CN101253124A - 提高澄清剂在玻璃熔体中的效力的方法 - Google Patents

提高澄清剂在玻璃熔体中的效力的方法 Download PDF

Info

Publication number
CN101253124A
CN101253124A CNA200680032199XA CN200680032199A CN101253124A CN 101253124 A CN101253124 A CN 101253124A CN A200680032199X A CNA200680032199X A CN A200680032199XA CN 200680032199 A CN200680032199 A CN 200680032199A CN 101253124 A CN101253124 A CN 101253124A
Authority
CN
China
Prior art keywords
glass
temperature
gas
oxygen
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200680032199XA
Other languages
English (en)
Other versions
CN101253124B (zh
Inventor
K·L·豪斯
P·马宗达
I·M·彼得森
S·L·希费尔贝因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN101253124A publication Critical patent/CN101253124A/zh
Application granted granted Critical
Publication of CN101253124B publication Critical patent/CN101253124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • C03B18/22Controlling or regulating the temperature of the atmosphere above the float tank
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

在第一温度T1下在熔炉中熔化进料形成玻璃熔体,所述玻璃熔体包含至少一种澄清剂。将所述玻璃熔体冷却至低于T1的第二温度T2,使含氧气体鼓泡通过所述冷却的熔体。然后将所述玻璃熔体再次加热至等于或高于第一温度T1的第三温度T3

