CN101240933B - 多系统空调及用于控制所述多系统空调的方法 - Google Patents

多系统空调及用于控制所述多系统空调的方法 Download PDF

Info

Publication number
CN101240933B
CN101240933B CN2007101694683A CN200710169468A CN101240933B CN 101240933 B CN101240933 B CN 101240933B CN 2007101694683 A CN2007101694683 A CN 2007101694683A CN 200710169468 A CN200710169468 A CN 200710169468A CN 101240933 B CN101240933 B CN 101240933B
Authority
CN
China
Prior art keywords
capacity
indoor unit
air
compressor
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101694683A
Other languages
English (en)
Other versions
CN101240933A (zh
Inventor
南光日
林炳局
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101240933A publication Critical patent/CN101240933A/zh
Application granted granted Critical
Publication of CN101240933B publication Critical patent/CN101240933B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种多系统空调,所述多系统空调用于根据室内单元的空气量限定压缩机的增频宽度,并使室内单元能够排出最舒适温度的空气而与室内单元的设置空气量无关。该多系统空调包括室外单元、连接到室外单元的多个室内单元、以及用于根据室内单元的操作容量改变其自身频率的压缩机。一种用于操作该多系统空调的方法包括步骤:通过每一个室内单元比较设置温度与室温,并计算每一个室内单元所需要的容量;计算室内单元所有需要的容量的总和,用以计算所有操作的室内单元的组合比;以及比较计算出的组合比与基准组合比,用以判定室内单元的组合比是否等于或小于基准组合比,当计算出的组合比等于或小于基准组合比时,根据操作的室内单元将压缩机的增频宽度限定为预定值,并以该限定值操作空调。

