施例1电泳沉积后薄膜的表面形貌SEM图。在图1中,(a)×10.00K,(b)×100.00K。
图2为实施例1电沉积后复合薄膜的表面形貌SEM图。在图2中,(a)×10.00K,(b)×50.00K。
图3为实施例2电沉积后复合薄膜的表面形貌SEM图。在图3中,(a)×10.00K,(b)×50.00K。
图4为实施例3电沉积后复合薄膜的表面形貌SEM图。在图4中,(a)×10.00K,(b)×50.00K。
图5为实施例4电沉积后复合薄膜的表面形貌SEM图。在图5中,(a)×10.00K,(b)×50.00K。
图6为实施例1电沉积后复合薄膜的EDS元素分析结果。在图6中,横坐标为能量/keV,纵坐标为相对强度,从左至右可以看到碳纳米管/镍纳米复合薄膜依次为C,O,N,Al,Ni,Ni峰。
具体实施方式
实施例1
1.基底预处理:(1)表面抛光:将铝箔(厚度100μm)依次经2#、4#、6#、8#金相砂纸打磨至表面均匀光亮。(2)除油脱酯:将磨光后的铝箔放入装有蒸馏水的烧杯中,经超声清洗5min后,放入丙酮中处理3~5min,除去表面油污,取出用二次蒸馏水清洗,置于120℃烘箱中烘干待用。
2.电泳悬浮液的配制:称量约0.01g的碳纳米管加入150ml烧杯中,量取50ml乙酰丙酮,用薄膜封盖,采用超声波震荡1h后备用。
3.电泳沉积:沉积前将悬浮液搅拌并超声25min,将圆柱形的不锈钢电极(作为阳极)插入悬浮夜中间,将预处理后干燥的铝箔(作为阴极),插入悬浮液中,置于中间,将直流电源电压调至50V,电流调至零处,打开电源,迅速加大电流,使电源输出迅速转变为恒压模式,持续时间90s。沉积完成后,小心取出阳极试样,平放,并放入烘箱烘干待电沉积处理。
4.电沉积液的配制:分别称取25g NiSO4·6H2O,3.5g NiCl2·H2O,4.0g HBO3,到150ml烧杯中,加去离子水至100ml,搅拌5min后,放至超声清洗器中超声10min至溶液澄清。
5.电沉积:分别将步骤3所得试样、铂对电极平行放入电沉积溶液中,调整其间距约为2cm。采用恒电位仪进行电镀,控制电流密度为2mA/cm2,沉积时间1200s,当电镀完毕后,小心取出试样,用去离子水清洗试样表面,而后烘干,放入干燥器中保存。
图1为电泳沉积后薄膜的表面形貌,由图1可以看出电泳沉积制得的碳纳米管薄膜均匀致密。图2为电沉积后复合薄膜的表面形貌,可以看到镍颗粒均匀地沉积在碳纳米管上,粒径10~40nm。图6为电沉积后复合薄膜的EDS元素分析结果,图中可以看到碳纳米管/镍纳米复合薄膜主要为C、Al、Ni峰,表明复合薄膜材料中不含其它杂质。
实施例2
1.基底预处理:(1)表面抛光:将钛箔(厚度100μm)依次经2#、4#、6#、8#金相砂纸打磨至表面均匀光亮。(2)除油脱酯:将磨光后的铝箔放入装有蒸馏水的烧杯中,经超声清洗5min后,放入丙酮中处理3~5min,除去表面油污,取出用二次蒸馏水清洗,置于120℃烘箱中烘干待用。
2.电泳悬浮液的配制:按实施例1配制电泳液。
3.电泳沉积:沉积前将悬浮液搅拌并超声25min,将圆柱形的不锈钢电极(作为阳极)插入悬浮夜中间,将预处理后干燥的不锈钢箔(作为阴极),插入悬浮液中,置于中间,将直流电源电压调至60V,电流调至零处,打开电源,迅速加大电流,使电源输出迅速转变为恒压模式,持续时间60s。沉积完成后,小心取出试样,平放,并放入烘箱烘干待电沉积处理。