Description

提高澄清剂在玻璃熔体中的效力的方法
发明领域
本发明涉及使熔融玻璃澄清的方法。本发明特别适用于使高熔化温度玻璃或高应变点玻璃澄清,例如用于平板显示器件的玻璃基材的玻璃。
发明背景
液晶显示器(LCD)是包括平坦玻璃基材或玻璃板的平板显示器件。熔化法是一种用于制造LCD中使用的玻璃板的优选技术,原因在于,与其它方法制得的玻璃板相比,熔化法制得的玻璃板的表面具有优越的平坦性和平滑性。例如在美国专利3338696和3682609中描述了熔化法,这些专利的内容通过参考结合于此。
一般来说,LCD有非晶硅(α-Si)薄膜晶体管(TFT)或多晶硅(ρ-Si或多-Si)TFT种类。多-Si具有高得多的驱动电流和电子迁移率,从而增加了像素的响应时间。而且,可以通过ρ-Si加工在玻璃基材上直接构建显示器件电路。相反,α-Si需要必须通过集成电路封装技术连接在显示器外围的分立驱动芯片。
从α-Si到ρ-Si的发展对玻璃基材的用途提出了重要挑战。与α-Si相比,多-Si涂层要求高得多的加工温度,为600-700℃。因此,在该温度下,玻璃基材必须是热稳定的。热稳定性(即,热压缩或收缩)取决于特定玻璃组成的固有粘性(由其应变点表示)以及由制造方法决定的玻璃板的热经历。高温加工(例如多-Si TFT所需要的)可以要求玻璃基材具有长退火时间,从而确保低压缩,例如在600℃退火5小时。这些要求促使玻璃制造商寻求熔点更高的玻璃。但是,高熔点、高应变点玻璃对制造工艺提出了多项挑战。首先,这种玻璃必须适应现有的制造方法。
LCD玻璃的常规玻璃制造方法一般首先从在熔炉中熔化玻璃前体(进料)开始。在此熔化阶段中发生的反应释放出在玻璃熔体中形成鼓泡(也称为晶种或砂眼)的气体。进料颗粒之间夹杂的填隙空气也会形成晶种。在任何情况下,必须消除这些气泡,从而生产高品质玻璃。一般通过使玻璃“澄清”来消除气态夹杂物。为了清楚起见,以下将因为熔化过程形成的气态夹杂物(无论作为反应产物或填隙气体)称为“晶种(seed)”。
使玻璃熔体澄清的一种普通方法是化学澄清。在化学澄清中,在玻璃熔体中引入澄清剂,例如向进料中添加。所述澄清剂是在高温下被还原(失去氧)、在低温下被氧化(与氧重新结合)的多价氧化物。然后,澄清剂释放的氧可以扩散到熔化过程中形成的晶种中,使得晶种生长。从而增加晶种的浮性,使晶种升高至气体释放离开熔体的玻璃表面。在理想情况下,要求澄清剂在熔化过程的靠后期间、在大部分晶种形成之后释放氧,从而增加澄清剂的效力。为了达到这个目的,即使已经清除了熔化器中的大晶种,一般仍然要在澄清容器中进行附加的澄清步骤,在澄清容器中,将玻璃温度提高至超过熔化温度。澄清容器中的玻璃熔体的温度升高,使玻璃的粘性降低,使得熔体中的晶种能更容易地升高至玻璃表面,使得氧化物澄清剂向熔体释放出氧,促使晶种生长并且促进晶种清除过程。熔体澄清之后,可以将其冷却,并且进行搅拌,使熔体均化,从而通过本领域中已知的许多可用成形方法中的任何一种形成例如玻璃板。
许多玻璃制造方法都使用砷作为澄清剂。砷是一种已知的最高温度的澄清剂,将其加入熔化器内的熔融玻璃浴中时,使得氧气在高温(例如超过1450℃)下从玻璃熔体中释放出来。这种高温氧气释放促进了熔化过程中、特别是玻璃生产的澄清阶段过程中的晶种消除,结合较低调整温度下氧气吸收的强烈倾向(有助于任何残余的气态夹杂物消失在玻璃中),形成基本上没有气态夹杂物的玻璃产品。
从环境角度考虑,要求在不使用砷作为澄清剂的条件下,提供制造玻璃、特别是一般用于生产LCD玻璃的高熔点和应变点玻璃的替代方法。含砷化合物一般是毒性的,使用砷来加工玻璃不仅造成高处理成本的工业废物,而且在显示器件使用寿命耗尽时,还产生与器件本身相关的处理问题。不幸的是,与砷之类的现有澄清剂相比,许多替代澄清剂一般产生较少的氧,并且/或者释放氧时的温度太低,而且在调整过程中再吸收的氧气太少,从而限制了它们的澄清和氧再吸收能力。因此,在玻璃制造方法的澄清阶段过程中(即,玻璃位于澄清容器内时),替代澄清剂产生的氧量不足,无法有效地使澄清容器内的玻璃澄清。
因此需要寻找一种能利用替代澄清剂、特别是用于高熔化温度玻璃的方法。
发明概述
在本发明的广义方面中,加热原始进料,并且在第一温度T1熔化。然后将制得的玻璃熔体冷却至低于T1的第二温度T2,在第二温度T2下将第一含氧气体引入冷却的玻璃熔体中。然后将冷却的玻璃熔体加热至等于或高于第一温度T1的第三温度T3
所述含氧气体可以基本上是纯氧。但是在一些情况下,可以一起引入氧和一种或多种其它气体。例如,可以是一种空气混合物。在优选的实施方式中,还将稀有气体鼓泡通入冷却的玻璃熔体中。稀有气体可以与氧同时(分别或以混合形式)、或者将稀有气体在另外的时间(例如在引入氧之前)引入冷却的玻璃熔体中。氦是优选的稀有气体,因为氦在玻璃熔体中具有高扩散率。
虽然并非必须,但是第二温度比第一温度至少低50℃是有利的。将含氧气体引入玻璃的过程中,冷却的熔融玻璃的停留时间优选大于约15分钟,更优选约为0.5小时,最优选大于约1.5小时。
在一个实施方式中,所述使玻璃澄清的方法包括以下步骤:将进料加热至第一温度T1以形成熔融玻璃,所述熔融玻璃包含多价氧化物,将所述熔融玻璃冷却至低于T1的第二温度T2,在第二温度下使含氧的第一气体鼓泡通过所述冷却的熔融玻璃,将所述冷却的熔融玻璃加热至大于或等于T1的第三温度T3。所述第一气体中的含氧量优选大于约5体积%,更优选大于约20体积%。要确保向玻璃熔体中引入足够的氧,要求所述冷却的熔融玻璃的粘度小于约1000泊。
在一些优选的实施方式中,可以向玻璃熔体中引入第二气体或者气体混合物。所述第二气体优选包含氦之类的稀有气体。当熔体处于第二温度时,例如通过将稀有气体鼓入玻璃熔体中而引入稀有气体。优选将熔融玻璃在第二温度T2保持超过约15分钟。
参考附图,通过以下非限制性的说明性描述,能够更容易地理解本发明以及它的其他目的、特征、细节和优点。所有这些附加的系统、方法、特征和优点都包括在本说明书中,都属于本发明的范围,都受到所附权利要求的保护。
附图简要说明
图1是玻璃熔化法的截面侧视图。
图2是图1的玻璃熔化法的一部分的截面侧视图。
图3是显示根据本发明一个实施方式的玻璃熔体的温度对加热-冷却-再加热历程时间的示范性关系的图。
图4是显示最终砂眼密度和气体体积分数与向冷却温度的玻璃熔体中鼓入含氧气体的时间之间的关系的图。
图5是显示康宁(Corning)Eagle 2000TM玻璃的粘度与温度之间的关系的图。
本发明优选实施方式
在以下详细说明中,为了说明而非限制的目的,给出了揭示特定具体情况的实施方式,从而提供对本发明的完全理解。但是,本领域技术人员通过所揭示的内容可以以不同于本文所给出的特定具体情况的方式、在其它实施方式中实现本发明,这对于本领域技术人员而言是显而易见的。而且,省略了对众所周知的器件、方法和材料的描述,以免混淆对本发明的说明。最后,本发明还使用类似的附图标记来表示类似的元素。
在典型的玻璃制造法中,在熔炉(熔化器)中加热原始进料,以形成粘性物质或玻璃熔体。一般由耐火砖构建熔炉,所述耐火砖包括经过煅烧的燧土、硅线石、锆石或其它耐火材料。可以通过间歇法或者连续法将进料引入熔化器中,在间歇法中将玻璃形成组分混合在一起、作为不连续的加料引入熔化器,在连续法中将进料混合、连续地引入熔化器。进料中可以包括碎玻璃。可以通过熔炉结构中的开口或端口、使用推杆(在间歇法中)或者是螺杆或螺旋推进器(在连续进料熔化器的情况中)将进料引入熔化器中。进料组分的量和种类构成玻璃“配方”。在玻璃量较少、并且熔炉的容量不超过几吨的情况下,一般使用间歇法,而大型、工业化、连续进料熔炉可以容纳超过1500吨玻璃,每天可以供应几百吨玻璃。