Description

多系统空调及用于控制所述多系统空调的方法
技术领域
本发明涉及一种用于将多个室内单元连接到单个室外单元的多系统空调,更具体地,涉及一种用于积极地控制压缩机的频率使得尽管空气量发生变化室内单元也可以排出预定温度的空气的多系统空调及用于控制所述多系统空调的方法。
背景技术
通常,空调被广泛地用于使室温降低和升高,并且利用用于使致冷剂在室内和室外单元之间循环的普通的冷却循环。因此,当液体致冷剂蒸发时,空调吸收室内的热量,并且当致冷剂液化时空调散发热量,使得可以执行冷却或加热操作。
普通空调包括单个室外单元和连接至单个室外单元的单个室内单元。进来,希望使用多系统空调的用户数量迅速增加。多系统空调将多个室内单元连接到单个室外单元,使得室内单元互相独立地执行冷却或加热操作。
由于多系统空调使室内单元只连接到一个室外单元,因此室内单元的操作容量可以比室外单元更高或更低。考虑到该情况,多系统空调使用变频式压缩机。每一个室内单元都比较室温和基准温度(或预设温度),并且如图1所示利用与室内单元相对应的需要的容量计算适当的冷却/加热容量,以决定室内单元容量的组合比(即,室外单元容量与室内单元容量的一致比(agreement ratio)),使得在预定范围内改变频率。
参照图1,如果室内单元组合比等于或小于为130%的最大操作容量,则压缩机的频率在最小冷却容量和最大冷却容量之间改变。如果室内单元组合比(%)高于为130%的最大操作容量,则压缩机的频率固定为最大频率。
图1中示出的压缩机频率的增频限定值在除了一些情况(例如,用于保护系统的情况,和根据操作模式保持/降低频率的增频限定情况)外的大多数情况下都被固定为最大频率,使得压缩机频率固定为最大频率,并且压缩机以最大频率操作。
然而,传统空调只以降低室温为目的,但最近研制的空调考虑室内单元的噪音为重要因素,用于使用户可以选择相应产品。在使用最近研制的空调的情况下,如果用户将每一个室内单元的空气量设定为弱空气模式以降低室内单元的噪音,则会降低室内单元的风扇电机的RPM。然而,传统的多系统空调在强空气量模式和弱空气量模式下具有相同的频率限定值,而与室内单元的空气量无关。因此,如图1所示,在强空气量模式下从室内单元排出的空气的温度低于弱空气量模式下所排出的空气的温度,使得用户可能会感到冷。并且,如果从室内单元排出的空气的温度过度下降,冷凝水可能会散布在周围。
实际上,如果在所有空调中统计计算用户最舒适的室温,则管道式空调或屋顶式空调为用户提供大约16℃的最舒适室温,壁式空调或立式空调为用户提供大约14℃的最舒适室温。然而,上述的传统多系统空调控制压缩机频率而与室内单元的空气量无关,使得从室内单元排出的空气的温度下降到用户可能会感到冷的大约11℃~12℃。
发明内容
因此,本发明的一个方面提供一种多系统空调及用于控制所述多系统空调的方法,其中该多系统空调用于根据室内单元的空气量限定压缩机频率增加的范围,使得即使当用户将设置的空气量改变成另一空气量时,所述多系统空调也可以使室内单元为用户排出最舒适的预定温度的空气。
本发明的其它方面和/或优点将在以下的说明中部分阐述,并且将从所述说明中部分地清楚呈现,或可在对本发明的实践中获悉。
根据本发明,上述和/或其他方面可通过提供一种用于操作多系统空调的方法而实现,所述多系统空调包括室外单元、连接到室外单元的多个室内单元、和用于根据室内单元的操作容量改变其自身频率的压缩机,所述方法包括步骤:通过每一个室内单元比较设置温度与室温,并计算每一个室内单元所需要的容量;计算室内单元所有需要的容量的总和,用以计算所有操作的室内单元的组合比;以及比较计算出的组合比与基准组合比,用以判定室内单元的组合比是否等于或小于基准组合比,当计算出的组合比等于或小于基准组合比时,根据操作的室内单元的空气量将压缩机的增频宽度限定为预定值,并以所述限定值操作所述空调。
优选地,所述室内单元的组合比等于室内单元所需的容量的总和与室外单元的容量的比。
