CN101000845A - 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法 - Google Patents

一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法 Download PDF

Info

Publication number
CN101000845A
CN101000845A CN 200610130758 CN200610130758A CN101000845A CN 101000845 A CN101000845 A CN 101000845A CN 200610130758 CN200610130758 CN 200610130758 CN 200610130758 A CN200610130758 A CN 200610130758A CN 101000845 A CN101000845 A CN 101000845A
Authority
CN
China
Prior art keywords
carbon nano
tube
film
electrophoresis
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610130758
Other languages
English (en)
Other versions
CN100481301C (zh
Inventor
胡明
秦玉香
李海燕
梁继然
刘志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CNB2006101307582A priority Critical patent/CN100481301C/zh
Publication of CN101000845A publication Critical patent/CN101000845A/zh
Application granted granted Critical
Publication of CN100481301C publication Critical patent/CN100481301C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种有效提高电泳法沉积碳纳米管薄膜的电子场发射性能的方法,按照以下步骤进行:(1)采用物理气相沉积镀膜方法在导电基底材料上镀覆过渡金属薄膜;(2)以镀覆后的导电基底作为阴极,电泳沉积碳纳米管薄膜;(3)对沉积的碳纳米管薄膜阴极进行退火处理采用该方法对基底和电泳沉积的碳纳米管薄膜进行处理后,可显著增强碳纳米管与基底之间的附着力,明显改善发射稳定性,降低碳纳米管场发射的阈值场强,提高场发射电流密度。