可以通过由进料上方的一个或多个燃烧器产生的燃料-氧火焰、或者使电流在一般固定在熔化器内壁中的电极之间通过、或者上述两种方法,在熔化器中对进料进行加热。位于壁上方、同样由耐火砖制成的冠状结构覆盖熔化器,而且在燃烧加热式熔炉中还为燃料的燃烧提供了空间。
在一些方法中,首先使用燃料-氧火焰来加热进料,于是进料开始熔化,并且进料的电阻率降低。然后使电流通过进料/熔体混合物从而完成加热过程。在加热过程中,进料的反应释放出在各种在玻璃熔体中形成夹杂物(一般称为砂眼或晶种)的气体。晶种也可能因为进料颗粒之间的填隙空间内存留的空气而形成,以及因为耐火砖本身熔解在熔体中而形成。可能构成晶种的气体包括例如O2、CO2、CO、N2和NO中的任何一种或混合物。还可能形成其它气体,包括晶种。水也是熔化过程的一种常见副产物。
在熔化的初始阶段,玻璃熔体在熔化器内形成泡沫状物质。必须清除晶种才能进行剩下的玻璃成形操作,最后凝固成最终玻璃产品并且使产品中看不到缺陷。通过用熔化器内的“漂浮物”或坝墙对熔体进行撇取,可以防止熔体顶部的泡沫离开熔化器。熔体中的较大晶种可以升高至熔体表面,晶种中包含的气体在熔体表面处释放离开熔融玻璃。熔体中的热梯度产生的对流有助于使熔体均化。但是,玻璃熔体在熔化器中的停留时间可能不足以消除较小的晶种。
为了确保清除尽可能多的晶种,玻璃制造商通常采用化学澄清法,在该化学澄清法中,进料中包括澄清剂。澄清剂的澄清机理是,在熔体中产生气体,使熔体中的气体和晶种中的气体之间形成浓度差,从而促使晶种生长。
多年来都使用砷(一般为As2O5的形式)作为澄清剂。人们相信在大部分熔化完成之后,通过在高温下使砷从+5价还原到+3价,能够使用As2O5获得不含晶种的玻璃。这种还原反应将氧释放到熔体中、扩散到晶种中,促使晶种生长、在熔体内升高、并且离开熔体。砷的附加优点是,能够帮助清除在玻璃调整或冷却周期中因为再吸收过多氧而可能残留在玻璃中的任何晶种。因此,砷是一种优秀的澄清剂,可以在几乎无干扰的情况下制得基本上没有气态夹杂物的玻璃。
不幸的是,砷是一种毒物,是Resource Conservation and RecoveryAct(RCRA)中列出的8种重金属之一。用砷加工玻璃会产生高处理成本的废物,并且在显示器件使用寿命耗尽之后造成与器件本身相关的处置问题。
还可以使用氧化锑(Sb2O5)作为砷的替代物,但是从化学性质方面看,锑与砷很接近,因此具有许多与砷相同的问题,例如废物处置问题。
氧化锡(SnO2)是另一种已经用于玻璃生产中的澄清剂。虽然氧化锡经历了与砷类似的氧化还原反应,但是由于氧化锡在显示器玻璃的形成温度(约1200℃)下具有非常低的溶解度(约0.2重量%),这限制了可以加入玻璃批料中的量,从而限制了可以用于澄清的氧的量。因此,在传统的玻璃生产方法中,氧化锡作为化学澄清剂的效力是有限的。
上文已经描述了基本不含锑和/或砷(例如,含有小于约0.05重量%的锑或砷)的玻璃的概念。例如,通过参考结合于此的美国专利6128924揭示了一类可以单独使用或者组合使用的澄清剂,它们可以作为制造LCD显示器用玻璃的砷澄清剂的替代物。这类澄清剂包括:CeO2、SnO2、Fe2O3和含卤化物的化合物。事实上,美国专利6468933描述了一种玻璃形成方法,该方法使用了SnO2和含卤化物的化合物(为氯化物形式,例如BaCl2或CaCl2)的混合物作为基本不含砷和锑的体系中的澄清剂。
发明人提出了一种使形成玻璃时的澄清剂(例如氧化锡)的效力提高的方法。所述方法从广义上包括以下步骤:在第一温度形成包含多价氧化物澄清剂的玻璃熔体,将所述玻璃熔体冷却至低于第一温度的第二温度,在第二温度下将含氧气体引入所述冷却的玻璃熔体中,将所述冷却的玻璃熔体加热至高于第一温度的第三温度。
参见图1,显示了按照本发明的一个实施方式的示范性玻璃制造系统10的示意图,所述玻璃制造系统采用熔化法制造玻璃板。例如在美国专利3338696(Dockerty)中描述了熔化法。玻璃制造系统10包括:熔炉14(熔化器14),如箭头16所示将原始进料引入其中,然后熔化形成熔融玻璃18。该系统还包括冷却容器20。玻璃制造系统10还包括通常由铂或含铂金属制造的组件,所述含铂金属例如是铂-铑、铂-铱和它们的组合,但是这些含铂金属中还可以包含钼、钯、铼、钽、钛、钨之类的耐火金属或它们的合金。所述含铂组件可以包括澄清容器22(例如澄清器管道22)、从冷却容器至澄清器的连接管道24、混合容器26(例如搅拌室26)、从澄清器至搅拌室的连接管道28、输送容器30(例如滚筒(bowl)30)、从搅拌室至滚筒的连接管道32、下导管(downcorner)34和进口36。进口36与成形容器38(例如熔化管38)连接,在成形容器中形成玻璃板40。一般说来,成形容器38由陶瓷或玻璃-陶瓷耐火材料制成。
按照需要的玻璃组成的特定配方将玻璃原料送入熔炉14中。所述原始进料可以按照间歇法或连续法送入,原始进料包括但并不限于Si、Al、B、Mg、Ca、Zn、Sr或Ba的氧化物。进料还可以是来自以前的熔化操作的碎玻璃。如图3所示,在熔炉14中加热原始进料,在第一温度T1熔化形成玻璃熔体18。第一温度T1可以根据具体的玻璃组成而变化。对于显示器玻璃、特别是硬玻璃(即具有高熔化温度的玻璃),熔化温度可以超过1550℃;更典型的至少约为1600℃。初始进料中可以包括多价澄清剂例如SnO2,或者随后将多价澄清剂加入熔体中。或者,对于SnO2、特别是以SnO2作为澄清剂的情况下,不需要将SnO2加入进料中,因为结合了电加热熔化的熔炉电极材料通常包含SnO2。因此通过电极的逐渐分解,可以向熔体中添加足够的SnO2
可以通过传统的玻璃制造方法对进料进行加热。例如,可以首先通过位于进料表面上方的燃烧器对进料进行加热。在使用燃烧器达到合适的温度使得熔体的电阻率足够低之后,在电极之间的熔体中通过电流,由此来加热熔体。
按照该实施方式,原始进料在第一温度T1熔化之后,将玻璃熔体冷却至低于T1的第二温度T2,并且将含氧气体引入所述冷却的熔体中,例如通过鼓泡的方法引入。T1和T2之间的温度差为图3中的ΔT12。玻璃熔体可以在独立于熔炉14的容器中冷却,例如图2中所示的冷却容器20,或者玻璃熔体可以在熔炉的范围之内冷却。例如,熔化器14可以包括隔间或隔板,使得熔化器的一部分至少部分地与熔化器的另一部分隔开。如图2中所示,可以在压力条件下从气体储槽42开始通过集气管46至注射管44,将含氧气体输送至冷却容器20。可以使用阀48来控制含氧气体向玻璃熔体的流动,可以手动或远程/自动地进行控制。要求通过管道44引入玻璃熔体中的含氧气泡的尺寸(直径)约为1-40毫米,一般直径约为10毫米。如图所示,含氧气体从冷却容器20的底部引入。但是,可以从其它方向引入含氧气体,例如由通过熔体的上表面或者通过冷却容器20的侧面而进入熔体的管道引入。在一些实施方式中,所述含氧气体可以以脉冲方式而非恒定的流速形式引入熔体中。也就是说,气体的流动以预先确定的频率开始和结束。脉冲的频率必须足够缓慢,使得前面的气泡可以从供应管道的出口上升离开,并且防止后续的气泡在供应管道的输出处合并。
不希望被理论所限制,我们相信,开始时多价澄清剂的价态浓度在指定温度和熔体中指定的氧分压条件下是平衡的。这种平衡由平衡常数控制,所述平衡常数是以下三个参数的函数:熔化温度、多价氧化物澄清剂的价态浓度比(即,氧化还原比,其等于被还原的澄清剂浓度除以被氧化的澄清剂浓度)以及氧分压。也就是说,对于指定的熔化温度和氧分压,存在相应的氧化还原比。氧化还原比越低,则澄清剂保留的氧越多。在常规玻璃制造操作中,玻璃熔体在第一熔化温度(例如T1)下形成,然后加热至高于第一温度的第二澄清温度(例如T2)。温度从T1升高到T2,导致澄清剂发生还原反应,氧化还原比增大,向熔体中释放出氧。按照本发明,玻璃熔体的温度从第一温度T1降低至低于第一温度的第二温度T2,从而产生使澄清剂发生氧化反应的推动力。向玻璃熔体中引入含氧气体,当澄清剂与氧结合时降低氧化还原比。事实上使澄清剂负载氧。然后将玻璃熔体加热至高于第一温度的第三温度,促使澄清剂释放出氧。从澄清剂中释放出的氧随后扩散进熔体以及晶种中,促使晶种生长、升高至熔体表面。