优选地,所述限定压缩机的增频宽度的步骤包括:检查所有操作的室内单元的空气量,确定每一个室内单元的空气量校正系数,并根据确定的每一个室内单元的空气量校正系数计算每一个操作的室内单元的最大频率容量(Qmax);以及根据计算的最大操作容量(Qmax)为每个空气量限定压缩机的最大频率。
优选地,每一个操作的室内单元的最大操作容量通过以下公式计算:
[公式]
最大操作容量(Qmax)=∑(对于每一个室内单元的容量×对于每一个室内单元的空气量校正系数)×容量计算系数+(操作的室内单元的平均空气量校正系数)×容量计算常数
其中,所述对于每一个室内单元的容量表示根据操作的室内单元的状态而改变的容量值,所述对于每一个室内单元的空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值,所述容量计算系数表示通过容量和对于每一个室内单元的空气量校正系数计算的成比例的常数,所述操作的室内单元的平均空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值的平均值,以及所述容量计算常数表示用于减少计算室内单元的容量时所产生的误差率的误差值。
优选地,对于每一个室内单元的容量、容量计算系数、和容量计算常数表示根据操作的室内单元的情况预先存储在控制器中的数据。
优选地,该方法进一步包括:如果室内单元的组合比高于基准组合比,则将压缩机的增频宽度限定为表示压缩机的容许容量的缺省值而与操作的室内单元的空气量无关,并操作空调。
根据本发明的另一个方面,提供一种多系统空调,包括:室外单元;连接到所述室外单元的多个室内单元;压缩机,所述压缩机用于根据所述室内单元的操作容量改变其自身频率;以及控制器,所述控制器用于通过每一个室内单元比较设置温度和室温,计算每一个室内单元所需的容量,计算所述室内单元所需要的全部容量的总和以计算所有所述操作的室内单元的组合比,比较计算出的组合比与基准组合比以判定所述室内单元的组合比是否等于或小于所述基准组合比,当所述计算出的组合比等于或小于基准组合比时,根据操作的室内单元的空气量将压缩机的增频宽度限定为预定值,并以限定值操作所述空调。
优选地,控制器表示包含在所述室外单元中的室外控制器。
优选地,控制器检查所有操作的室内单元的空气量,确定每一个室内单元的空气量校正系数,根据确定的每一个室内单元的空气量校正系数计算每一个操作的室内单元的最大频率容量(Qmax),并根据计算出的最大操作容量(Qmax)限定对于每一个空气量的压缩机的最大频率。
优选地,如果室内单元的组合比高于所述基准组合比,则所述控制器将压缩机的增频宽度限定为表示压缩机的容许容量的缺省值而与操作的室内单元的空气量无关,并操作空调。
附图说明
将从以下的实施例的说明中,参照附图使本发明的这些和/或其它方面和优点变得显而易见并更易于理解,其中:
图1示出用于控制传统的多系统空调的压缩机频率的图表;
图2是说明根据本发明的空调的致冷剂通路的概念图;
图3是说明根据本发明的多系统空调的方块图;
图4A至4B是说明根据本发明的用于操作多系统空调的方法的流程图;以及
图5示出用于控制根据本发明的多系统空调的压缩机频率的图表。
具体实施方式
现在将详细参考本发明的实施例,本发明的实例在附图中说明,其中全文相同的参考符号表示相同的元件。以下将通过参照附图描述实施例以说明本发明。
图2是说明根据本发明的空调的致冷剂通路的概念图。为便于说明并对本发明更好的理解,假定多系统空调包括单个室外单元10和连接到单个室外单元的四个室内单元20A、20B、20C和20D。
参照图2,多系统空调包括单个室外单元10和并联到室外单元10的多个室内单元20A、20B、20C和20D,并且在室内单元20A、20B、20C和20D与室外单元10之间布置致冷剂管,使得室内单元20A、20B、20C和20D通过致冷剂管连接至室外单元10。
室外单元10包括压缩机11、四通阀12、室外热交换器13、室外单元风扇14、四个电子膨胀阀(EEV)和蓄能器16。四个电子膨胀阀(EEV)分别与四个室内单元20A、20B、20C和20D相对应。室内单元20A、20B、20C和20D分别包括室内热交换器21A、21B、21C和21D,室内风扇22A、22B、22C和22D,和室内温度传感器23A、23B、23C和23D。