4.电沉积液的配制:分别称取30gNiSO4·6H2O,3.8gNiCl2·H2O,4.5g HBO3,到150ml烧杯中,加去离子水至100ml,搅拌5min后,放至超声清洗器中超声10min至溶液澄清。
5.电沉积:分别将将步骤3所得试样、铂对电极平行放入电沉积溶液中,调整其间距约为2cm。采用恒电位仪进行电镀,控制电流密度为5mA/cm2,沉积时间600s,当电镀完毕后,小心取出试样,用去离子水清洗试样表面,而后烘干,放入干燥器中保存。
图3为电沉积后复合薄膜的表面形貌,镍颗粒均匀地沉积在碳纳米管上,粒径10~30nm。复合薄膜EDS元素分析结果同实施例1。
实施例3
1.基底预处理:(1)表面抛光:将不锈钢箔(厚度100~200μm)依次经2#、4#、6#、8#金相砂纸打磨至表面均匀光亮。(2)除油脱酯:将磨光后的钛箔放入装有蒸馏水的烧杯中,经超声清洗5min后,放入丙酮中处理3~5min,除去表面油污,取出用二次蒸馏水清洗,置于120℃烘箱中烘干待用。
2.电泳悬浮液的配制:称量约0.02g的碳纳米管加入150ml烧杯中,量取50ml乙酰丙酮,用薄膜封盖,采用超声波震荡1h后备用。
3.电泳沉积:沉积前将悬浮液搅拌并超声25min,将圆柱形的不锈钢电极(作为阳极)插入悬浮夜中间,将预处理后干燥的不锈钢箔(作为阴极),插入悬浮液中,置于中间,将直流电源电压调至60V,电流调至零处,打开电源,迅速加大电流,使电源输出迅速转变为恒压模式,持续时间120s。沉积完成后,小心取出试样,平放,并放入烘箱烘干待电沉积处理。
4.电沉积液的配制:同实施例2。
5.电沉积:分别将将步骤3所得试样、铂对电极平行放入电沉积溶液中,调整其间距约为2cm。采用恒电位仪进行电镀,控制电流密度为15mA/cm2,沉积时间60s,当电镀完毕后,小心取出试样,用去离子水清洗试样表面,而后烘干,放入干燥器中保存。
图4为电沉积后复合薄膜的表面形貌,镍颗粒均匀地沉积在碳纳米管上,粒径10~30nm。复合薄膜EDS元素分析结果同实施例1。
实施例4
1.基底预处理:(1)表面抛光:同实施例1。(2)除油脱脂:同实施例1。
2.电泳悬浮液的配制:按实施例1配制电泳悬浮液。
3.电泳沉积:沉积前将悬浮液搅拌并超声25min,将圆柱形的不锈钢电极(作为阳极)插入悬浮夜中间,将预处理后干燥的不锈钢箔(作为阴极),插入悬浮液中,置于中间,将直流电源电压调至80V,电流调至零处,打开电源,迅速加大电流,使电源输出迅速转变为恒压模式,持续时间60s。沉积完成后,小心取出试样,平放,并放入烘箱烘干待电沉积处理。
4.电沉积液的配制:分别称取28g NiSO4·6H2O,3.8g NiCl2·H2O,4.2g HBO3,到150ml烧杯中,加去离子水至100ml,搅拌5min后,放至超声清洗器中超声10min至溶液澄清。。
5.电沉积:分别将将步骤3所得试样、铂对电极平行放入电沉积溶液中,调整其间距约为2cm。采用恒电位仪进行电镀,控制电流密度为10mA/cm2,沉积时间120s,当电镀完毕后,小心取出试样,用去离子水清洗试样表面,而后烘干,放入干燥器中保存。
图5为电沉积后复合薄膜的表面形貌,镍颗粒均匀地沉积在碳纳米管上,粒径10~30nm。复合薄膜EDS元素分析结果同实施例1。