Description

一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法
技术领域
本发明涉及一种改善碳纳米管性能的方法,更具体地讲,涉及一种改善电泳法沉积碳纳米管薄膜的电子场发射性能的方法。
背景技术
场发射显示技术是20世纪90年代中期以来得到迅速发展的一种新的平板显示技术。场发射显示器将阴极射线管的高清晰度图像质量,液晶显示器的薄度以及等离子体显示屏的大面积性等优点集于一身,在亮度、分辨率、响应速度、视角、功耗、工作电压以及工作温度范围等方面都有优良的性能,在平板显示领域具有广阔的市场和很好的应用前景[Physica B323,165(2002)]。其中,冷阴极材料是场发射显示器的核心部件。传统的Spindt型尖锥冷阴极加工工艺复杂,使得成品率难以提高,成本很难降低。碳纳米管阴极的出现,为这一显示技术提供了新的突破点[Science 270,1179(1995),Chem.Phys.Lett.233,63(1995)]。碳纳米管管径一般在几纳米到几十纳米,管长从纳米量级到毫米量级不等,是一种理想的一维材料,具有很大的长径比和极小的尖端曲率半径,在一定电场下可以获得一个很大的场增强因子,具有极为优异的电子场发射性能。同时,碳纳米管化学稳定性好,机械强度高,因而是一种非常理想的场发射冷阴极材料。
以碳纳米管作为阴极材料来制备场发射显示器,首先必须制备均匀的碳纳米管薄膜。目前,碳纳米管薄膜阴极的制备通常有两类方法:一类是直接生长法,另一类是移植法。直接生长法的优点是碳纳米管与基底结合力较好,杂质含量低,与传统的半导体图形技术相结合可实现碳纳米管的图形化生长,并且可以获得定向的碳纳米管阵列;但是,用直接生长法制备碳纳米管薄膜,由于碳纳米管的生长温度需要高于600℃,难以在普通玻璃基底上实现大面积碳纳米管薄膜的均匀生长。因此,目前的碳纳米管场发射阴极通常采用移植法制作。移植法包括电泳法、液相沉积法、丝网印刷法、光刻法等。利用电泳法在导电基底上沉积碳纳米管薄膜是制作碳纳米管场发射冷阴极的一种极具应用前景的方法。该法工艺简单、成本低廉、制备周期短,可在任意形状的基底上实现图形化碳纳米管阴极薄膜的大批量大面积制备[Materials Letters,57,434(2002)]。但是,利用电泳法沉积的碳纳米管薄膜与基底之间的附着力比较弱,场发射过程中碳纳米管膜容易剥落,导致场发射电流不稳,制约了电泳法在碳纳米管场发射阴极制作中的实际应用[Applied Surface Science,215,232(2003)]。
发明内容
本发明的目的在于提供一种有效提高电泳法沉积碳纳米管薄膜的电子场发射性能的方法,采用该方法对基底和电泳沉积的碳纳米管薄膜进行处理后,可显著增强碳纳米管与基底之间的附着力,明显改善发射稳定性,降低碳纳米管场发射的阈值场强,提高场发射电流密度。
本发明的技术方案按照以下步骤进行:
(1)采用物理气相沉积镀膜方法在导电基底材料上镀覆过渡金属薄膜,所述镀覆工艺:真空度为3×10-4~2×10-6Pa,沉积速率为0.2~0.8nm/s,过渡金属薄膜厚度为100~400nm;
(2)以镀覆后的导电基底作为阴极,电泳沉积碳纳米管薄膜,所述电泳沉积工艺:电泳电压为30~120V,电泳时间为0.5~10min,阴极与阳极的间距为1~5cm,电泳液预沉降时间30min~2h,电泳液预超声分散时间1~2h;
(3)对沉积的碳纳米管薄膜阴极进行退火处理,所述退火处理工艺:真空度为1×10-5~1×10-7Pa,退火时间为1~2h,退火温度为800~1200℃。
其中步骤(1)所述的导电基底材料是ITO导电玻璃、Cu、Ni、Ti、Fe、Al、Si、表面镀覆Cu的玻璃、表面镀覆Ni的玻璃、表面镀覆Ti的玻璃、表面镀覆Fe的玻璃和表面镀覆Al的玻璃中的一种。所述的物理气相沉积镀膜方法为真空蒸发镀膜、射频磁控溅射镀膜和离子镀膜中的一种。所述的过渡金属为Ti、Zr、Hf、Nb和Ta中的一种。
其中步骤(2)所述的阳极为铜电极、铂电极、不锈钢电极中的一种。所述电泳液使用水、异丙醇、正丁醇和乙醇中的一种作为分散剂。
沉积碳纳米管薄膜所使用的碳纳米管粉末可以采用电弧放电法、激光烧蚀法、化学气相沉积法等方法制备。
高温真空退火的目的是使碳原子与接触的过渡金属发生固-固化学反应,在基底和碳纳米管薄膜之间形成导电性的过渡金属碳化物,增强碳纳米管与基底之间的附着力,减小碳纳米管与基底之间的接触电阻,从而提高场发射性能。
本发明的有益效果为通过电泳前基底表面的过渡金属预镀覆和电泳后碳纳米管薄膜阴极的高温真空退火的工艺处理方法,在碳纳米管薄膜和基底之间形成导电性过渡金属碳化物,一方面,使碳纳米管与基底之间的附着力增加,可显著改善场发射过程中由于电泳碳纳米管薄膜的剥落而引起的发射电流的不稳定现象(见图2和图3所示);另一方面,碳纳米管与基底材料之间通过过渡金属碳化物可以形成低阻值的欧姆接触,消除碳纳米管与基底之间的界面势垒(Science,285,1719(1999)),使场发射的阈值电场明显降低。主要体现在:与未采用任何方法处理的电泳法沉积的碳纳米管薄膜相比,采用本发明方法处理的电泳沉积碳纳米管薄膜的阈值场强降低大于25%,恒定电场下的发射电流密度增加大于400%,发射稳定性明显改善。
对电泳法制备的碳纳米管薄膜阴极采用二极管结构进行电子场发射性能测试。测试的样品分别为没有经过任何处理的碳纳米管薄膜和按本发明方法经过基底过渡金属镀覆和薄膜阴极高温真空退火处理的碳纳米管薄膜。对于实施例1碳纳米管薄膜阴极的电子场发射性能的测试结果(图4)表明:按本实施例方法处理后的碳纳米管薄膜阴极的阈值场强从3.1mA/cm2降低到2.1mA/cm2,降低了约30%(实施例中,定义场发射电流密度达10mA/cm2时的电场强度为阈值场强);在电场强度为2.3V/μm时,电子场发射电流密度从1.9mA/cm2增加到13.5mA/cm2,增加了约600%;未经任何处理的碳纳米管薄膜的最大发射电流密度仅为9.1mA/cm2,采用本发明方法处理后,碳纳米管薄膜的发射稳定性明显增强,当场发射电流密度达21.3mA/cm2时,仍能保持稳定的场发射,如图4所示。此外,从图3的SEM照片可见,场发射前后,膜表面碳纳米管的分布密度变化不大,说明经过本发明方法处理的碳纳米管薄膜与基底之间的附着力亦明显增强。
由此可见,本发明方法可以提高碳纳米管的附着力,增强电泳沉积碳纳米管薄膜阴极的抗离子轰击能力,改善发射稳定性,延长阴极的使用寿命。
附图说明
图1是本发明的工艺流程图。
图2是未采用本发明的方法处理的电泳法沉积碳纳米管薄膜阴极场发射前(a)和场发射后(b)的表面形貌的扫描电子显微镜(SEM)照片。
图3是采用本发明的方法处理的电泳沉积碳纳米管薄膜阴极(基底表面镀覆Ti薄膜)场发射前(a)和场发射后(b)的表面形貌的扫描电子显微镜(SEM)照片。
图4是采用本发明的方法处理后的电泳沉积碳纳米管薄膜阴极(基底表面镀覆Ti薄膜)及未采用本发明的方法处理的电泳沉积碳纳米管薄膜阴极的场发射的电流密度-电场强度曲线,其中,横坐标是电场强度(V/μm),纵坐标是电流密度(mA/cm2)。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Ti,基底材料为p型(100)Si片。具体的溅射镀膜条件为:调节溅射功率80W使沉积速率为0.22nm/s,溅射时间15min,溅射真空度为3×10-4Pa,镀覆的Ti膜厚度为200nm。