应当注意到,只是简单地降低熔体温度而不向熔体输送额外的氧,并不能提高澄清剂的效力。类似地,在第一温度下引入氧并不象在熔融玻璃冷却之后引入氧那么有效。对于指定的含氧气体,在较低温度下鼓泡使得澄清剂能够储存比在较高温度下鼓泡更多的氧。本发明有利地分解了熔化和鼓泡步骤。熔化在较高温度下进行,这时熔化是最有效的(例如熔化动力学随着温度而升高),鼓泡在较低温度下进行,这时鼓泡是最有效的。
在一些实施方式中,含氧气体可以是纯氧。在一个优选的实施方式中,该气体包括与一种或多种其它气体混合的氧。例如,使用空气可以有效地使玻璃熔体澄清。但是,优选将氧与任何一种或多种稀有(惰性)气体混合,混合条件是:混合气体气泡中的氧分压超过熔体中的氧分压,所述稀有气体例如是Ar、Xe、Ne、He、Kr、N2或它们的混合物。使用稀有气体(或其混合物)可以有利地控制先前已经存在的晶种中的氧分压。也就是说,通过增大或减小稀有气体与氧的比值,可以控制引入的气泡内的氧分压。稀有气体很容易在熔体中扩散并且进入晶种中。随后晶种中的氧分压降低(晶种中存在的气体浓度发生稀释),从而增加扩散进晶种中的氧量:晶种的体积增大并且上升至熔体表面。因为与其它惰性气体相比,氦在玻璃熔体中的扩散率特别高,为3.3×10-7e-4931/T左右(T是开尔文温度),所以氦是优选的稀有气体。稀有气体可以作为与氧的混合物的形式引入冷却的熔融玻璃中,或者将稀有气体独立地引入冷却的熔融玻璃中。也就是说,不需要将稀有气体和氧作为混合物引入,或者甚至不需要将稀有气体和氧同时引入。可以在引入氧之前就开始将稀有气体引入冷却的熔融玻璃中,并且在引入氧之前完成稀有气体的引入,或者在引入氧的过程中持续地引入稀有气体。
如上所述,引入玻璃熔体中的气泡(包括含氧气体,或者独立的氧和稀有气体)作为气源,从至少三种机理方面加强了玻璃的澄清。在第一种机理的情况下,如果在引入含氧气体之前或者同时(混合或不混合)将氦之类的稀有气体引入冷却的玻璃熔体中,玻璃熔体中稀有气体的低分压使得稀有气体从引入的气泡扩散至熔体中。稀有气体最终遭遇先前已经存在的晶种并且扩散进入晶种中。晶种生长并且升高至熔体表面。所以,稀有气体起到了物理澄清剂的作用。
在第二种机理的情况下,引入熔体中的稀有气体可以扩散进先前已经存在的晶种中,从而使先前已经存在的晶种中的氧分压降低至低于通过鼓泡引入的氧分压。使先前已经存在的晶种中的氧分压降低导致鼓泡引入的氧进一步扩散进入晶种中,从而进一步促使晶种生长。
在第三种机理的情况下,如果引入的气泡中的氧分压大于熔体的氧分压,则氧从引入的气泡扩散进玻璃熔体中,能够用于补充澄清剂(与澄清剂结合)并且降低氧化还原比。以下的方程式中以氧化锡作为澄清剂的情况来示范氧化还原方程式。
Figure S200680032199XD00091
随着熔体温度的升高,方程式(1)向右移动,使锡还原并且向玻璃熔体中释放出氧。温度降低促使方程式向左移动,使锡氧化。但是应当注意到,需要氧来氧化锡。如果O2不够,则将熔体从T1冷却至T2会导致熔体的pO2降低,并且基本上不会使SnO与SnO2的相对量(即氧化还原比)发生变化。从而由引入的气泡供应氧,为氧耗尽的澄清剂提供现成的氧源,使澄清剂再次与氧结合,从而补充澄清剂。从本质上说,降低玻璃熔体的温度提供了使氧化还原方程式(1)向左移动所需要的推动力,向熔体中引入氧有助于反应的发生。
虽然要求在引入含氧气体之前将玻璃熔体的温度降低至尽可能低的第二温度T2从而使ΔT12最大并且尽可能多地使澄清剂与氧再结合,但是,鼓泡/冷却阶段的玻璃粘度必须足够低,使得玻璃熔体中能够形成引入的气泡,并且使得有足够的氧和惰性气体(如果使用的话)扩散进熔体中。ΔT12的值一般至少约为50℃。但是,鼓泡/冷却阶段的玻璃熔体温度T2应当能够使玻璃熔体的粘度小于约1000泊。超过1000泊时,玻璃粘度太高,以致于氧或氧与稀有气体无法有效地扩散,很难或无法向熔体中鼓入足够的气体。
同样还要求将玻璃熔体在第二温度T2保持一段时间(Δt10=t1-t0),使得有足够的氧扩散进熔体中。显然,向冷却的熔体中鼓入气体的有效性取决于玻璃熔体的温度(以及由此确定的粘度)、引入(鼓入)的气体的体积分数、以及熔体保持在降低的第二温度T2的停留时间。图4显示按照本发明制造包含澄清剂(氧化锡)的玻璃熔体的试验的结果,由于向冷却的玻璃熔体中引入了80体积%的氦和20体积%的氧组成的气体混合物,使得完成的玻璃中的晶种含量(菱形(diamonds))降低。基料玻璃是Corning Eagle 2000TM。图4还比较了熔体中夹杂的气体的体积分数(正方形),该体积分数是在降低的第二温度T2(其等于1550℃)的停留时间的函数,图中显示,在1550℃,制得的玻璃中的晶种(砂眼)密度、以及熔体中夹杂的气体的体积分数在约15分钟的停留时间Δt10之后显著降低。在T2停留约1.5小时之后,熔体中的晶种(砂眼)密度仍然会进一步降低。
图5说明图4的玻璃熔体的温度-粘度曲线。由图5可以看出,第二温度T2(其为1550℃)的玻璃粘度约为1000泊。优选在温度T2向玻璃熔体中鼓入含氧气体至少约15分钟;更优选至少约为1小时;最优选至少约为1.5小时。在鼓泡期间,玻璃的粘度优选小于约1000泊。
冷却-鼓泡阶段完成之后,将玻璃熔体再次加热至至少等于第一温度T1的第三温度T3,优选第三温度T3高于第一温度T1。对于在约1600℃的温度T1熔化的玻璃,一般ΔT31(=T3-T1)约为50℃。但是,ΔT31的值取决于玻璃组成以及其它因素。优选T3至少约为1600℃;更优选至少约为1650℃。优选将玻璃熔体在第三温度T3保持至少约15分钟。例如,可以按照本领域已知的常规澄清操作、在澄清容器22中再次加热玻璃熔体。当熔体处于第三温度T3时,这种高温使得澄清剂释放出氧。由澄清剂释放出的氧可以随后促使晶种生长以及清除玻璃熔体中已经存在的晶种。对玻璃熔体的澄清操作完成之后,使熔体流入搅拌室进行均化,然后流入成形容器38,这与常规的熔化法玻璃制造过程相同。
在常规的熔化法玻璃制造过程中,使熔融玻璃流入熔化管38(也称为溢流管(isopipe)或成形楔(forming wedge)),玻璃在此处溢流过熔化管的上边。然后玻璃沿着熔化管的会聚成形表面(converging forming surface)流下,分开的流体沿着会聚成形表面的顶端合并,从而形成玻璃板。因此,与会聚成形表面接触的玻璃形成玻璃板的内部,而玻璃板的表面保持原状。如上文所述,美国专利3338696和3682609中更详细地描述了熔化法玻璃形成方法和设备。
虽然已经为了说明的目的对本发明进行了描述,但是应当理解,这些描述仅仅是为了说明的目的,本领域技术人员可以在不背离由所附权利要求所限定的本发明原理和范围的情况下进行变化。例如,虽然为了说明的目的使用了熔化下拉法,但是本发明可以应用于各种玻璃制造方法。类似地,本发明揭示的方法并不限于制造液晶显示器玻璃,也不限于高熔化温度玻璃。而且,不一定要求以气态形式向熔融玻璃中引入氧。可以通过本领域中已知的水裂解或者电解方法引入氧。
需要着重指出的是,上述本发明的实施方式(特别是任何“优选”实施方式)仅仅是可能的实施例,仅仅是为了清楚地理解本发明的原理而提出的。可以在基本不背离本发明原理和范围的情况下对上述本发明的实施方式进行许多变化和修改。例如,本发明揭示的方法可以用于除了熔化法以外的其它玻璃制造过程(例如浮法玻璃制造过程)中,以及用于除了显示器件玻璃板以外的其它产品。所有这些修改和变化都包括在本发明揭示的范围中,并且受到所附权利要求的保护。