压缩机11用作变频式压缩机,所述压缩机压缩所吸收的低温且低压的致冷剂,使得所述压缩机排出高温且高压的气态致冷剂。
四通阀12包括两个独立的通路,使得在加热模式期间从压缩机11排出的高温且高压的气体致冷剂通过两个通路中的一个通路施加到室内热交换器21A、21B、21C和21D,并且在冷却模式期间通过另一个通路施加到室外热交换器13。如果用户选择加热模式或冷却模式,则四通阀12根据用户选择的操作模式打开或关上以使致冷剂流转向。
在冷却模式下,室外热交换器13用作用于使高温且高压的气体致冷剂冷凝成常温且高压的液体致冷剂的冷凝器。并且,在加热模式下,室外热交换器13用作用于使低温且低压的液体致冷剂蒸发成气体致冷剂的蒸发器。结果,室外热交换器13可以根据焓变化与周边空气进行热交换。
室外风扇14用作用于加速室外热交换器13中流动的致冷剂与空气之间的热交换操作的催化器,使得提高了室外单元10的热交换容量。
EEV 15A、15B、15C、和15D连接在室外热交换器13和室内热交换器21A、21B、21C和21D之间,并使通过一个热交换器冷凝的常温且高压的液体致冷剂膨胀成液体致冷剂和气体致冷剂在其中混合的低温且低压的致冷剂,使得致冷剂降压。
蓄能器16安装在压缩机11的吸入部分,使得从压缩机11吸入的致冷剂转变成气体致冷剂。
室内热交换器21A、21B、21C和21D在冷却模式下用作蒸发器,而在加热模式下用作冷凝器,从而与周边空气进行热交换。
室内风扇22A、22B、22C、和22D加速室内热交换器21A、21B、21C或21D中流动的致冷剂与空气之间的热交换,并且同时使冷空气或热空气排放到要被冷却或加热的房间。
室内温度传感器23A、23B、23C、和23D检测个别室内单元20A、20B、20C和20D的室温。
为了启动冷却模式或加热模式,上述多系统空调根据用户的命令通过开关四通阀12使致冷剂流转向。
例如,在加热模式下,打开四通阀,使得致冷剂沿图2的实线箭头形成冷却循环,其中冷却循环由压缩机11→四通阀12→室内热交换器21A、21B、21C和21D→EEV 15A、15B、15C和15D→室外热交换器13→四通阀12→蓄能器16→压缩机11组成。
在冷却模式下,关闭四通阀12,使得致冷剂沿图2的虚线箭头形成冷却循环,其中冷却循环由压缩机11→四通阀12→EEV 15A、15B、15C和15D→室内热交换器21A、21B、21C和21D→四通阀12→蓄能器16→压缩机11组成。
图3是说明根据本发明的多系统空调的方块图。
参照图3,室外单元10包括微型计算机(也称微处理器)及其周边电路,并且进一步包括用于控制室外单元10的整体操作的室外控制器17、和用于控制压缩机11的输出频率以改变压缩机11的转数的反相电路18。
室外控制器17从个别室内单元20A、20B、20C和20D接收冷却或加热命令,控制从压缩机11排出的致冷剂通过四通阀12流入室外热交换器13或室内热交换器21A、21B、21C和21D,使得执行冷却或加热操作。
室外控制器17从室内单元20A、20B、20C和20D接收控制信号和设置温度与室温之间的比较结果,并控制EEV 15A、15B、15C和15D的旋转、室外风扇14、和压缩机11的转数。在该情况下,室外控制器17根据需要用于室内单元20A、20B、20C和20D的容量和(即,冷却/加热容量)控制压缩机11的容量(即,反相电路的输出频率)。
反相电路18对从商用AC电源供给的电压进行整流,根据室外控制器17的控制命令将已整流的电压转化成预定频率的电压电平,并将转化的结果发送至压缩机11。
室内单元20A、20B、20C和20D包括微型计算机及其周边电路,并且进一步包括分别用于控制室内单元20A、20B、20C和20D的整体操作的室内控制器24A、24B、24C和24D。室内控制器24A、24B、24C和24D通过通信线路连接到室外控制器17,并将通过遥控器输入的用户命令(例如,设置温度和设置的空气量)和各室内温度传感器23A、23B、23C和23D的室温发送到室外控制器17。