(2)以镀覆Ti膜的Si基底作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为30μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml异丙醇中,超声振荡2h,然后沉降1h而获得;电泳时的工艺条件为:电泳电压100V,电泳时间2min,阴阳极极间距2cm;所用阳极为铜电极;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径30nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在2×10-6Pa的真空环境中退火2h,退火温度为900℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例2
(1)利用真空蒸发镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Ta,基底材料为p型(100)Si片。工艺条件为:沉积速率0.4nm/s,沉积真空度为6×10-5Pa,沉积时间4min,溅射真空度为3×10-4Pa,镀覆的Ta膜厚度为100nm。
(2)以镀覆Ta膜的Si基底作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为30μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml异丙醇中,超声振荡2h,然后沉降1h而获得;所用阳极为铂电极;电泳时的工艺条件为:电泳电压60V,电泳时间5min,阴阳极极间距3cm使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径25nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在2×10-7Pa的真空环境中退火2h,退火温度为1000℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例3
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Hf,基底材料为p型(100)Si片。工艺条件为:调节溅射功率200W使沉积速率为0.8nm/s,溅射时间为8min,溅射真空度为3×10-4Pa,镀覆的Hf膜厚度为400nm。
(2)以镀覆Ta膜的Si基底作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为25μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml异丙醇中,超声振荡2h,然后沉降1h而获得;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压60V,电泳时间5min,阴阳极极间距3cm使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径10nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在2×10-6Pa的真空环境中退火2h,退火温度为1100℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例4
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Zr,基底材料为ITO导电玻璃。工艺条件为:调节溅射功率150W使沉积速率为0.6nm/s,溅射时间为8min,溅射真空度为3×10-4Pa,镀覆的Zr膜厚度为288nm。
(2)以镀覆Zr膜的ITO导电玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1h,然后沉降30min而获得;所用阳极为铂电极;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压120V,电泳时间5min,阴阳极极间距1cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径15nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-7Pa的真空环境中退火1h,退火温度为800℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例5
(1)利用离子镀膜在基底材料上镀覆过渡金属薄膜。采用过渡金属为Nb,基底材料为Cu。工艺条件为:调节功率150W使沉积速率为0.6nm/s,溅射时间为8min,溅射真空度为2×10-6Pa,镀覆的Nb膜厚度为288nm。
(2)以镀覆Nb膜的Cu作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为15μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml乙醇中,超声振荡1.5h,然后沉降1.5h而获得;所用阳极为铂电极;电泳时的工艺条件为:电泳电压100V,电泳时间10min,阴阳极极间距5cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径25nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在1×10-6Pa的真空环境中退火1h,退火温度为800℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例6
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Nb,基底材料为Al。工艺条件为:调节功率140W使沉积速率为0.5nm/s,溅射时间为8min,溅射真空度为5×10-4Pa,镀覆的Nb膜厚度为240nm。
(2)以镀覆Nb膜的Al作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml正丁醇中,超声振荡1.5h,然后沉降2h而获得;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压30V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为激光烧蚀法制备的多壁碳纳米管,直径15nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例7
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Ta,基底材料为Fe。工艺条件为:调节功率70W使沉积速率为0.2nm/s,溅射时间为10min,溅射真空度为5×10-4Pa,镀覆的Ta膜厚度为120nm。
(2)以镀覆Ta膜的Fe作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为15μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1.5h,然后沉降2h而获得;所用阳极为铂电极;电泳时的工艺条件为:电泳电压60V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为激光烧蚀法制备的多壁碳纳米管,直径10nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例8
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Ti,基底材料为Ni。工艺条件为:调节功率100W使沉积速率为0.6nm/s,溅射时间为10min,溅射真空度为5×10-4Pa,镀覆的Ti膜厚度为360nm。