Claims (17)

1.一种制造玻璃的方法,其包括:
在第一温度T1加热进料以形成熔融玻璃,所述熔融玻璃包含多价氧化物材料;
将所述熔融玻璃冷却至低于T1的第二温度T2
在第二温度将包含氧的第一气体引入所述冷却的熔融玻璃中;
将所述冷却的熔融玻璃加热至大于或等于T1的第三温度T3
2.如权利要求1所述的方法,其特征在于,所述第一气体包含大于约5体积%的氧。
3.如权利要求2所述的方法,其特征在于,所述第一气体包含大于约20体积%的氧。
4.如权利要求1所述的方法,其特征在于,所述第一气体基本是100%的氧。
5.如权利要求1所述的方法,其特征在于,所述第一气体还包含选自下组的稀有气体:Ar、Xe、Ne、He、Kr、N2以及它们的混合物。
6.如权利要求1所述的方法,其特征在于,所述第一气体是空气。
7.如权利要求1所述的方法,其特征在于,在引入步骤中,所述冷却的熔融玻璃的粘度小于约1000泊。
8.如权利要求1所述的方法,其特征在于,所述方法还包括在第二温度引入第二气体,使其通过所述冷却的熔融玻璃,所述第二气体包含选自下组的稀有气体:Ar、Xe、Ne、He、Kr、N2和它们的混合物。
9.如权利要求1所述的方法,其特征在于,T1-T2≥50℃。
10.如权利要求1所述的方法,其特征在于,所述熔融玻璃在第二温度T2的停留时间大于约15分钟。
11.如权利要求1所述的方法,其特征在于,所述停留时间大于约1.5小时。
12.如权利要求1所述的方法,其特征在于,所述第一气体通过鼓泡引入。
13.如权利要求1所述的方法,其特征在于,所述第一气体以恒定速率引入。
14.如权利要求1所述的方法,其特征在于,所述第一气体通过脉冲方式引入。
15.一种制造玻璃的方法,其包括:
a)在第一温度T1提供熔融玻璃,所述熔融玻璃包含多价氧化物材料;
b)将所述熔融玻璃冷却至低于T1的第二温度T2
c)向所述熔融玻璃中引入包含氧的气体,其中,所述熔融玻璃在所述引入步骤中的粘度小于约1000泊;
d)将所述熔融玻璃加热至第三温度T3,其中T3≥T1
16.如权利要求15所述的方法,其特征在于,所述气体包含选自下组的稀有气体:Ar、Xe、Ne、He、Kr、N2和它们的混合物。
17.如权利要求15所述的方法,其特征在于,所述方法还包括e)由所述熔融玻璃形成玻璃板。
CN200680032199XA 2005-07-28 2006-07-12 提高澄清剂在玻璃熔体中的效力的方法 Active CN101253124B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/193,124 2005-07-28
US11/193,124 US7584632B2 (en) 2005-07-28 2005-07-28 Method of increasing the effectiveness of a fining agent in a glass melt
PCT/US2006/026909 WO2007018910A2 (en) 2005-07-28 2006-07-12 Method of increasing the effectiveness of a fining agent in a glass melt