以下将参照图4A和4B说明上述多系统空调的操作和效果。
图4A至4B是说明根据本发明的用于操作多系统空调的方法的流程图。
参照图4A和4B,包括只连接到一个室外单元10的四个室内单元20A、20B、20C和20D的多系统空调被设计成控制压缩机11的最大操作频率,并且以下将说明其细节。
室外控制器17在操作S100中判定多系统空调是否开始操作。如果在操作S100中判定出多系统空调开始操作,则在操作S102中,室外控制器17从包含在室内单元20A、20B、20C和20D中的室内控制器24A、24B、24C和24D接收通过用户输入的操作信息(例如,设置温度和设置的空气量)。
在该情况下,在操作S 104中,室内单元20A、20B、20C和20D的室内温度传感器23A、23B、23C和23D检测个别室内单元20A、20B、20C和20D的室温,并将检测的结果分别传送到室内控制器24A、24B、24C和24D。
因此,室内控制器24A、24B、24C和24D比较室内单元20A、20B、20C和20D的设定温度和室温,利用需要的室内单元20A、20B、20C和20D的容量值分别计算适当的冷却/加热容量,并在操作S106中将计算的结果发送至室外控制器17。
因此,在操作S108中,室外控制器17计算计算出的室内单元20A、20B、20C和20D的容量的总和,并计算全部室内单元20A、20B、20C和20D所需的容量。同样在现有技术中已知,每一个室内单元20A、20B、20C或20D都比较设置温度与室温,并根据比较结果计算需要的容量以获得适当的冷却/加热容量,使得可以计算出所有室内单元20A、20B、20C和20D所需的容量,并且为方便起见在此将忽略其详细说明。
依此方式,如果计算出室内单元20A、20B、20C和20D需要的容量Q,则在操作S110中,室内控制器17比较计算出的容量Q与第二基准容量Q2(即130%)。如果在操作S110中,计算出的容量Q高于第二基准容量Q2,则室外控制器17判定室内单元20A、20B、20C和20D的容量的组合比(即,室内单元20A、20B、20C和20D的所有容量的总和)等于或高于130%。该130%的组合比表示室内单元20A、20B、20C和20D的蒸发器的面积非常大,使得尽管频率增加到压缩机11的容许容量,室外控制器17在获得排出空气的足够温度方面仍然可能具有困难。因此,如果由于室温和设定温度之间的高差距而需要冷却模式,则室外控制器17使压缩机11在从初始频率到表示缺省值的最大频率(大约100Hz)的预定范围内进行操作,使得在操作S112中,压缩机11的最大频率被限定为缺省频率,并且压缩机11如图5所示进行操作。
如果在操作S110中,计算出的容量Q等于或小于第二基准容量Q2,则在操作S114中,室外控制器17比较计算出的容量Q与第一基准容量Q1(即,100%)。如果在操作S114中,计算出的容量Q高于第一基准容量Q1,则室外控制器17判定室内单元20A、20B、20C和20D的容量的组合比在从100%到130%的范围内。该100%~130%的组合比表示室内单元20A、20B、20C和20D的蒸发器的面积大于室外单元10的容量,压缩机11如图5所示将其自身的最大频率限定成大约60Hz的额定频率,使得在操作116中,压缩机11的操作范围等于从额定容量到最小容量的范围。
依此方式,如果室内单元20A、20B、20C和20D的组合比高于室外单元10的容量,并且最大频率被限定为额定频率的大约80%,则由于室内单元20A、20B、20C和20D大于室外单元10,所以排出空气的温度升高。因此,为了获得排出空气足够的温度,室外控制器17使容量增加至额定容量。