(2)以镀覆Ti膜的Ni作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1.5h,然后沉降2h而获得;所用阳极为铂电极;电泳时的工艺条件为:电泳电压30V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为激光烧蚀法制备的多壁碳纳米管,直径15nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为800℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例9
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Nb,基底材料为Ti。工艺条件为:调节功率70W使沉积速率为0.7nm/s,溅射时间为5min,溅射真空度为5×10-4Pa,镀覆的Nb膜厚度为210nm。
(2)以镀覆Nb膜的Ti作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1.5h,然后沉降2h而获得;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压80V,电泳时间0.5min,阴阳极极间距1cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径10nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例10
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Zr,基底材料为表面镀覆Cu的玻璃。工艺条件为:调节功率70W使沉积速率为0.2nm/s,溅射时间为10min,溅射真空度为5×10-5Pa,镀覆的Zr膜厚度为120nm。
(2)以镀覆Zr膜的表面镀覆Cu的玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度约为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml正丁醇中,超声振荡1.5h,然后沉降2h而获得;所用阳极为铜电极;电泳时的工艺条件为:电泳电压30V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径10nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例11
(1)利用真空蒸发镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Zr,基底材料为表面镀覆Ni的玻璃。工艺条件为:调节功率100W使沉积速率为0.6nm/s,沉积时间为10min,真空度为1×10-5Pa,镀覆的Zr膜厚度为360nm。
(2)以镀覆Zr膜的表面镀覆Ni的玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度约为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml乙醇中,超声振荡1.5h,然后沉降2h而获得;所用阳极为铜电极;电泳时的工艺条件为:电泳电压30V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径10nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在1×10-6Pa的真空环境中退火1.5h,退火温度为1000℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例12
(1)利用真空蒸发镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Nb,基底材料为表面镀覆Ti的玻璃。工艺条件为:调节功率70W使沉积速率为0.2nm/s,沉积时间为10min,真空度为8×10-4Pa,镀覆的Nb膜厚度为120nm。
(2)以镀覆Nb膜的表面镀覆Ti的玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为20μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml正丁醇中,超声振荡1.5h,然后沉降2h而获得;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压100V,电泳时间10min,阴阳极极间距5cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径20nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在1×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例13
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Hf,基底材料为表面镀覆Fe的玻璃。工艺条件为:调节功率70W使沉积速率为0.2nm/s,溅射时间为10min,溅射真空度为5×10-4Pa,镀覆的Hf膜厚度为120nm。
(2)以镀覆Hf膜的表面镀覆Fe的玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为12μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml乙醇中,超声振荡1.5h,然后沉降1.5h而获得;所用阳极为铜电极;电泳时的工艺条件为:电泳电压80V,电泳时间10min,阴阳极极间距2cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径20nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例14
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Zr,基底材料为表面镀覆Al的玻璃。工艺条件为:调节功率70W使沉积速率为0.2nm/s,溅射时间为10min,溅射真空度为5×10-4Pa,镀覆的Zr膜厚度为120nm。
(2)以镀覆Zr膜的表面镀覆Al的玻璃作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1.5h,然后沉降2h而获得;所用阳极为铜电极;电泳时的工艺条件为:电泳电压60V,电泳时间10min,阴阳极极间距3cm;使用的碳纳米管为化学气相沉积法制备的多壁碳纳米管,直径25nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-5Pa的真空环境中退火1.5h,退火温度为1000℃,即得改善电子场发射性能的碳纳米管薄膜。
实施例15
(1)利用射频磁控溅射镀膜法在基底材料上镀覆过渡金属薄膜。采用过渡金属为Nb,基底材料为Fe。工艺条件为:调节功率70W使沉积速率为0.2nm/s,溅射时间为10min,溅射真空度为5×10-4Pa,镀覆的Nb膜厚度为120nm。
(2)以镀覆Nb膜的Fe作为阴极,利用电泳法沉积碳纳米管薄膜,薄膜厚度为10μm。电泳液由0.3g碳纳米管和0.2g Mg(NO3)2·6H2O分散在200ml水中,超声振荡1.5h,然后沉降2h而获得;所用阳极为不锈钢电极;电泳时的工艺条件为:电泳电压30V,电泳时间10min,阴阳极极间距1cm;使用的碳纳米管为电弧放电法制备的多壁碳纳米管,直径30nm。
(3)电泳完毕后,将碳纳米管薄膜阴极在5×10-6Pa的真空环境中退火2h,退火温度为1200℃,即得改善电子场发射性能的碳纳米管薄膜。