Publications (2)

Publication Number Publication Date
CN101253124A true CN101253124A (zh) 2008-08-27
CN101253124B CN101253124B (zh) 2011-07-27

Family

ID=37692812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680032199XA Active CN101253124B (zh) 2005-07-28 2006-07-12 提高澄清剂在玻璃熔体中的效力的方法

Country Status (7)

Country Link
US (1) US7584632B2 (zh)
EP (1) EP1912907A2 (zh)
JP (1) JP5297193B2 (zh)
KR (1) KR101230754B1 (zh)
CN (1) CN101253124B (zh)
TW (1) TWI324143B (zh)
WO (1) WO2007018910A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307821A (zh) * 2009-02-10 2012-01-04 康宁股份有限公司 用来减少玻璃中的气态内含物的设备和方法
CN102770378A (zh) * 2010-02-25 2012-11-07 康宁股份有限公司 用来制造玻璃制品的设备和方法
CN103626395A (zh) * 2013-11-28 2014-03-12 中国建筑材料科学研究总院 一种高硼硅玻璃的制备方法、高硼硅玻璃及其应用
CN102264652B (zh) * 2008-11-26 2014-06-04 康宁股份有限公司 输送熔融材料的方法和装置
CN107922231A (zh) * 2015-08-26 2018-04-17 康宁股份有限公司 用于增加均匀性的玻璃熔融系统和方法
CN108290761A (zh) * 2015-11-23 2018-07-17 康宁股份有限公司 用于增加批料溶解和玻璃均匀性的玻璃熔融系统和方法
CN109751616A (zh) * 2017-11-03 2019-05-14 秦皇岛玻璃工业研究设计院有限公司 一种降低玻璃熔窑NOx排放的增氧燃烧设备与工艺
CN114804618A (zh) * 2022-04-23 2022-07-29 绵竹市红森玻璃制品有限责任公司 一种玻璃复合澄清剂及制备方法和应用