同时,如果在操作S114中,计算的容量Q等于或少于第一基准容量Q1,则室外控制器17判定室内单元20A、20B、20C和20D的组合比等于或小于100%。该100%或更小的组合比表示室内单元20A、20B、20C和20D的组合比(即,室内单元20A、20B、20C和20D的全部容量的总和)小于室外单元10的容量。尽管操作容量下降到80%,然而当室内单元20A、20B、20C和20D的全部空气量显示弱空气量时,排出空气具有足够低的温度。从室内单元20A、20B、20C和20D排出的空气的温度可以根据室内单元20A、20B、20C和20D的空气量降低。在该情况下,室外控制器17必须考虑室内单元20A、20B、20C和20D的空气量计算最大的操作容量,并且必须控制压缩机11的最大频率。
为此,在操作S118中,室外控制器17从操作的室内单元20A、20B、20C和20D中判定预定的室内单元(例如,室内单元A)的空气量是否是强空气量。如果在操作S118中判定是强空气量模式,则在操作S120中,空气量的校正系数被设定为“RH”(例如,在强空气量模式下大约是1.2)。
如果在操作S118中判定出操作的室内单元(例如,室内单元A)的空气量不等于强空气量,则在操作122中,室外控制器17判定前述的操作的室内单元的空气量是否定于中间空气量。如果在操作S122中判定是中间空气量,则在操作S124中,室外控制器17将空气量校正系数设定为“RM”(即,在中间空气量模式下大约是1.0)。
在操作S122中,如果操作的室内单元(例如,室内单元A)的空气量不等于中间空气量,则在操作S126中,室外控制器17判定操作单元具有弱空气量,使得所述室外控制器将空气量校正系数设定为“RL”(例如,在弱空气量模式下大约为0.7)。
如上所述,提供室外控制器17利用上述方法判定对于每一个室内单元20A、20B、20C或20D的空气量校正系数,并且在操作S128中检查所有的室内单元20A、20B、20C和20D的空气量,在操作S130中可以通过下列公式计算室内单元20A、20B、20C和20D的最大操作容量(Qmax)。
[公式]
最大操作容量(Qmax)=∑(对于每一个室内单元的容量×对于每一个室内单元的空气量校正系数)×容量计算系数+(操作的室内单元的平均空气量校正系数)×容量计算常数
在该情况下,对于每一个室内单元的容量表示随操作的室内单元20A、20B、20C和20D的状态而改变的容量值。对于每个室内单元的空气量校正系数表示根据操作的室内单元20A、20B、20C和20D的空气量判定的空气量校正值。容量计算系数表示通过每一个室内单元的容量和空气量校正系数计算的成比例的常数。操作的室内单元的平均空气量校正系数表示根据操作的室内单元20A、20B、20C和20D的空气量判定的空气量校正值的平均值。容量计算常数表示用于降低计算室内单元20A、20B、20C和20D的容量时产生的误差率的误差值。
在该情况下,对于每一个室内单元的容量、容量计算系数、和容量计算常数根据操作的室内单元20A、20B、20C和20D的状态从室外控制器17中规定的基本数据中获得,并且预先存储在室外控制器17的内部存储器中。
如果计算出操作的室内单元20A、20B、20C和20D的最大操作容量Qmax,则在操作S132中,室外控制器17根据室内单元20A、20B、20C和20D的最大操作容量Qmax可变地控制压缩机11的最大频率,如图5所示。
随后,在操作S134中,室外控制器17判定多系统空调是否停止操作。如果在操作S134中,多系统空调没有停止操作,则室外控制器17返回操作S104。如果在操作S134中,多系统空调停止操作,则室外控制器17停止多系统空调的全部操作。
从以上的说明中明显看出,根据本发明的多系统空调及用于操作所述多系统空调的方法根据室内单元的情况不同地设定压缩机的增频限定宽度,使得在各情况下可以相似地保持排出的空气的温度。多系统空调积极地反映出室内单元的情况,使得所述多系统空调可以为用户提供更加舒适的环境,并且可以防止由于过低温度导致的房间或房子的内部损坏,其中该过低的温度可以使内部产生露水并使冷凝器的水散布。
尽管已经示出并说明了本发明的几个实施例,然而本领域普通技术人员将认识到的是,在不背离本发明的原理和精神的情况下可以对这些实施例进行变更,本发明的范围由权利要求及其等效形式所限定。