Claims (10)

1.一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于其步骤如下:
1)金属箔基底预处理:金属箔基底预处理包括表面抛光和除油脱酯;
2)电泳悬浮液的配制:采用乙酰丙酮作为电泳悬浮液的介质,将碳纳米管和乙酰丙酮加入容器中,将容器封盖,采用超声清洗器超声后备用,在电泳悬浮液中碳纳米管的含量为0.2~0.4g/L;
3)电泳沉积:电泳沉积前,先将悬浮液超声,以金属箔基底为阴极,不锈钢薄片作为对电极,阴极和对电极插入电泳悬浮液中间,采用直流电源进行电泳沉积,电泳沉积完毕后,取出试样,平放,烘干;
4)电沉积液的配制:镍电镀液用水配制,其组成如下:
NiSO4·6H2O    250~300g/L
NiCl2·H2O     35~40g/L
HBO3           40~45g/L
5)电沉积:以步骤3制备的试样为工作阴极,铂电极为对电极,采用恒电位仪进行电镀,电镀完毕后,取出试样,用水清洗试样表面,烘干,干燥,得碳纳米管/纳米镍复合薄膜材料。
2.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于所述表面抛光是将金属箔基底用由粗到细的金相砂纸打磨至表面均匀光亮。
3.如权利要求1或2所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于所述的金属箔基底为铝箔、钛箔或不锈钢箔。
4.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于所述除油脱酯是将磨光后的金属箔基底经超声清洗后,放入丙酮中处理3~5min,除去表面油污,取出用水清洗,烘干。
5.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于将乙酰丙酮封盖采用薄膜封盖。
6.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于用超声清洗器超声的时间至少1h。
7.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于电泳沉积前,先将悬浮液超声的时间为15~30min。
8.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于作为对电极的不锈钢薄片为圆柱形不锈钢薄片。 
9.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于电泳沉积的沉积电压为50~100V,沉积时间为30~150s。 
10.如权利要求1所述的一种碳纳米管/纳米镍复合薄膜材料的制备方法,其特征在于采用恒电位仪进行电镀的沉积电流密度为2~20mA/cm2,沉积时间为60~1800s。 
CN2008100708645A 2008-04-03 2008-04-03 一种碳纳米管/纳米镍复合薄膜材料的制备方法 Expired - Fee Related CN101255591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100708645A CN101255591B (zh) 2008-04-03 2008-04-03 一种碳纳米管/纳米镍复合薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100708645A CN101255591B (zh) 2008-04-03 2008-04-03 一种碳纳米管/纳米镍复合薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN101255591A CN101255591A (zh) 2008-09-03
CN101255591B true CN101255591B (zh) 2011-01-26

Family

ID=39890677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100708645A Expired - Fee Related CN101255591B (zh) 2008-04-03 2008-04-03 一种碳纳米管/纳米镍复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN101255591B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192792B (zh) 2008-11-14 2016-06-29 清华大学 纳米结构的制备方法
CN101837287B (zh) 2009-03-21 2012-05-30 清华大学 碳纳米管纳米颗粒复合材料的制备方法
CN101736377B (zh) * 2009-12-08 2011-05-04 郑州大学 一种硫化镍纳米线阵列的制备方法
CN103043642A (zh) * 2013-01-17 2013-04-17 中国科学院苏州纳米技术与纳米仿生研究所 镍纳米颗粒功能化碳纳米管的制备方法和装置
CN103696243B (zh) * 2013-12-05 2016-05-18 天津大学 镍和碳纳米管的复合纤维材料及其制备方法
RU2570672C1 (ru) * 2014-05-13 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" (КемГУ) Способ получения композитного материала системы углерод-никель
CN104451789A (zh) * 2014-12-30 2015-03-25 广西师范大学 一种用于在铝基碳纳米管上电镀镍的镀液
CN106757144B (zh) * 2016-12-09 2018-10-02 济南大学 纳米晶IF钢/自组装科琴碳黑/Ni-Zn析氢材料的制备方法
CN106702424B (zh) * 2016-12-09 2018-11-13 济南大学 一种用于氯碱工业的镍板/科琴碳黑/镍钼合金复合阴极的制备方法
CN106521550B (zh) * 2016-12-09 2018-09-25 济南大学 用于电解制氢的泡沫镍/层层自组装碳纳米管/镍复合材料制备方法
CN106521496A (zh) * 2016-12-09 2017-03-22 济南大学 一种在碳钢表面电泳碳纳米管后化学镀镍制备高析氢活性电极的方法
CN110670107B (zh) * 2019-09-19 2021-09-03 中山大学 碳化钛纳米片/碳纳米管电磁屏蔽薄膜及其制备方法
CN111825479B (zh) * 2020-07-24 2022-08-05 江西宁新新材料股份有限公司 一种电化学-浸渍协同制备石墨耐高温复合涂层的方法
CN112701306B (zh) * 2021-01-30 2022-03-22 江西理工大学 一种镍铁/碳膜-镍一体化复合电极及其制备方法
CN113046732B (zh) * 2021-03-10 2022-11-22 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管/金属复合导体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570220A (zh) * 2004-04-23 2005-01-26 清华大学 一种碳纳米管薄膜的电泳沉积制备方法
CN101000845A (zh) * 2006-12-31 2007-07-18 天津大学 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法
CN101003909A (zh) * 2006-12-21 2007-07-25 上海交通大学 电化学组合沉积制备碳纳米管-金属复合膜结构的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570220A (zh) * 2004-04-23 2005-01-26 清华大学 一种碳纳米管薄膜的电泳沉积制备方法
CN101003909A (zh) * 2006-12-21 2007-07-25 上海交通大学 电化学组合沉积制备碳纳米管-金属复合膜结构的方法
CN101000845A (zh) * 2006-12-31 2007-07-18 天津大学 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法