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242996A1 (en) * 2005-04-27 2006-11-02 Gilbert Deangelis System and method for controlling the environment around one or more vessels in a glass manufacturing system
KR100977699B1 (ko) * 2005-07-06 2010-08-24 아사히 가라스 가부시키가이샤 무알칼리 유리의 제조 방법 및 무알칼리 유리판
US7854144B2 (en) * 2005-07-28 2010-12-21 Corning Incorporated Method of reducing gaseous inclusions in a glass making process
US7584632B2 (en) 2005-07-28 2009-09-08 Corning Incorporated Method of increasing the effectiveness of a fining agent in a glass melt
US7454925B2 (en) * 2005-12-29 2008-11-25 Corning Incorporated Method of forming a glass melt
DE102006003531A1 (de) * 2006-01-24 2007-08-02 Schott Ag Verfahren und Vorrichtung zum blasenfreien Transportieren, Homogenisieren und Konditionieren von geschmolzenem Glas
DE102006003521B4 (de) * 2006-01-24 2012-11-29 Schott Ag Vorrichtung und Verfahren zum kontinuierlichen Läutern von Gläsern mit hohen Reinheitsanforderungen
DE102007008299B4 (de) * 2006-08-12 2012-06-14 Schott Ag Verfahren zur Herstellung von Gläsern, wobei die chemische Reduktion von Bestandteilen vermieden wird
CN101980983B (zh) * 2008-02-26 2014-04-16 康宁股份有限公司 用于硅酸盐玻璃的澄清剂
US20110098171A1 (en) * 2008-03-03 2011-04-28 Saint-Gobain Glass France Method of producing glass
US20090320525A1 (en) * 2008-06-26 2009-12-31 William Weston Johnson Method of bubbling a gas into a glass melt
US20100083704A1 (en) * 2008-10-08 2010-04-08 Paul Richard Grzesik Methods and apparatus for manufacturing glass sheet
US8304358B2 (en) 2008-11-21 2012-11-06 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby
US8713967B2 (en) * 2008-11-21 2014-05-06 Corning Incorporated Stable glass sheet and method for making same
DE102009021181B4 (de) 2009-05-13 2012-03-29 Schott Ag Vorrichtung und Verfahren zum Schmelzen und Läutern einer Glasschmelze und Verwendung der Vorrichtung
TWI487675B (zh) * 2009-11-25 2015-06-11 Corning Inc 產生玻璃片之融流處理
US10421681B2 (en) * 2010-07-12 2019-09-24 Corning Incorporated Alumina isopipes for use with tin-containing glasses
US8722554B2 (en) * 2010-08-03 2014-05-13 Eurokera Aluminosilicate glasses with improved fining behaviour
FR2963617B1 (fr) * 2010-08-03 2015-06-05 Eurokera Verres d'aluminosilicate de lithium (precurseurs de vitroceramique); vitroceramiques de beta-quartz et/ou de beta-spodumene; articles en lesdites vitroceramiques; procedes d'obtention
US8177114B2 (en) * 2010-08-30 2012-05-15 Corning Incorporated Method for eliminating carbon contamination of platinum-containing components for a glass making apparatus
US8613806B2 (en) 2010-08-30 2013-12-24 Corning Incorporated Method for eliminating carbon contamination of platinum-containing components for a glass making apparatus
JP5002731B2 (ja) * 2010-09-30 2012-08-15 AvanStrate株式会社 ガラス板製造方法
US10173915B2 (en) 2011-02-18 2019-01-08 Gas Technology Institute Convective thermal removal of gaseous inclusions from viscous liquids
WO2012132472A1 (ja) * 2011-03-31 2012-10-04 AvanStrate株式会社 ガラス板の製造方法
JP5308487B2 (ja) * 2011-07-20 2013-10-09 AvanStrate株式会社 液晶ディスプレイ用ガラス基板の製造方法
RU2652773C2 (ru) * 2011-10-25 2018-04-28 Корнинг Инкорпорейтед Композиции стекла с повышенной химической и механической стойкостью
DE102012202696B4 (de) 2012-02-22 2015-10-15 Schott Ag Verfahren zur Herstellung von Gläsern und Glaskeramiken, Glas und Glaskeramik und deren Verwendung
DE102012202695B4 (de) 2012-02-22 2015-10-22 Schott Ag Verfahren zur Herstellung von Gläsern und Glaskeramiken, LAS-Glas und LAS-Glaskeramiken und deren Verwendung
JP5719797B2 (ja) * 2012-04-06 2015-05-20 AvanStrate株式会社 ガラス板の製造方法及びガラス板の製造装置
JP6418455B2 (ja) * 2013-01-24 2018-11-07 コーニング インコーポレイテッド 溶融ガラスを清澄化するためのプロセス及び装置
US20150107306A1 (en) * 2013-10-18 2015-04-23 Corning Incorporated Apparatus and methods for producing glass ribbon
CN204356216U (zh) * 2014-03-31 2015-05-27 安瀚视特控股株式会社 玻璃基板制造装置
US9776904B2 (en) 2014-06-06 2017-10-03 Owens-Brockway Glass Container Inc. Process and apparatus for refining molten glass
WO2016118788A1 (en) * 2015-01-21 2016-07-28 Axenic Power LLC Vitrified material control system and method
DE102016109974A1 (de) * 2016-05-31 2017-11-30 Schott Ag Verfahren zur Herstellung eines Glasproduktes sowie verfahrensgemäß erhaltenes Glasprodukt
KR102615608B1 (ko) * 2017-03-16 2023-12-19 코닝 인코포레이티드 유리 용융물 표면상에서의 기포 수명 감소 방법
CN110590128A (zh) * 2019-09-30 2019-12-20 辽宁九凤武岩科技有限公司 一种玄武岩连续纤维生产方法
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
US11440829B2 (en) * 2019-10-01 2022-09-13 Owens-Brockway Glass Container Inc. Utilization of sulfate in the fining of submerged combustion melted glass
CN114276001B (zh) * 2021-09-18 2024-03-26 长兴旗滨玻璃有限公司 一种低气泡含量的浮法玻璃制备方法及浮法玻璃