Claims (6)

1.一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,按照以下步骤进行:
(1)采用物理气相沉积镀膜方法在导电基底材料上镀覆过渡金属薄膜,所述镀覆工艺:真空度为3×10-4~2×10-6Pa,沉积速率为0.2~0.8nm/s,薄膜厚度100~400nm;
(2)以镀覆后的导电基底作为阴极,电泳沉积碳纳米管薄膜,所述电泳沉积工艺:电泳电压为30~120V,电泳时间为0.5~10min,阴极与阳极的间距为1~5cm,电泳液预沉降时间30min~2h,电泳液预超声分散时间1~2h;
(3)对沉积的碳纳米管薄膜阴极进行退火处理,所述退火处理工艺:真空度为1×10-5~1×10-7Pa,退火时间为1~2h,退火温度为800~1200℃。
2.根据权利要求1所述的一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,所述的导电基底材料是ITO导电玻璃、Cu、Ni、Ti、Fe、Al、Si、表面镀覆Cu的玻璃、表面镀覆Ni的玻璃、表面镀覆Ti的玻璃、表面镀覆Fe的玻璃和表面镀覆Al的玻璃中的一种。
3.根据权利要求1所述的一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,所述的物理气相沉积镀膜方法为真空蒸发镀膜、射频磁控溅射镀膜和离子镀膜中的一种。
4.根据权利要求1所述的一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,所述的过渡金属为Ti、Zr、Hf、Nb和Ta中的一种。
5.根据权利要求1所述的一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,所述的阳极为铜电极、铂电极、不锈钢电极中的任意一种。
6.根据权利要求1所述的一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法,其特征在于,所述电泳液使用水、异丙醇、正丁醇和乙醇中的任意一种作为分散剂。
CNB2006101307582A 2006-12-31 2006-12-31 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法 Expired - Fee Related CN100481301C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101307582A CN100481301C (zh) 2006-12-31 2006-12-31 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101307582A CN100481301C (zh) 2006-12-31 2006-12-31 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法

Publications (2)

Publication Number Publication Date
CN101000845A true CN101000845A (zh) 2007-07-18
CN100481301C CN100481301C (zh) 2009-04-22

Family

ID=38692761

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101307582A Expired - Fee Related CN100481301C (zh) 2006-12-31 2006-12-31 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法

Country Status (1)

Country Link
CN (1) CN100481301C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255591B (zh) * 2008-04-03 2011-01-26 厦门大学 一种碳纳米管/纳米镍复合薄膜材料的制备方法
CN101973510A (zh) * 2010-10-24 2011-02-16 天津大学 基于碳纳米管微阵列/氧化钨纳米复合结构的气敏传感器元件的制备方法
CN101255590B (zh) * 2008-04-03 2011-03-30 厦门大学 一种碳纳米管/纳米铂复合薄膜材料的制备方法
CN102423168A (zh) * 2011-11-04 2012-04-25 昆山龙鹰金属制品有限公司 201不锈钢中底生产工艺
CN103346051A (zh) * 2013-06-09 2013-10-09 中国科学院深圳先进技术研究院 一种碳纳米管阴极制备方法及碳纳米管阴极
CN113380597A (zh) * 2021-05-05 2021-09-10 温州大学 一种基于碳纳米管的微焦点场发射电子源及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255591B (zh) * 2008-04-03 2011-01-26 厦门大学 一种碳纳米管/纳米镍复合薄膜材料的制备方法
CN101255590B (zh) * 2008-04-03 2011-03-30 厦门大学 一种碳纳米管/纳米铂复合薄膜材料的制备方法
CN101973510A (zh) * 2010-10-24 2011-02-16 天津大学 基于碳纳米管微阵列/氧化钨纳米复合结构的气敏传感器元件的制备方法
CN101973510B (zh) * 2010-10-24 2012-03-07 天津大学 基于碳纳米管微阵列/氧化钨纳米复合结构的气敏传感器元件的制备方法
CN102423168A (zh) * 2011-11-04 2012-04-25 昆山龙鹰金属制品有限公司 201不锈钢中底生产工艺
CN103346051A (zh) * 2013-06-09 2013-10-09 中国科学院深圳先进技术研究院 一种碳纳米管阴极制备方法及碳纳米管阴极
CN113380597A (zh) * 2021-05-05 2021-09-10 温州大学 一种基于碳纳米管的微焦点场发射电子源及其制备方法

Also Published As

Publication number Publication date
CN100481301C (zh) 2009-04-22

Similar Documents

Publication Publication Date Title
CN100481301C (zh) 一种改善电泳法沉积碳纳米管薄膜电子场发射性能的方法
CN113991134B (zh) 一种燃料电池金属双极板用非晶碳涂层及制备方法
CN104388902A (zh) 一种基体表面高导电性的碳基涂层及其制备方法
CN103456581B (zh) 碳纳米管场发射阴极及其制备方法
CN105140398B (zh) 一种背接触钙钛矿太阳电池
Yang et al. Field emission from zinc oxide nanoneedles on plastic substrates
TW201028487A (en) Transparent conductive layer and transparent electrode comprising the same
CN103236324A (zh) 一种基于还原氧化石墨烯的柔性透明导电薄膜的制备方法
CN110550597A (zh) 一种直立少层石墨烯-金属纳米粒子复合催化电极
Huang et al. Long-term stability of a horizontally-aligned carbon nanotube field emission cathode coated with a metallic glass thin film
CN110323270B (zh) 一种石墨烯导电薄膜的制备方法及薄膜晶体管
CN100395857C (zh) 一种在玻璃衬底上制备碳纳米管的方法
CN102568977B (zh) 一种磁场辅助电泳沉积金属化碳纳米管阴极的制备方法
CN105513921A (zh) 碳纳米场发射阴极及其制备方法和应用
CN1135588C (zh) 一种提高碳纳米管薄膜的场致电子发射性能的方法
CN108441833B (zh) 一种多层透明导电膜及其制备方法
CN104091743A (zh) 一种自对准栅极结构纳米线冷阴极电子源阵列的制作方法及其结构
CN108987215B (zh) 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法
CN1808670A (zh) 提高印刷法制备碳纳米管薄膜场致电子发射性能的方法
CN103545158A (zh) 碳纳米管阴极及其制备方法
CN105931846B (zh) 一种带氮化物保护层的石墨烯电极及其制备方法
KR20160093959A (ko) 인듐 아연 주석 산화물 제조 방법, 이를 포함하는 태양 전지 및 이의 제조 방법
CN108987218A (zh) 一种提升石墨烯片-硅纳米线阵列复合材料场发射性能的方法
CN103236496B (zh) 一种叠层结构的三端有源器件
CN103021762A (zh) 一种场发射阴极的处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090422

Termination date: 20101231