Also Published As

Publication number Publication date
CN101255591A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
CN101255591B (zh) 一种碳纳米管/纳米镍复合薄膜材料的制备方法
CN101255590B (zh) 一种碳纳米管/纳米铂复合薄膜材料的制备方法
Ma et al. Electrophoretic deposition of graphene-based materials: A review of materials and their applications
CN105350043B (zh) 一种金属电镀法制备金属网络透明导电电极的方法
CN104495811B (zh) 一种石墨烯复合材料及其制备方法
Patil et al. Controlled electrochemical growth of Co (OH) 2 flakes on 3D multilayered graphene foam for high performance supercapacitors
Ramalingam et al. Electrodeposition and characterization of Cu-TiO 2 nanocomposite coatings
Liu et al. Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate
TWI797143B (zh) 工件之碳皮膜被覆構造及工件之碳皮膜被覆方法
CN110216279B (zh) 一种过渡金属掺杂二维薄片的制备方法
CA2468685A1 (en) Deposition method for nanostructure materials
Zhang et al. Leaf-like MXene nanosheets intercalated TiO2 nanorod array photoelectrode with enhanced photoelectrochemical performance
CN106520079A (zh) 石墨烯导热膜及其制备方法
CN107245297A (zh) 一种在金属表面制备氧化石墨烯防腐蚀性保护膜的制备方法
Sviridova et al. Electrochemical synthesis of Ni–MoO 3 composite films: redox-mediated mechanism of electrochemical growth of metal–matrix composite
Xu et al. Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition
CN111060575A (zh) 一种用于葡萄糖无酶检测的多孔Co-P复合电极及其制备方法与应用
Devendra et al. Hydrogen evolution reaction by platinum coating
Shervedani et al. Electrocatalytic activities of nickel-phosphorous composite coating reinforced with codeposited graphite carbon for hydrogen evolution reaction in alkaline solution
CN109537030A (zh) 一种碳纳米颗粒溶液的制备方法及其在镍涂层中的应用
CN112479203B (zh) 一种在金刚石表面原位生成减磨石墨烯薄膜的方法与制件
CN104815638B (zh) 一种非晶纳米多孔二氧化钛负载石墨烯光催化薄膜的制备方法
Li et al. Preparation of the multi-walled carbon nanotubes/nickel composite coating with superior wear and corrosion resistance
Aziz et al. Effect of Mn precursors on the morphology and electrocatalytic activity toward water oxidation of micro-nanostructured MnO x films prepared by voltammetric deposition
CN110323077A (zh) 一种基于Zr-Cu基非晶合金复合电极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110126

Termination date: 20140403