Claims (11)

1.一种用于操作多系统空调的方法,所述多系统空调包括:室外单元、连接到所述室外单元的多个室内单元、和用于根据所述室内单元的操作容量改变其自身频率的压缩机,所述方法包括步骤:
通过每一个所述室内单元比较设置温度与室温,并计算每一个室内单元所需要的容量;
计算所述室内单元所有需要的容量的总和,用以计算所有操作的室内单元的组合比;以及
比较计算出的组合比与基准组合比,用以判定所述室内单元的组合比是否等于或小于所述基准组合比,当计算出的组合比等于或小于所述基准组合比时,根据操作的室内单元的空气量将所述压缩机的增频宽度限定为预定值,并以所述限定值操作所述空调。
2.根据权利要求1所述的方法,其中所述室内单元的组合比等于所述室内单元所需的容量的总和与所述室外单元的容量的比。
3.根据权利要求1所述的方法,其中所述限定所述压缩机的增频宽度的步骤包括:
检查所有操作的室内单元的空气量,确定每一个所述室内单元的空气量校正系数,并根据确定的每一个室内单元的空气量校正系数计算每一个操作的室内单元的最大频率容量(Qmax);以及
根据计算的最大操作容量(Qmax)为每个空气量限定所述压缩机的最大频率。
4.根据权利要求1所述的方法,其中所述每一个操作的室内单元的最大操作容量通过以下公式计算:
[公式]
最大操作容量(Qmax)=∑(对于每一个室内单元的容量×对于每一个室内单元的空气量校正系数)×容量计算系数+(操作的室内单元的平均空气量校正系数)×容量计算常数
其中,
所述对于每一个室内单元的容量表示根据操作的室内单元的状态而改变的容量值,
所述对于每一个室内单元的空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值,
所述容量计算系数表示通过容量和对于每一个室内单元的空气量校正系数计算的成比例的常数,
所述操作的室内单元的平均空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值的平均值,以及
所述容量计算常数表示用于减少计算所述室内单元的容量时所产生的误差率的误差值。
5.根据权利要求4所述的方法,其中所述对于每一个室内单元的容量、所述容量计算系数、和所述容量计算常数表示根据操作的室内单元的情况预先存储在控制器中的数据。
6.根据权利要求1所述的方法,进一步包括步骤:
如果所述室内单元的组合比高于所述基准组合比,则将所述压缩机的增频宽度限定为表示所述压缩机的容许容量的缺省值而与操作的室内单元的空气量无关,并操作所述空调。
7.一种多系统空调,包括:
室外单元;
连接到所述室外单元的多个室内单元;
压缩机,所述压缩机用于根据所述室内单元的操作容量改变其自身频率;以及
控制器,所述控制器用于通过每一个所述室内单元比较设置温度和室温,计算每一个室内单元所需要的容量,计算所述室内单元所有所需要的容量的总和以计算所有所述操作的室内单元的组合比,比较计算出的组合比与基准组合比以判定所述室内单元的组合比是否等于或小于所述基准组合比,当所述计算出的组合比等于或小于所述基准组合比时,根据操作的室内单元的空气量将所述压缩机的增频宽度限定为预定值,并以所述限定值操作所述空调。
8.根据权利要求7所述的多系统空调,其中所述控制器表示包含在所述室外单元中的室外控制器。
9.根据权利要求7所述的多系统空调,其中所述控制器检查所有操作的室内单元的空气量,确定每一个所述室内单元的空气量校正系数,根据确定的每一个室内单元的空气量校正系数计算每一个操作的室内单元的最大频率容量(Qmax),并根据计算出的最大操作容量(Qmax)限定所述压缩机对于每一个空气量的最大频率。
10.根据权利要求9所述的多系统空调,其中所述每一个操作的室内单元的最大操作容量通过以下公式计算:
[公式]
最大操作容量(Qmax)=∑(对于每一个室内单元的容量×对于每一个室内单元的空气量校正系数)×容量计算系数+(操作的室内单元的平均空气量校正系数)×容量计算常数
其中,
所述对于每一个室内单元的容量表示根据操作的室内单元的状态而改变的容量值,
所述对于每一个室内单元的空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值,
所述容量计算系数表示通过容量和对于每一个室内单元的空气量校正系数计算的成比例的常数,
所述操作的室内单元的平均空气量校正系数表示根据操作的室内单元的空气量确定的空气量校正值的平均值,以及
所述容量计算常数表示用于减少计算所述室内单元的容量时所产生的误差率的误差值。
11.根据权利要求7所述的多系统空调,其中:
如果所述室内单元的组合比高于所述基准组合比,则所述控制器将所述压缩机的增频宽度限定为表示所述压缩机的容许容量的缺省值而与操作的室内单元的空气量无关,并操作所述空调。
CN2007101694683A 2007-02-06 2007-11-16 多系统空调及用于控制所述多系统空调的方法 Expired - Fee Related CN101240933B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0012409 2007-02-06
KR1020070012409 2007-02-06
KR1020070012409A KR101151321B1 (ko) 2007-02-06 2007-02-06 멀티형 공기조화기 및 그 운전방법

Publications (2)

Publication Number Publication Date
CN101240933A CN101240933A (zh) 2008-08-13
CN101240933B true CN101240933B (zh) 2010-06-30

Family

ID=39262635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101694683A Expired - Fee Related CN101240933B (zh) 2007-02-06 2007-11-16 多系统空调及用于控制所述多系统空调的方法

Country Status (3)

Country Link
EP (1) EP1956306B1 (zh)
KR (1) KR101151321B1 (zh)
CN (1) CN101240933B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780280B2 (ja) * 2013-09-30 2015-09-16 ダイキン工業株式会社 空調システム及びその制御方法
WO2017187480A1 (ja) * 2016-04-25 2017-11-02 三菱電機株式会社 空気調和装置
CN110469926B (zh) 2018-05-11 2022-05-24 开利公司 用于空调系统的水循环系统及其控制方法
CN111256347B (zh) * 2018-11-30 2022-09-02 广东美的制冷设备有限公司 推荐端、接收端、舒适温区的推送方法和存储介质
CN114251717B (zh) * 2020-09-24 2023-09-01 广东美的制冷设备有限公司 一拖多空调及分歧器、分歧器与室外机的控制方法、介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116292A (zh) * 1994-04-12 1996-02-07 株式会社东芝 空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679411A (en) * 1978-08-16 1987-07-14 American Standard Inc. Stepped capacity constant volume building air conditioning system
JP4032634B2 (ja) * 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
KR20050075976A (ko) * 2004-01-19 2005-07-26 삼성전자주식회사 공기 조화 시스템 및 그 제어방법
KR20060030761A (ko) * 2004-10-06 2006-04-11 삼성전자주식회사 다실형 공기조화 시스템 및 그 제어방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116292A (zh) * 1994-04-12 1996-02-07 株式会社东芝 空调器

Also Published As

Publication number Publication date
KR20080073602A (ko) 2008-08-11
EP1956306A2 (en) 2008-08-13
EP1956306A3 (en) 2013-10-16
KR101151321B1 (ko) 2012-06-08
CN101240933A (zh) 2008-08-13
EP1956306B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
EP2551614B1 (en) Air Conditioner and Control Method Thereof
US20060123810A1 (en) Method for operating air conditioner
CN111780362B (zh) 一种空调器及其控制方法
CN203869265U (zh) 空气调节机
US7380407B2 (en) Multi air conditioning system and method for operating the same
KR20030097179A (ko) 공기조화기의 압축기 동작방법
CN101240933B (zh) 多系统空调及用于控制所述多系统空调的方法
US20050257539A1 (en) Air conditioner and method for controlling operation thereof
US20060037332A1 (en) Air-conditioner and method for controlling driving thereof
US6804971B2 (en) Apparatus and method for controlling compressors of air conditioner
ES2763828T3 (es) Acondicionador de aire múltiple de tipo calefacción y refrigeración simultáneas, y procedimiento de control del mismo
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
US20180372386A1 (en) Compressor and fan staging in heating, ventilation, and air conditioning systems
JP4074422B2 (ja) 空調機とその制御方法
JP4105413B2 (ja) マルチ式空気調和機
JP2019163907A (ja) 空気調和装置及び空気調和システム
US11313577B2 (en) Air-conditioning system, machine learning apparatus, and machine learning method
WO2021224962A1 (ja) 空気調和装置
JP3275669B2 (ja) 多室形空気調和システム
KR100667097B1 (ko) 멀티형 공기조화기의 운전방법
KR20100002771A (ko) 멀티 공기조화 시스템의 제어방법
KR20090131158A (ko) 공기조화기 및 그 제어방법
JP3326999B2 (ja) 多室空気調和機
KR20070023399A (ko) 혼합형 유니터리 공기조화장치의 압축기 선택 운전방법
KR20090114837A (ko) 멀티형 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100630

Termination date: 20211116

CF01 Termination of patent right due to non-payment of annual fee