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1953023A (en) * 1927-02-18 1934-03-27 Hartford Empire Co Method and apparatus for making glass
US2331052A (en) * 1941-11-27 1943-10-05 Owens Illinois Glass Co Method of refining molten glass
US2773111A (en) * 1948-01-23 1956-12-04 Saint Gobain Method and apparatus for manufacturing glass
US3015190A (en) 1952-10-13 1962-01-02 Cie De Saint Gobain Soc Apparatus and method for circulating molten glass
US3669435A (en) 1970-02-26 1972-06-13 American Optical Corp All-ceramic glass making system
US3716349A (en) 1971-05-17 1973-02-13 American Optical Corp Method for producing laser glasses having high resistance to internal damage and the product produced thereby
US3811858A (en) * 1972-06-09 1974-05-21 Ppg Industries Inc Method and apparatus for mixing molten glass by bubbling
US3811860A (en) 1972-06-09 1974-05-21 Ppg Industries Inc Processing of stirring molten glass with bubbles from electrolysis
US3811859A (en) 1972-06-09 1974-05-21 Ppg Industries Inc Process and apparatus for electrolytically generating stirring bubbles in a glass melt
US3929440A (en) 1973-11-30 1975-12-30 Gen Electric Co Ltd Manufacture of laser glass
US3960532A (en) 1974-03-04 1976-06-01 Philadelphia Quartz Company Preparing alkali metal silicate glass with bubbles
US3928440A (en) * 1974-07-29 1975-12-23 Nalco Chemical Co Acrylonitrile hydrolysis and catalyst useful therefor
JPS6117427A (ja) 1984-07-02 1986-01-25 Nippon Sheet Glass Co Ltd 溶融ガラスの冷却方法及びガラス溶解炉の冷却槽
DE4207059C1 (de) 1992-03-06 1993-10-21 Schott Glaswerke Verfahren zur Läuterung oxidischer Schmelzen
US6508083B1 (en) 1996-08-21 2003-01-21 Nippon Electric Glass Co., Ltd. Alkali-free glass and method for producing the same
US6664616B2 (en) * 1996-11-21 2003-12-16 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
US6334337B1 (en) 1999-08-17 2002-01-01 Pedro Buarque de Macedo Air bubbler to increase glass production rate
DE19939771B4 (de) 1999-08-21 2004-04-15 Schott Glas Verfahren zur Läuterung von Glasschmelzen
DE10003948B4 (de) * 2000-01-29 2006-03-23 Schott Ag Verfahren zum Erschmelzen, Läutern und Homogenisieren von Glasschmelzen
DE10009425A1 (de) 2000-02-28 2001-09-06 Schott Glas Verfahren zur Sauerstoffläuterung von Glasschmelzen
DE10034985C1 (de) * 2000-07-19 2001-09-06 Schott Glas Verfahren zur Herstellung von Aluminosilicatgläsern, Aluminosilicatgläser sowie deren Verwendungen
TWI276611B (en) 2000-08-17 2007-03-21 Hoya Corp Process for producing glass and glass-melting apparatus thereof
DE10042771B4 (de) 2000-08-31 2004-02-12 Schott Glas Verfahren zur Steuerung und Einstellung des Redoxzustandes von Redox-Läutermitteln in einer Glasschmelze
EP1184343B1 (de) 2000-09-01 2006-05-24 Schott Ag Vorrichtung zum Läutern einer Glasschmelze
DE10136875C2 (de) 2000-09-02 2003-04-24 Schott Glas Verfahren zum Eindüsen von Gas in eine Glasschmelze
DE10142405B4 (de) 2000-09-04 2011-09-15 Schott Ag Vorrichtung, deren Verwendung und Verfahren zum Einleiten von aggressiven Gasen in eine Glasschmelze
DE10060728A1 (de) 2000-12-07 2002-06-20 Messer Griesheim Gmbh Vorrichtung und Verfahren zum Einschmelzen von Glas
DE10138109A1 (de) * 2001-08-03 2002-09-12 Schott Glas Verfahren und Vorrichtung zum Herstellen von optischen Gläsern
JP2003054958A (ja) 2001-08-21 2003-02-26 Sumitomo Electric Ind Ltd ガラス物品の製造方法
DE10253222B4 (de) 2002-02-26 2008-01-17 Ept Eglass Platinum Technology Gmbh Verfahren und Vorrichtung zum Läutern von schmelzflüssigem Glas
JP2004091307A (ja) 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd ガラス製造方法
WO2004028987A1 (en) 2002-09-27 2004-04-08 Ppg Industries Ohio, Inc. Apparatus and method for producing float glass having reduced defect density
US20060174655A1 (en) * 2003-04-15 2006-08-10 Hisashi Kobayashi Process of fining glassmelts using helium bubblles
JP2005053712A (ja) 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd 無アルカリガラス
US6993936B2 (en) 2003-09-04 2006-02-07 Corning Incorporated System and method for suppressing the formation of oxygen inclusions and surface blisters in glass sheets and the resulting glass sheets
US7584632B2 (en) 2005-07-28 2009-09-08 Corning Incorporated Method of increasing the effectiveness of a fining agent in a glass melt

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264652B (zh) * 2008-11-26 2014-06-04 康宁股份有限公司 输送熔融材料的方法和装置
CN102307821A (zh) * 2009-02-10 2012-01-04 康宁股份有限公司 用来减少玻璃中的气态内含物的设备和方法
CN102307821B (zh) * 2009-02-10 2015-01-07 康宁股份有限公司 用来减少玻璃中的气态内含物的设备和方法
CN102770378B (zh) * 2010-02-25 2016-08-31 康宁股份有限公司 用来制造玻璃制品的设备和方法
CN102770378A (zh) * 2010-02-25 2012-11-07 康宁股份有限公司 用来制造玻璃制品的设备和方法
CN103626395A (zh) * 2013-11-28 2014-03-12 中国建筑材料科学研究总院 一种高硼硅玻璃的制备方法、高硼硅玻璃及其应用
CN103626395B (zh) * 2013-11-28 2016-01-06 中国建筑材料科学研究总院 一种高硼硅玻璃的制备方法、高硼硅玻璃及其应用
CN107922231A (zh) * 2015-08-26 2018-04-17 康宁股份有限公司 用于增加均匀性的玻璃熔融系统和方法
CN108290761A (zh) * 2015-11-23 2018-07-17 康宁股份有限公司 用于增加批料溶解和玻璃均匀性的玻璃熔融系统和方法
CN109751616A (zh) * 2017-11-03 2019-05-14 秦皇岛玻璃工业研究设计院有限公司 一种降低玻璃熔窑NOx排放的增氧燃烧设备与工艺
CN109751616B (zh) * 2017-11-03 2024-03-22 秦皇岛玻璃工业研究设计院有限公司 一种降低玻璃熔窑NOx排放的增氧燃烧设备与工艺
CN114804618A (zh) * 2022-04-23 2022-07-29 绵竹市红森玻璃制品有限责任公司 一种玻璃复合澄清剂及制备方法和应用
CN114804618B (zh) * 2022-04-23 2023-11-28 绵竹市红森玻璃制品有限责任公司 一种玻璃复合澄清剂及制备方法和应用

Also Published As

Publication number Publication date
WO2007018910A2 (en) 2007-02-15
CN101253124B (zh) 2011-07-27
JP5297193B2 (ja) 2013-09-25
WO2007018910A3 (en) 2007-03-29
TW200722394A (en) 2007-06-16
JP2009502715A (ja) 2009-01-29
EP1912907A2 (en) 2008-04-23
US20070022780A1 (en) 2007-02-01
TWI324143B (en) 2010-05-01
US7584632B2 (en) 2009-09-08
KR20080029005A (ko) 2008-04-02
KR101230754B1 (ko) 2013-02-06

Similar Documents

Publication Publication Date Title
CN101253124B (zh) 提高澄清剂在玻璃熔体中的效力的方法
JP6052826B2 (ja) ガラス製造プロセスにおいてガス状含有物を減少させる方法
CN102307821B (zh) 用来减少玻璃中的气态内含物的设备和方法
CN102076618B (zh) 将气体鼓入玻璃熔体的方法
JP5139320B2 (ja) ガラス溶融体を形成する方法
CN103382077A (zh) 玻璃板的制造方法
JP7171600B2 (ja) ガラス溶融物の表面上の気泡の寿命を減少させる方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant