CN101233389A - 装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法 - Google Patents

装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法 Download PDF

Info

Publication number
CN101233389A
CN101233389A CNA2006800282853A CN200680028285A CN101233389A CN 101233389 A CN101233389 A CN 101233389A CN A2006800282853 A CNA2006800282853 A CN A2006800282853A CN 200680028285 A CN200680028285 A CN 200680028285A CN 101233389 A CN101233389 A CN 101233389A
Authority
CN
China
Prior art keywords
value
gyroscope
robot
calibration
mobile object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800282853A
Other languages
English (en)
Inventor
森健光
加藤敬
野野村裕
藤吉基弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101233389A publication Critical patent/CN101233389A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Navigation (AREA)

Abstract

当校准具有陀螺仪的机器人的位置时,机器人发射光束到目标墙表面,并且测量被光束照亮的在目标墙表面上的激光点的位置。获取所测量的位置作为初始值(S10,S12),并且指示校准的开始(S14,S16)。然后,重置校准周期(S18)并且开始校准周期的走时过程。通过采样来连续地获取由陀螺仪检测到的值来用于预定的校准周期(S20)。如果在获取值时发生干扰,则输出警报并且重新开始校准。一旦没有受到任何干扰地经过校准周期,就基于在校准周期过程中获取的检测值来设置或确定校准值(S26,S28)。

Description

装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法
技术领域
[0001]本发明涉及装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法。具体地,本发明涉及基于由陀螺仪检测到的值来进行在装备有陀螺仪的机器人中的位置信息的计算,陀螺仪校准设备和校准陀螺仪的方法,以及陀螺仪校准程序。
背景技术
[0002]移动式机器人,例如两足机器人(用两条腿行走的机器人)或用于表演目的的移动式机器人是已知的。为了移动到目标位置,这样的机器人检测或计算机器人随时间的位置变化。一般地,这样的技术已知为移动物体的位置检测方法,并且可以采用各种途径来提高位置检测的精确度/准确度。
[0003]例如,JP-A-07-286858描述了安装在车辆上的障碍物检测设备,其试图通过车辆导航设备来提高在检测车辆位置中的精确度/准确度。障碍物检测设备读取设置在道路侧的位置显示板上的绝对位置数据,车辆导航设备利用所读取的数据来执行在确定车辆位置中的校准。障碍物检测设备的一个例子利用在垂直于光轴的方向上隔开预定距离的两个CCD,并且利用视差的变化来检测到障碍物的距离。障碍物检测设备的另一个例子利用单个的CCD和位置数据显示单元,在位置数据显示单元上由光发射器来显示图案。除了表示位置数据信号的图案外,位置数据显示单元显示表示光发射器的物理长度的基线长度数据。基于所述基线长度计算到位置数据显示单元的距离。因而,通过利用GPS方法的导航设备将位置准确度从几十米改进到几米以下。
[0004]然而,利用JP-A-07-286858中描述的GPS方法及其校准方法对于短途行进目的的移动式机器人来说是困难的。同时,移动式机器人可以具有“眼睛”的功能,例如位置检测照相机。在这种情况下,机器人的当前位置等可以从由位置检测照相机捕获的图像中检测或计算出来。然而,一般地,位置检测照相机和图像识别技术相对昂贵并且需要足够的照明。
[0005]因此,例如三维光学陀螺仪的陀螺仪可以安装在机器人上。在三个轴的方向上随时间的变化被检测出来,并且任何检测到的变化,例如角速度,通过计算转换为位置信息。
[0006]在此情况下的陀螺仪的校准中,机器人的位置和方向可以通过设置在地板上的定位夹具来固定。然后,利用旋转安装在机器人上的陀螺仪的大转盘来测量陀螺仪的灵敏度。因此,因为无论何时机器人移动到不同的工作位置都要执行校准,所以需要运送大的夹具,将机器人设置在夹具上,以及测量方向和位置。因此,此技术是费力的并且不方便。
[0007]而用于此目的的陀螺仪提供了高准确度,其容易受机械干扰或例如由地轴的运动引起的噪声的影响和干预。因此,当校准原点时通常使用的陀螺仪也受到噪声很大地影响或干扰。所述原点是在三个轴的方向上的角速度的参考。短时间的校准受到偶然的噪声的影响,而长时间的校准几乎总是包括噪声分量。由于根据JP-A-07-286858的校准方法检测并且利用外部参考位置,这样的校准方法不适用于受到噪声很大影响的陀螺仪。
[0008]如上所述,安装在机器人上的陀螺仪的校准受到外部噪声很大影响,并且其包括位置和方向测量的设置很复杂。
发明内容
[0009]本发明提供一种装备有陀螺仪的机器人、陀螺仪校准设备、陀螺仪校准程序和抑制在校准过程中噪声的影响的陀螺仪校准方法。本发明进一步提供一种以简单的方式测量机器人的位置和方向的陀螺仪校准设备和方法,所述设备和方法对陀螺仪的校准是必要的。根据本发明的下述设备、程序和方法致力于至少一个如上所述的目的。
[0010]在本发明的一个方案中,提供了一种陀螺仪校准设备,其包括光束发射装置,用于发射光束;光束位置检测装置,用于检测被发射的光束照亮的位置;计算装置,用于依照由光束位置检测装置检测到的被照亮位置来计算移动物体的位置和方向中的至少一个;及校准装置,其依照由所述计算装置计算出的移动物体的位置和方向中的至少一个来校准陀螺仪。
[0011]根据本发明的方案,例如机器人的移动物体发射光束到目标墙表面。基于由光束照亮的目标墙表面上的测量位置,来计算机器人的位置和方向中的至少一个。因此,可以容易地计算出机器人的位置和方向,而不需运送或设置大的夹具等。
[0012]本发明的陀螺仪校准设备可以包括用于测量从机器人到被照亮位置的距离的装置。除了或代替被照亮位置,所述计算装置还依照从机器人到被照亮位置的距离来计算机器人的位置和方向中的至少一个。
[0013]在此例子中,如果机器人和目标墙表面之间的距离被容易地测量或者所述距离被预先确定,则可以容易地测量机器人的方向或位置。
[0014]本发明的陀螺仪校准设备可以包括用于测量当机器人旋转时,机器人的移动距离的装置。所述移动距离为随着机器人旋转时机器人移动的距离。除了或代替被照亮位置,计算装置还依照机器人的移动距离来计算机器人的位置和方向中的至少一个。
[0015]因为利用了机器人在旋转之前和之后的移动距离,所以当机器人的移动距离的测量容易时,可以容易地测量机器人的方向或位置。
[0016]光束发射装置可以在多于一个的方向上发射光束。
[0017]如果多个光束发射到彼此相交的多个目标墙表面上,则可以使用多条测量的数据,或者可以选择性地使用目标墙表面来使得测量更简单。
[0018]光束位置检测装置可以是安装在机器人上的位置测量装置,或者是与机器人分开设置的外部位置测量装置。
[0019]根据本发明的此方案,位置测量装置可以是安装在机器人物体上或者与机器人物体分开安装的位置测量装置。在任一情况中,陀螺仪校准装置可以配置为适合(适用于)每个测量。
[0020]在本发明的另一方案中,提供了一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:初始值获取装置,用于获取初始位置值,所述初始位置值为设置在初始位置的移动物体的位置;检测值获取装置,用于获取当移动物体保持在初始位置时,由陀螺仪在预定一段时间检测到的多于一个的值;指示装置,当干扰被检测到时,其指示检测值获取装置重新开始获取多于一个的值;及校准值设置装置,用于基于由检测值获取装置获取的多于一个的值来确定校准位置值,并用于将校准位置值设置为初始位置值的校准值。
[0021]根据本发明的方案,例如机器人的移动物体设置到初始位置并且在此位置连续地获取由陀螺仪检测到的多个值。然后,如果在预定校准周期内成功获取检测值,则基于所述多个检测值来确定(设置)校准值。如果发生干扰,则重置校准周期并且重复用于获取检测值的过程。因此,可以消除干扰,并且利用在预定时间周期获取的多个检测值,可以设置(确定)用于通过陀螺仪测量的初始值。因此,高可靠地执行校准。
[0022]校准值设置装置可以计算由所述检测值获取装置获取的所述多于一个的值的平均值,并且将平均值设置为校准值。
[0023]在此方案中,因为将在校准周期内获取的多于一个的值的平均值设置为校准值,所以通过平均来抑制偶然噪声的影响。
[0024]根据本发明的陀螺仪校准设备进一步包括用于输出表示正在进行校准的信号的状态输出装置。在此情况下,因为校准状态是在从校准开始到校准结束的时间中指示,所以可以警告旁观者并且可以抑制噪声的出现。
[0025]根据本发明的陀螺仪校准设备进一步包括用于输出表示干扰出现的警报信号的警报装置。因此,因为当干扰出现时机器人输出警报信号,所以事实(fact)之后警告旁观者并且此后噪声的抑制变得更容易。
[0026]在本发明的另一方案中,提供了一种具有陀螺仪的机器人。机器人包括检测机器人的位置的陀螺仪和校准陀螺仪的校准器。校准器包括初始值获取装置,用于获取初始位置值,所述初始位置值为设置在初始位置的机器人的位置,由初始值获取装置检测,用于获取当机器人保持在初始位置时,由陀螺仪在预定一段时间检测到的多于一个的值;指示装置,当干扰被检测到时其指示检测值获取装置重新开始获取多于一个的值;及校准值设置装置,用于基于由检测值获取装置获取的多于一个的值来确定校准位置值,并用于将校准位置值设置为初始位置值的校准值。
[0027]在本发明的进一步方案中,提供了一种校准陀螺仪的程序。校准用于检测位置信息的陀螺仪的校准器执行所述程序。所述程序包括步骤:获取初始位置值,其为当机器人初始被设置的位置;获取当机器人保持在初始位置时,由陀螺仪在预定一段时间检测到的多于一个的值;当干扰被检测到时提供指令来重新开始获取多于一个的值;基于获取的多于一个的值来确定校准位置值;及将校准位置值设置为初始位置值的校准值。
[0028]如上所述,根据陀螺仪校准设备,在本发明的具有陀螺仪的机器人、陀螺仪校准程序以及陀螺仪校准方法中,即使陀螺仪容易被噪声影响,在校准过程中噪声也被抑制。另外,根据本发明的陀螺仪校准设备,可以容易地测量位置或方向来用于陀螺仪的校准。
附图说明
[0029]从下述参照附图的优选实施例的描述中,本发明的前述和进一步的目的、特点和优点将变得明显,附图中相同的标号用来表示相似的部件,并且其中:
图1为图示了根据本发明的实施例的具有光学陀螺仪的机器人的构造的图;
图2为图示了根据本发明的实施例的位置测量装置的构造的图;
图3为大概地说明在计算根据本发明的实施例的机器人的旋转角的过程中使用的符号和标号的图;
图4为用于确定根据本发明的实施例的机器人的旋转角的第一个例子;
图5为用于确定根据本发明的实施例的机器人的旋转角的第三个例子;
图6为用于确定根据本发明的实施例的机器人的旋转角的第四个例子;
图7为用于确定根据本发明的实施例的机器人的旋转角的第五个例子;
图8为用于确定根据本发明的实施例的机器人的旋转角的第六个例子;
图9为说明根据本发明的实施例的机器人的位置的计算的图;
图10为图示了安装在根据本发明的实施例的机器人上的陀螺仪的校准过程的流程图;
图11为图示了光学陀螺仪在时间上的检测值、干扰和校准周期之间的关系的图表。
具体实施方式
[0030]参照附图说明本发明的实施例。在下述描述中,包括光学部件的光学陀螺仪用于机器人的定位控制。然而,也可以使用除了光学陀螺仪的其他陀螺仪,如果这样的陀螺仪具有用于机器人的定位控制的足够的精确度/准确度。在下述描述中的机器人为用于表演目的的机器人。然而,也可以使用用于其他目的的机器人,如果这样的机器人具有陀螺仪。另外,在下述描述中,校准器为设置在机器人中的机器人控制器的一部分。然而,校准器可以是没有安装在机器人上的单独装置,并且可以通过有线或无线连接与机器人相连接。在下述描述中,指示器也可以安装在机器人上,但是本发明不排除没有安装在机器人上的单独装置,以及可以通过有线或无线连接或通过例如局域网(LAN)等网络与机器人相连接的单独装置。在下述描述中,位置测量装置具有没有安装在机器人上的外部照相机;然而,可以使用安装在机器人上的位置检测器来代替外部照相机。在下述描述中,校准角度或角速度;然而,角度或角速度可以转换为坐标位置,并且所述坐标位置可以被代替地校准。因此,在下述描述中,位置信息或位置数据包括角度或角速度。下面出现的数值仅仅是用于说明目的的例子,不应当解释为作为本发明的限制。
[0031]图1为图示了用于表演目的的机器人10的构造的例子的图。机器人10包括两个轮子12和主体14。机器人根据预定程序来执行表演动作,例如移动到预定方向以及预定位置,在合适的时刻旋转主体14,鞠躬,摇动手臂(未示出)等。机器人10也可以包括驱动单元16,其移动轮子12和主体14;光学陀螺仪18,其检测机器人10的移动;指示器20,其指示与机器人10的移动有关的信息;以及控制器30,其与这些部件相连接并且控制机器人10的全部移动。机器人10也可以装备光发射器22,其发射光束以照亮合适的目标物体。机器人10通过有线或无线连接与远程控制器80相连接。远程控制器80包括利用从光发射器22发射的光束来计算机器人10的位置或方位(方向)的位置计算器82,分别用于输入和输出数据的输入单元84以及输出单元86。
[0032]驱动单元16为旋转轮子12的驱动机构,其改变轮子12的方向,将主体14绕着轴旋转并且摇摆主体14。驱动单元16可以通过例如多个小的电动机来实施。
[0033]光学陀螺仪18为检测在三个互相正交的轴的方向上的角速度的部件。所述三个互相正交的轴可以相对于任何参照(线或面)来限定,例如地轴或地平面。在后面的情况中,光学陀螺仪18检测三个角速度,即分别为绕z轴、x轴和y轴的旋转角、φ和θ随时间的变化。z轴垂直于地表面,x轴和y轴平行于地表面并且垂直于z轴。检测到的角速度被发送到控制器30,并且用在计算机器人10的当前位置等的位置信息计算过程中。
[0034]指示器20根据机器人10的移动来提供指示。例如,指示器20可以是亮灭闪烁的灯或LED,在其上显示字符的LCD显示器,或者产生声音或音乐的扬声器。另外,在光学陀螺仪18的校准过程中,指示器20指示如下所述的校准的开始,正在校准,当噪声发生时的警报等。
[0035]控制器30为安装在机器人10上的电路。控制器30基于光学陀螺仪18检测到的信号来计算例如机器人10的当前位置,并且根据计算的结果来提供指示给驱动单元16和指示器20,以使得机器人10移动并且执行各种表演动作。控制器30可以是微处理器等。
[0036]控制器30包括校准光学陀螺仪18的校准器32;位置信息计算器34,其利用光学陀螺仪18检测到的值来计算机器人的位置信息;以及驱动控制器36,其根据位置信息和表演程序来提供指示给驱动单元16。校准器32包括初始值获取模块40,其获取用于校准的初始值;检测值获取模块42,其获取光学陀螺仪18检测到的用于校准的值;指示模块44;校准值设置模块46;状态输出模块48;以及警报模块50。指示模块44确定是否有干扰发生,并且当这样的干扰发生时提供指示来重新开始校准。当光学陀螺仪18成功检测到在整个预定校准周期的值时,校准值设置模块46基于光学陀螺仪18检测到的值来设置校准值。状态输出模块48输出指示例如正在校准的信号。当干扰发生时警报模块50发出警报。这些功能是通过软件实施(实现)的,特别地,通过运行相应的计算机程序,例如校准程序,位置信息计算或表演程序。一部分功能可以通过硬件来实施。
[0037]光发射器22附加在机器人10的主体10上,并且发射光束。更详细地,光发射器22为发射激光束的电子部件。光发射器22发射光束以照亮合适的目标墙表面,以测量机器人10的位置。由发射的光束照亮的在目标墙表面上的位置与机器人10的主体14的位置和方位(方向)同步移动。因此,所照亮的位置用作与机器人10的主体14的位置和方位相关联的光指针。在此实施例中,使用了激光束,被激光束照亮的在目标墙表面上的位置称为激光点。设置光束的光轴以使光束从机器人10的主体14的旋转中心发射出。可以设置一个光发射器22或两个光发射器22。如果设置两个光发射器22,则定位两个光发射器22以使其光轴形成预定的角度,例如光发射器可以彼此成直角。
[0038]远程控制器80为与当由机器人10的控制器30来执行功能时相比,执行更方便在分离的外部终端执行的功能的系统终端。然而,远程控制器80的功能可以由控制器30(整体地)执行。在图1中所示的实施例中,远程控制器80包括位置计算器82,其计算机器人10的位置和方位(方向)中的至少一个,特别地,位置计算器82至少获取机器人10的旋转角。提供机器人10的位置测量功能,特别地,来确定在光学陀螺仪18的校准过程中的机器人10的位置,即,来确定机器人10在校准过程中的方位(方向)的旋转角。输入单元84将数据等输入到位置计算器82。输出单元86将由位置计算器82计算的机器人10的旋转角输出到控制器30,以使得校准器32来利用机器人10的旋转角作为校准的初始值。远程控制器80的功能,以及控制器30的功能可以通过软件来实施,特别地,通过运行相应的程序,例如用于测量机器人的位置的程序。远程控制器80的一部分功能可以通过硬件来实施。
[0039]安装在机器人10上的光学陀螺仪的校准设备包括测量机器人的位置的功能,其主要由位置计算器82来执行;以及光学陀螺仪的精细校准的功能,其主要由校准器32执行。光学陀螺仪18的校准以在初始位置设置机器人10开始。然后,产生机器人的位置信息的光学陀螺仪18在初始位置被校准。例如,将机器人10设置为或安置为面对参照墙,并且被移动到预定的初始位置,或者被旋转预定角度。此时,测量机器人的位置,例如旋转角。然后,利用测量的旋转角作为参考值,在初始位置校准光学陀螺仪。在校准之后,光学陀螺仪利用校准值(位置)作为参考值来实时地检测机器人的位置,并且此后,机器人执行例如表演动作的动作。
[0040]更详细地,在安装在机器人上的光学陀螺仪的校准中,将机器人10用定位夹具等设置在地板上,并且旋转到预定方向以被安置到用于校准的初始位置。例如,机器人绕垂直于地板的z轴旋转+30度(逆时针),以位于用于校准的初始位置。然而,可以将旋转角设置为任意值。位置计算器82准确地测量旋转角,例如+30度,并且校准器32校准光学陀螺仪18以在初始位置达到所述测量值。在如下描述中,首先说明初始位置的设置和测量,然后说明利用初始位置的信息的整个校准操作。
[0041]图2为图示了测量机器人的位置的位置测量装置100的结构的图。这样的机器人的位置的测量包括机器人10在初始位置的设置。位置测量装置100的核心是位置计算器82。除了参照图1如上所述的为计算器10的一部分的位置计算器82和光发射器22等之外,位置测量装置100还包括外部照相机68。外部照相机测量被激光束24照亮的在目标墙表面62上的激光点的位置。例如激光点的测量位置的数据被经由信号线发送到位置计算器82。如上所述,外部照相机68也可以安装到机器人10上。在这种情况下,位置测量装置100将是机器人10的部件。另外,用于设置或定位机器人10的在地板上的定位夹具61,以及目标墙表面62有助于位置测量装置100的功能。
[0042]在机器人10的初始位置设置和位置测量中,初始地,机器人10的两个轮子12与夹具61排列在地板上。此位置为参考位置。机器人被旋转预定角度,例如=+30度,并且被固定在此位置。机器人的此位置(条件)为用于校准的初始位置(条件)。陀螺仪18不用于测量旋转角,旋转角为在参考位置的机器人10与在初始位置的机器人11之间的位置变化。然而,旋转角是几何计算机器人10和11相对于目标墙表面62的位置来确定的。因此,通过外部照相机68来观察(监控)和测量激光点的位置,即被激光束24照亮的在目标墙表面62上的位置。
[0043]一般地,位置计算器82基于通过外部照相机68获取的各位置数据来几何确定机器人10的旋转角。此时,在确定机器人10和目标墙表面62的相对位置中的小灵敏性减少了确定旋转角所需的测量次数。用于获取旋转角的多种方法在此后来说明。首先,说明例如用于计算旋转角的坐标系的符号和标号的一般限定。然后,说明位置测量和旋转角计算的详细方法的例子。以通过在机器人的相对定位中的装置执行简单测量的方法来开始测量和计算的详细方法的说明。然后,说明测量和计算旋转角的更通用的方法。
[0044]图3是一般地说明了在用于计算机器人10和11之间的旋转角的过程中使用的,例如坐标系的符号。图3是图示了目标墙表面62、在旋转前安置的机器人10和在旋转后安置的机器人11、以及x-y参考坐标系的俯视图。在旋转前的机器人10的位置用R1(R1x,R1y)表示,并且在旋转后的机器人11的位置用R2(R2x,R2y)表示。机器人10和11的位置为机器人的主体14绕其旋转的中心轴的位置。L1(L1x,L1y)表示激光点的位置,即由来自旋转前的机器人的光束照亮的在目标墙表面62上的位置,L2(L2x,L2y)表示在旋转后的激光点的位置。
[0045]这里讨论的角1和2为从目标墙表面62的法线或垂线测量的。角1为从旋转前的机器人10发射并且入射到目标墙表面62上的(入射)光束的角度。角2为从旋转后的机器人11发射并且入射到目标墙表面62上的(入射)光束的角度。因此,旋转前的机器人10和旋转后的机器人11之间的旋转角3通过3=2-1计算。
[0046]从机器人10和11到目标墙表面62的垂直距离分别用DH1和DH2表示。从机器人10和11到在目标墙表面62上的相应的激光点L1和L2的距离分别用DRL1和DRL2表示。从目标墙表面62与旋转前后的机器人10和11到目标墙表面62的垂线的交点,到目标墙表面62上的相应的激光点L1和L2的距离分别用DHL1和DHL2表示。DRx和DRy分别表示从旋转前的机器人10到旋转后的机器人11的移动距离的x轴分量和y轴分量。
[0047]因此可以独立于目标墙表面62或机器人10,预先建立x-y参考坐标系。一般地,目标墙表面62不平行于参考坐标系的x轴。然而,在下面的描述中,为了简单,假定目标墙表面62与x轴平行。
[0048]图4为图示了确定旋转角3的第一个例子的图。在此例子中,目标墙表面62平行于参考坐标系的x轴,并且在旋转前入射光束是目标墙表面62的法线。定位夹具61相对于目标墙表面62的位置可以预先确定以建立上述布置。在图4中,机器人10没有改变水平位置,因此在所述点旋转。换句话说,R1等于R2(即,R1(R1x,R1y)=R2(R2x,R2y))。在此情况中,旋转角3的计算需要更少的测量,如下所述。
[0049]激光点L1为用在目标墙表面的法线方向上从旋转前的机器人10发射的入射光束照亮的在目标墙表面62上的位置。激光点L2为用从旋转后且未改变其(水平)位置的机器人发射的光束照亮的位置。从机器人10到目标墙表面62上的激光点L1的距离用DH1表示,并且通过如下计算:
DH1=L1y-R1y
进一步,激光点L1和激光点L2之间在墙表面上的移动距离的x轴分量DLx通过如下计算:
DLx=L1x-L2x
因而,旋转角3通过如下计算:
3=tan-1(DLx/DH1)=tan-1((L1x-L2x)/(L1y-R1y))
一般地,也可以使用如下的公式:
3=atan2(DLx,DH1)=atan2((L1x-L2x),(L1y-R1y))
因此,通过测量两个点,即机器人的位置R1(R1x,R1y)和激光点的位置L2(L2x,L2y),来获取旋转角3。还可以从两个距离值,即为从机器人到目标墙表面的法线距离的距离DH1和为在目标墙表面上的位置L1和L2之间的距离的移动距离DLx,来获取旋转角3。
[0050]可选地,可以基于在旋转后的机器人11的位置R2和激光点L2的位置之间的距离来计算旋转角3,如下所示。
3=cos-1(DH1/DRL2)=cos-1((L1y-R1y)/DRL2)
换句话说,基于距离DH1和DRL2来计算旋转角3,距离DH1和DRL2分别是在旋转前的机器人和激光点11之间的距离,以及在旋转后的机器人和激光点L2之间的距离。相似地,也可以基于如下公式,利用机器人和激光点L2之间的距离DRL2,以及为在目标墙表面上的位置L1和L2之间的距离的移动距离DLx,来确定旋转角3。
3=sin-1(DLx/DRL2)=sin-1((L1x-L2x)/DRL2)
[0051]在确定旋转角3的第二个例子中,在机器人旋转前的光束倾斜地入射到目标墙表面62上,而不是如图4中所示的以直角。在此例子中,与第一个例子相似,目标墙表面62平行于参考坐标系的x轴,并且机器人10在该点旋转而不改变其在旋转前后的(水平)位置。换句话说,R1等于R2(即,R1(R1x,R1y))=R2(R2x,R2y))。在此情况中,通过如下来获取旋转角3。
[0052]在此例子中,激光点L1为从旋转前的机器人10发射的光束照亮的在目标墙表面62上的位置。激光点L2为机器人在该点旋转后的位置。在机器人旋转前后,分别从机器人10和11发射并且在相应的激光点L1和L2上入射的(入射)光束的角1和2通过如下公式获得。注意这里讨论的角1和2是从目标墙表面62的垂线来测量的。
1=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1((L2x-R1x)/(L2y-R1y))
通过如下公式计算旋转角3。
3=2-1
结果,利用三个位置值,即机器人的位置R1(R1x,R1y)以及激光点的位置L1(L1x,L1y)和L2(L2x,L2y),来确定旋转角3。
[0053]测量从激光点L1到激光点L2的移动距离的x轴分量DLx和y轴分量DLy。
DLx=L1x-L2x
DLy=L1y-L2y
考虑到如上公式,基于如下公式来获取旋转角3。
1=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1((L2x-R1x)/(L2y-R1y))=tan-1((L1x-DLx-R1x)
/(L1y-DLy-R1y))
3=2-1
如上所述,通过利用机器人的位置R1(R1x,R1y)、激光点的位置L1(L1x,L1y)以及在目标墙表面上的移动距离DLx和DLy,来计算旋转角3。
[0054]如果测量了(在旋转前)从机器人10到目标墙表面62的垂直距离DH1以及从(在旋转后)机器人11到目标墙表面62的垂直距离DH2,则可以基于如下公式来确定旋转角3。
1=tan-1((L1x-R1x)/(DH1))
2=tan-1((L2x-R1x)/(DH2))
3=2-1
在此情况中,利用机器人的位置R1(R1x,R1y),以及垂直距离DH1和DH2,可以几何确定L1x和L2x。因此,利用机器人的位置R1(R1x,R1y),以及垂直距离DH1和DH2,也可以确定旋转角3。
[0055]如果测量了距离DRL1(旋转前)和DRL2(旋转后),其分别为机器人的位置和在旋转前后相应的激光点之间的距离,则通过如下来确定旋转角3。
1=sin-1((L1x-R1x)/(DRL1))
2=sin-1((L2x-R1x)/(DRL2))
3=2-1
可选地,可以通过如下来确定3:
1=cos-1((L1y-R1y)/(DRL1))
2=cos-1((L2y-R1y)/(DRL2))
3=2-1
利用激光点的位置L1(L1x,L1y)和L2(L2x,L2y),以及机器人(在旋转前后)的位置与激光点的相应位置L1(L1x,L1y)和L2(L2x,L2y)之间的距离DRL1和DRL2,几何确定R1y。因此,利用激光点的位置L1(L1x,L1y)和L2(L2x,L2y),以及机器人(在旋转前后)与激光点的位置之间相应的距离DRL1(在旋转前)和DRL2(在旋转后),来确定3。
[0056]图5为图示了确定旋转角3的第三个例子的图。在图5中,目标墙表面62限定为平行于参考坐标系的x轴。从旋转前的机器人发射出的光束倾斜入射到目标墙表面62上,而不是以直角。另外,在旋转前后机器人的位置不同。换句话说,在旋转前的机器人10的位置R1(R1x,R1y)与在旋转后的机器人11的水平位置R2(R2x,R2y)不同。因此,图5中所示的例子是相对一般的情况。在此情况中,如下获取旋转角3。
[0057]在旋转前后,通过如下来获取从相应的机器人10和11到目标墙表面62的垂直距离(沿着平行于参考坐标系的y轴的线的距离)。
DH1=L1y-R1y
DH2=L2y-R2y
然后,从如下公式确定DHL1(旋转前)和DHL2(旋转后),其分别为旋转前后从机器人10和11到目标墙表面62的垂线与目标墙表面62的交点,与激光点L1和L2之间的距离。注意距离DHL1和DHL2为沿着平行于参考坐标系的x轴的线的距离。
DHL1=L1x-R1x
DHL2=L2x-R2x
考虑如上所述,通过下面的公式来确定旋转前后的角1和2。
1=tan-1(DHL1/DH1)=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1(DHL2/DH2)=tan-1((L2x-R2x)/(L2y-R2y))
可选地,也可以利用下面的公式。
1=atan2(DHL1,DH1)=atan2((L1x-R1x),(L1y-R1y))
2=atan2(DHL2,DH2)=atan2((L2x-R2x),(L2y-R2y))
当机器人水平移动时,通过利用上述确定的角1和2来获取旋转角3,如下。
3=2-1
因此,从旋转前后的机器人的位置(R1x,R1y)和R2(R2x,R2y),以及激光点的位置L1(L1x,L1y)和L2(L2x,L2y)确定出角3。
[0058]如果测量出了DLx和DLy,其为从在墙上的激光点L1到激光点L2的移动距离的x轴和y轴分量,则下述关于DLx和DLy的公式用于3的计算。
DLx=L1x-L2x
DLy=L1y-L2y
然后,通过如下来确定旋转角3:
1=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1((L2x-R2x)/(L2y-R2y))=tan-1((L1x-DLx-R2x)/(L1y-DLy-R2y))
3=2-1
因此,通过利用机器人的位置(R1x,R1y)和R2(R2x,R2y),以及在墙上的激光点的位置L1(L1x,L1y)和移动距离DLx及DLy确定出旋转角3。
[0059]当目标墙表面62平行于参考坐标系的x轴时,移动距离DLy为0。
DLy=L1y-L2y=0
因此,上述的公式可以如下简写为:
1=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1((L2x-R2x)/(L2y-R2y))=tan-1((L1x-DLx-R2x)/(L1y-R2y))
然后,通过如下来确定角3。
3=2-1
[0060]在此情况下,如果测量了旋转前后从机器人到相应的激光点的距离DRL1(移动前)和DRL2(移动后),则利用它们可以计算1和2,如下所示:
1=sin-1((L1x-R1x)/(DRL1))
2=sin-1((L2x-R2x)/(DRL2))
因此,通过如下来确定旋转角3:
3=2-1
可选地,可以如下计算1和2。
1=cos-1((L1y-R1y)/(DRL1))
2=cos-1((L2y-R2y)/(DRL2))
然后,通过如下计算3:
3=2-1
如上所述,利用机器人的位置R1(R1x,R1y)和R2(R2x,R2y),激光点的位置L1(L1x,L1y)和L2(L2x,L2y)以及从机器人到相应的激光点的距离DRL1和DRL2,确定出旋转角3。
[0061]进一步,如果测量了DRx和DRy,其分别为机器人的移动距离的x和y分量,则通过利用DRx和DRy可以计算1和2,如下。
DRx=R1x-R2x
DRy=R1y-R2y
1=sin-1((L1x-R1x)/(DRL1))
2=sin-1((L2x-R2x)/(DRL2))=sin-1((L2x+DRx-R1x)/(DRL2))
通过如下计算旋转角3:
3=2-1
因此,利用激光点的位置L1(L1x,L1y)和L2(L2x,L2y)、机器人的位置R1(R1x,R1y)、从机器人到相应的激光点的距离DRL1和DRL2、以及机器人的移动距离DRx和DRy,获取旋转角3。
[0062]在上述例子中,可以利用函数tan-1,而不是sin-1。在此情况中,测量机器人的移动距离DRx和DRy。
DRx=R1x-R2x
DRy=R1y-R2y
利用上述公式,通过利用DRx和DRy来计算1和2。
1=tan-1(DHL1/DH1)=tan-1((L1x-R1x)/(L1y-R1y))
2=tan-1(DHL2/DH2)=tan-1((L2x-R2x)/(L2y-R2y))
=tan-1((L2x+DRx-R1x)/(L2y+DRy-R1y))
通过如下来确定旋转角3:
3=2-1
因此,利用激光点的位置L1(L1x,L1y)和L2(L2x,L2y)、机器人的位置R1(R1x,R1y)、以及机器人的移动距离DRx和DRy,确定出旋转角3。
[0063]在确定旋转角3的第四个例子中,当目标墙表面62不平行于参考坐标系的x轴时,修正目标墙表面的倾度。图6示出了这样的例子。在图6中,目标墙表面62相对于x-y参考坐标系的x轴倾斜了角度ξ。机器人10在所述位置(在所述点上)旋转因此在旋转前后没有改变其水平位置。换句话说,R1等于R2(即,R1(R1x,R1y)=R2(R2x,R2y))。假定旋转前激光点的位置总是在相同位置,而不管目标墙表面62的倾斜角度。在旋转后激光点的位置为L21(L21x,L21y),而不是L2(L2x,L2y),因为目标墙表面62是倾斜的。在此例子中,L2为激光点在平行于x轴的虚拟墙表面62a上的位置。
[0064]如下所述来执行相对于x-y参考坐标系的目标墙表面62的倾度ξ的修正。通过例如毕达哥拉斯定理来确定从L1到L21的距离DL1L21。
DL1L21=SQRT((L1x-L21x)^2+(L1y-L21y)^2)
基于如下公式,通过利用DL1L21来确定激光点的位置L2(L2x,L2y)。
L2x=L1x-DL1L21cosξ
L2y=L1y-DL1L21sinξ
所获取的坐标L2为在虚拟墙表面62a上的激光点的位置,是在目标墙表面62上的实际激光点的位置L21所映射到的位置。如上所述,虚拟墙表面62a平行于x轴。通过利用此映射的修正,用如上所述的当目标墙表面平行于x轴时相同的方法来确定旋转角3。
[0065]如果在旋转前入射激光束也是倾斜的,则在非倾斜的虚拟墙表面62a上的激光点的位置L1,用与如上所述的当目标墙表面倾斜时相同的方法来确定。然后,利用所获得的L1和L2来确定旋转角3。
[0066]当目标墙表面不平时,在平行于x-y参考坐标系的x轴的虚拟墙表面上的激光点的位置L1和L2,用与如上所述的当目标墙表面不平行于x轴时的相同方法,从在实际墙表面上的激光点的激光点的照亮位置获取。利用所获得的L1和L2来确定旋转角3。在此情况中,预先测量实际墙表面相对于参考坐标系的位置。
[0067]在用于确定旋转角3的第五个例子中,有两个目标墙表面并且机器人发射两束激光束。即使有两个目标墙表面,当激光点的位置在旋转前后保持在单个目标墙表面中时,通过利用只有一个目标墙表面来确定旋转角3的相同过程来确定旋转角3。然而,如果旋转角大,则激光点的位置可能在旋转前后覆盖两个不同的目标墙表面。在此情况中,不能使用如上所述的用于确定旋转角3的方法。图7是图示了这样的情形的图。
[0068]在图7中,第一目标墙表面62垂直于第二目标墙表面63。从机器人发射的两束激光束的光轴彼此垂直。在机器人旋转前,每束激光束从机器人发射到每个目标墙表面62和63。在此例子中,机器人在所述点上旋转,因此,其旋转前后的水平位置保持不变。换句话说,R1等于R2(即R1(R1x,R1y)=R2(R2x,R2y))。
[0069]在此例子中,L1(L1x,L1y)为由来自旋转前的机器人10的激光束照亮的在第一目标墙表面62上的激光点的位置。M1(M1x,M1y)为由来自旋转前的机器人10的激光束照亮的在第二目标墙表面63上的激光点的位置。对于旋转后的激光点,因为旋转角3大,所以本在第一目标墙表面62上的位置L1(L1x,L1y)处的激光点移动到在第二目标墙表面63上的位置M2(M2x,M2y)。旋转前本在第二目标墙表面63上的位置M1(M1x,M1y)处的激光点在旋转后离开标墙表面63,因此未在图7中示出。
[0070]在此情况中,预先设置角度χ或者目标墙表面62和目标墙表面63之间的相对位置。因此,当旋转使得激光点从第一目标墙表面62移动到第二目标墙表面63时,通过将旋转角31和旋转角32相加来确定旋转角3。旋转角31为当激光点从位置L1移动到第一目标墙表面62的末端时的旋转角。更详细地,第一目标墙表面62的末端为第一目标墙表面62和第二目标墙表面63的交点,并且用L2(L2x,L2y)表示。通过如下公式来确定旋转角31。为了简单,在图7中,在旋转前机器人在垂直于第一目标墙表面62的方向上发射激光束。
31=tan-1((L1x-L2x)/(L1y-R1y))
旋转角32为当激光点在第二目标墙表面63上从L2移动到M2时的旋转角,并且通过如下公式确定。
32=tan-1((L2y-M1y)/(R1x-M1x))+tan-1((M1y-M2y)/(R1x-M1x))
利用获取的旋转角31和32来确定旋转角3,如下。
3=31+32
可选地,可以利用如下的公式。
3=atan2(M2x-R2x,M2y-R2y)+π/2(rad)
注意,在如上所述中,1=0。函数atan2(x,y)为用于确定从x轴测量的围绕z轴的逆时针旋转角的函数,并且其在±π(rad)内取值。当1≠0时,首先以相似的方式获取角1,然后获取角2。通过3=2-1来计算旋转角3。因此,利用机器人的位置R1(R1x,R1y)、激光点的位置L1(L1x,L1y)和M2(M2x,M2y)获取旋转角3。
[0071]在用于确定旋转角3的第六个例子中,机器人改变了其在第五个例子中旋转前后的水平位置。换句话说,在旋转前机器人10的位置R1(R1x,R1y)与在旋转后的机器人11的位置R2(R2x,R2y)不同。其他的条件与第五个例子中的相同。图8为图示了第六个例子的图。在图8中,L3和M3的位置为当机器人11水平地移动到位置R2(R2x,R2y)但是还未旋转时,分别在第一和第二目标墙表面62和63上的两个激光点的位置。换句话说,位置L3和M3分别为目标墙表面62和63与从机器人11到目标墙表面62和63的垂线之间的交点。
[0072]在此情况中,与参照图7描述的第五个例子相似,当激光点在旋转前后保持在单个目标墙表面时,通过利用只有一个目标墙表面而确定3的方法来确定旋转角3。另一方面,当旋转角3大而且激光点的位置在两个目标墙表面之间移动时,通过将31和32相加来确定旋转角3。旋转角31为当激光点在第一目标墙表面62上移动时的角度。旋转角32为当激光点在第二目标墙表面63上移动时的角度。因此,通过如下公式确定出旋转角3。
3=31+32
[0073]当机器人将激光束发射到目标墙表面62和目标墙表面63时,利用激光点的位置来获取机器人的位置。换句话说,如图7中所示,当有两个目标墙表面和两束激光束,并且一束激光束在法线方向上入射到目标墙表面62上,两束激光束彼此垂直时,通过如下公式,利用激光点的位置L1(L1x,L1y)和M1(M1x,M1y),来确定机器人的位置R1(R1x,R1y)。
R1x=L1x
R1y=M1y
[0074]图9是图示了用于在更一般条件下确定机器人的位置的例子的图。在此例子中,有两个目标墙表面和两束激光束。一束激光束在倾斜的方向上入射在目标墙表面62上,并且两束激光束彼此垂直。预先已知相对于目标墙表面62的入射角β。如图9中所示,从目标墙表面62的垂线来测量出入射角β。在此情况中,利用两个激光点的位置以及入射角β来确定出机器人的位置R1(R1x,R1y)。
[0075]假定两个目标墙表面之间的角γ为直角。位置L1(L1x,L1y)和M1(M1x,M1y)分别为用来自机器人10的激光束照亮的在目标墙表面62和63上的激光点的位置。机器人的位置R1(R1x,R1y)为用如下公式表示的两条直线的交点。
y=M1y+sinβ·x
x=L1x+sinβ·y
换句话说,通过如下计算出x:
x=L1x+sinβ·(M2y+sinβ·x)
x(1-sin2β)=L1x+sinβ·M2y
x=(L1x+sinβ·M2y)/(1-sin2β)
通过如下计算出y。
y=M2y+sinβ·(L1x+sinβ·y)
y(1-sin2β)=M2y+sinβ·L1x
y=(M2y+sinβ·L1x)/(1-sin2β)
利用上述获得的x和y来通过下述公式确定机器人的位置R1(R1x,R1y)。
R1x=(L1x+M1y·sinβ)/(1-sin2β)
R1y=(M1y+L1x·sinβ)/(1-sin2β)
当两个目标墙表面之间的角γ不为直角时,与参照图6说明的第四个例子相似,限定两个虚拟墙表面以使在它们之间的角γ为π/2(rad)。机器人的位置R1(R1x,R1y)确定为两条直线的交点,如上所述。
[0076]如上所述,为了确定机器人的旋转角,机器人发射激光束到目标墙表面,并且测量在目标墙表面上的激光点的位置。利用在旋转前后机器人的位置的变化来确定机器人的旋转角3。进一步,除了测量激光点的位置,或代替测量激光点的位置,也可以测量和使用从机器人到目标墙表面的距离,或者机器人的移动距离。
[0077]作为对在图2中所说明的外部照相机的替代,其他的检测器,例如安装在机器人上的照相机可以用于测量在目标墙表面上的激光点的位置。
[0078]进一步,为了测量激光点的位置,可以检测或监控由目标墙表面反射的光。可选地,可以利用光位置传感器来产生光亮并且指示当目标墙表面被照亮时的照亮点的位置。用这样的光位置传感器,可以检测光亮来测量激光点的位置。
[0079]可以利用长度测量机器,例如激光测距仪,来测量机器人和目标墙表面之间的距离。
[0080]为了测量机器人的移动距离,可以测量机器人的轮子的旋转角。可选地,可以在地板或者轮子上设置标记,并且可以测量标记的移动。在地板上的标记可以是地板的图案。也可以通过GPS测量机器人的位置。
[0081]如果合适地结合上述计算方法,可以更容易地计算机器人的旋转角。例如,第一光位置传感器可以位于目标墙表面上,在相对于设置在地板上的定位夹具的预定位置。然后可以粗略地将机器人的轮子与定位夹具对齐。机器人发射激光束并且检测到激光束入射到第一光位置传感器的确切位置上。然后,将机器人在此位置固定到夹具上,并且因而确定了参考位置。在此情况中,可以预先确定光位置传感器相对于地板上的定位夹具的位置,以使激光束在垂直方向上入射到目标墙表面上。
[0082]进一步,可以在目标墙表面上,在相对于定位夹具和第一光位置传感器的预定位置设置第二光位置传感器。然后,旋转机器人来检测激光束入射在第二光位置传感器上的位置。此位置限定为用于校准的初始位置。在此情况中,预先限定在地板上的定位夹具、第一光位置传感器以及第二光位置传感器的相对位置,以使旋转角3为预定角度,例如+30度。
[0083]因此,当预先确定在地板上的定位夹具、第一光位置传感器以及第二光位置传感器的相对位置时,从机器人到光位置传感器的距离,即从机器人到激光点的距离,为预先设定值,因此,不需要测量。根据如上的设置,在轮子或者地板上的标记,例如地板图案,使得可能检测机器人在旋转前后是否水平移动,或者机器人的移动量。可以通过远程控制器80的输入单元84来输入预先设置的距离值,并且位置计算器82可以获取输入距离值。
[0084]在测量和设置了机器人10的初始位置后,相对于初始位置来校准光学陀螺仪18。机器人10的操作,特别地,在控制器30中的校准器32的每个功能此后参照图10的流程图来说明。图10为图示了校准机器人10的光学陀螺仪18的过程的流程图。图10中的每一步骤对应于校准程序的操作。图10示出了整个校准过程,包括位置测量装置100确定初始位置的过程(S10)。根据图10中所示的过程来执行测量机器人10的位置的光学陀螺仪18的校准。在校准中,机器人10固定在预定位置和方向,并且通过在此位置条件下连续地采样来获得通过光学陀螺仪测量的多个值。因为机器人10的位置和方向是固定的,所以通过光学陀螺仪测量的值假定为常量。然而,由于光学陀螺仪18的高准确性等,测量出的值对干扰敏感。换句话说,即使轻微的振动、冲击等,也可能引起测量值很大地变化。因此,光学陀螺仪的制造商有时建议采取相对长时间的测量来用于校准。校准周期有时延长到几分钟。必须防止光学陀螺仪18被在校准期间的这样的扰动所影响或者干扰。校准过程如下执行。
[0085]在安装在机器人10上的光学陀螺仪18的校准过程的开始,如图10中所示,在初始位置设置机器人10(S10)。初始位置为用于校准而设置的预定位置。光学陀螺仪18检测机器人10的角速度。在校准期间机器人固定在预定角度,并且观察或监控光学陀螺仪18在预定角度的输出值。优选地,将在预定角度的输出值设置为校准值。通过以此方式设置校准值,可以减少或者消除由机器人的驱动单元16等引起的轻微的振动的影响。如上所述,因为光学陀螺仪18检测绕三个轴的角速度,所以所述角为三维角。然而,下面仅描述绕z轴的角的校准。
[0086]确定初始位置的过程(S10),包括通过位置测量装置100来执行将机器人10设置在参考位置的过程,以及将机器人10从参考位置旋转并且确定旋转角的过程。此过程的详细描述省略。在预定旋转后,通过将轮子制动器附加到轮子12上以防止其水平移动,而将机器人10固定到地板表面。另外,控制器30指示驱动单元16保持在静止状态,因此轮子的(水平)移动的整个机械动作停止。
[0087]当建立了机器人10的初始位置时,然后获得初始值(S12)。更详细地,旋转角(对应于上述中的3,但此后用表示),其以如上所述的方式通过位置测量装置100获取,并且作为对应于所建立的初始位置的初始值,其通过输入单元84输入到控制器30。校准器32利用初始值获取模块40获取旋转角。控制器30可以利用有线或无线通信从输入单元84接收数据,例如初始值。在此实施例中,=+30度(通过输入单元84)被输入并且(通过校准器32)获取,作为设置在初始位置的机器人10的位置(信息)的初始值。
[0088]然后,通过利用状态输出模块48,校准器32指示校准开始(S14)并且处理校准(S16),步骤(S14和S16)向外部指示(显示)校准的状态(阶段),例如校准的开始或者校准正在处理中。这些步骤的目的在于通知旁观者(在机器人10周围的人)校准的阶段并且促使他们注意机器人10。根据指示,可以在校准过程中抑制由旁观者引起的干扰。更详细地,校准器32可以在指示器20上用灯光或声音来指示校准的开始,并且可以显示到校准结束的估计剩余时间或者校准的状态(阶段)来指示校准过程。例如,可以打开或亮灭闪烁绿灯来指示校准的开始,用秒来显示到校准结束的估计剩余时间来指示校准过程。
[0089]然后,重置校准周期计时器(S18)。换句话说,开始校准周期的走时过程。更详细地,可以使用校准周期计时器,在所述计时器中将预定的总校准周期设置为初始时间并且剩余时间随着校准的进行而减少。当新的校准开始时,初始时间重置到预定的总校准周期。例如,当总的校准周期为五(5)分钟(=三百(300)秒)时,将初始时间设置到300秒,并且使用计时器,在所述计时器中剩余时间随着校准的进行而减少。在新的校准每次开始时,将初始值重置为300秒。因此,初始时间的重置表示校准周期的每个走时过程的开始。可以基于机器人10的目的、所需的位置信息的精确度/准确度、以及光学陀螺仪18的灵敏度来确定总的校准周期。
[0090]然后,获取由光学陀螺仪18检测到的值,作为用于校准的数据(S20)。在此步骤中,校准器32利用检测值获取模块42,在每个采样周期中获取由光学陀螺仪18检测到的值。采样周期可以是十(10)msec。在此实施例中,在整个校准周期中总共获取30,000(=100×300)检测值。
[0091]当校准器32获取由光学陀螺仪18检测到的值时,校准周期计时器随着时间的过去减少剩余时间。进一步,在所述周期中,确定是否已有干扰发生(S22)。可以通过检查由光学陀螺仪18检测到的值是否异常高来确定任何干扰的发生。图11示出了这样情况的例子。在图11中,水平轴表示时间,垂直轴表示绕z轴的旋转角。从光学陀螺仪18的输出计算旋转角。在时间t0,在步骤S10中设置机器人10并且固定到+30度的初始位置。在时间t0前的波动表示在此位置固定前的噪声。在时间t0后,旋转角一般是常量。然而,在时间t1和t2检测到异常值。换句话说,干扰使得在时间t1和t2发生噪声。如图11中所示,可以通过检查旋转角是否超过合适的预定阈值范围70来确定噪声的发生。可以基于在机器人10的位置校准中所需的准确度/精确度或者在校准中所需的准确度/精确度,来确定所述阈值范围。例如,所示阈值范围可以设置为±2度。
[0092]当确定已有任何干扰发生时,校准器32利用警报模块50来输出警报信号(S24),控制器30在指示器20上指示干扰的发生。例如,可以打开或亮灭闪烁红灯,或者发出蜂鸣或给出声音警报。警报通知旁观者(在机器人周围的人)已经检测到干扰并且警告他们不要引起任何进一步的干扰。
[0093]另外,当确定干扰已发生时,校准器32的指示模块44提供用于重新校准的指示。因此,过程返回到步骤S18并且重置校准周期计时器。然后丢弃由光学陀螺仪18检测到的值,并且校准器32从开始重新开始所述过程来获取由光学陀螺仪18检测到的值。然后,确定是否经过了校准周期(S26)。更详细地,确定校准周期计时器的剩余时间是否达到0。如果所述校准周期没有过去,则过程返回到步骤S20,并且校准器32继续获取由光学陀螺仪18检测到的值,直到校准周期过去。
[0094]图11图示了这样的情况。换句话说,在图11中,校准周期设置为T0。在时间t1,从时间t0还未经过校准周期T0,检测到超过阈值范围70的噪声。因此,确定干扰发生。然后,确定重新校准并且在时间t1重置校准周期计时器。接下来,在时间t2,从时间t1还未经过校准周期T0,再次检测到超过阈值范围70的噪声。因此,在时间t2再次确定重新校准。然后,在经过了校准周期T0,从时间t2到时间t3没有发生超过阈值范围70的干扰。因此,在时间t3,校准器32在整个校准周期T0内没有任何干扰地第一次获取由光学陀螺仪18检测到的全部的值。
[0095]如果确定经过了校准周期,则基于在校准周期中采样的检测值来确定校准值(S28)。更详细地,校准器32通过校准值设置模块46对所有检测值执行统计处理。例如,可以计算30,000个检测值的平均值。统计处理可以包括设置比阈值范围70小的第二阈值范围,并且在此第二阈值范围内计算检测值的平均值的过程,合适的加权过程,与标准偏差相结合的过程等,以及求简单平均数的过程。例如,在图11中所示的例子中,如果30,000个检测值的平均值为+29.5度,那么这是用于初始值+30度的校准值。
[0096]在如上所述确定了用于建立的初始位置的校准值后,校准过程终止。在上述描述中,只说明了校准旋转角的构造。同时或者之后接着执行关于旋转角θ和ψ的相似的校准。在完成光学陀螺仪18的三个轴的校准之后,指示器20指示校准的完成并且可以移走轮子制动器。然后,此后利用校准值来校准由光学陀螺仪18检测到的值。位置信息计算器34基于校准值来计算机器人10的位置信息。然后,控制器30基于计算出的机器人10的位置信息以及表演程序来向驱动控制器36输出表演动作必需的指令。如上所述,机器人10可以高准确度地执行这些动作。
[0097]尽管本发明的一些实施例如上所述,但应理解本发明不限于所图示的实施例的详情,而是可以用对于本领域技术人员而言可以进行的各种改变、修改或改进来实施,而不脱离本发明的宗旨和范围。

Claims (19)

1.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
光束发射装置,用于发射光束;
光束位置检测装置,用于检测被所述发射的光束照亮的位置;
计算装置,用于依照由所述光束位置检测装置检测到的所述被照亮位置来计算所述移动物体的位置和方向中的至少一个;及
校准装置,其依照由所述计算装置计算出的所述移动物体的所述位置和所述方向中的至少一个来校准所述陀螺仪。
2.如权利要求1所述的陀螺仪校准设备,其中所述光束位置检测装置包括用于测量从所述移动物体到所述被照亮位置的距离的装置,并且其中
除了所述被照亮位置之外,所述计算装置还依照从所述移动物体到所述被照亮位置的所述距离来计算所述移动物体的所述位置和所述方向中的至少一个。
3.如权利要求1或2所述的陀螺仪校准设备,其中所述光束位置检测装置包括用于测量当所述移动物体旋转时,所述移动物体的移动距离的装置,并且其中
除了所述被照亮位置之外,所述计算装置还依照所述移动物体的所述移动距离来计算所述移动物体的所述位置和所述方向中的至少一个。
4.如权利要求1所述的陀螺仪校准设备,其中所述光束发射装置在多于一个的方向上发射所述光束。
5.如权利要求1所述的陀螺仪校准设备,其中所述光束位置装置为安装在所述移动物体上的位置测量装置。
6.如权利要求1所述的陀螺仪校准设备,其中所述光束位置检测装置为与所述移动物体分开设置的外部位置测量装置。
7.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
光束发射装置,用于发射光束;
用于测量从所述移动物体到被所述发射的光束照亮的位置的距离的装置;
计算装置,用于依照从所述移动物体到所述被照亮位置的距离来计算所述移动物体的位置和方向中的至少一个;及
校准装置,其依照由所述计算装置计算出的所述移动物体的所述位置和所述方向中的至少一个来校准所述陀螺仪。
8.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
光束发射装置,用于发射光束;
用于测量当所述移动物体旋转时,所述移动物体的移动距离的装置;
计算装置,用于依照所述移动物体的所述移动距离来计算所述移动物体的位置和方向中的至少一个;及
校准装置,其依照由所述计算装置计算出的所述移动物体的所述位置和所述方向中的至少一个来校准所述陀螺仪。
9.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
初始值获取装置,用于获取初始位置值,所述初始位置值为被设置在初始位置的所述移动物体的位置;
检测值获取装置,用于获取当所述移动物体保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
指示装置,如果干扰被检测到,则其指示所述检测值获取装置重新开始获取多于一个的值;及
校准值设置装置,用于基于由所述检测值获取装置获取的所述多于一个的值来确定校准位置值,并用于将所述校准位置值设置为所述初始位置值的校准值。
10.如权利要求9所述的陀螺仪校准设备,其中所述校准值设置装置计算由所述检测值获取装置获取的所述多于一个的值的平均值,并且将所述平均值设置为所述校准值。
11.如权利要求9所述的陀螺仪校准设备,进一步包括用于输出表示正在进行校准的信号的状态输出装置。
12.如权利要求9所述的陀螺仪校准设备,进一步包括用于输出表示所述干扰出现的警报信号的警报装置。
13.一种机器人,包括:
检测机器人的位置的陀螺仪;及
校准所述陀螺仪的校准器,
所述校准器包括:
初始值获取装置,用于获取初始位置值,所述初始位置值为被设置在初始位置的所述机器人的位置;
检测值获取装置,用于获取当所述机器人保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
指示装置,如果干扰被检测到,则其指示所述检测值获取装置重新开始获取多于一个的值;及
校准值设置装置,用于基于由所述检测值获取装置获取的所述多于一个的值来确定校准位置值,并用于将所述校准位置值设置为所述初始位置值的校准值。
14.一种由校准器执行的程序,所述校准器校准安装在机器人上的用于检测位置信息的陀螺仪,所述程序包括步骤:
获取初始位置值,所述初始位置值为被设置在初始位置的所述机器人的位置;
获取当所述机器人保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
当干扰被检测到时提供指令来重新开始获取所述多于一个的值;
基于所述获取的多于一个的值来确定校准位置值;及
将所述校准位置值设置为所述初始位置值的校准值。
15.一种校准安装在移动物体上的用于检测位置信息的陀螺仪的方法,所述方法包括:
发射光束;
检测由所述发射的光束照亮的位置;
依照所述检测到的照亮位置来计算所述移动物体的位置和方向中的至少一个;及
依照所述计算出的所述移动物体的所述位置和所述方向中的至少一个来校准所述陀螺仪。
16.一种校准安装在移动物体上的用于检测位置信息的陀螺仪的方法,所述方法包括:
获取初始位置值,所述初始位置值为被设置在初始位置的所述机器人的位置;
获取当所述机器人保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
当干扰被检测到时提供指令来重新开始获取所述多于一个的值;
基于所述获取的多于一个的值来确定校准位置值;及
将所述校准位置值设置为所述初始位置值的校准值。
17.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
光束发射器,用于发射光束;
光束位置检测器,用于检测被所述发射的光束照亮的位置;
计算器,用于依照由所述光束位置检测器检测到的所述被照亮位置来计算所述移动物体的位置和方向中的至少一个;及
校准器,其依照由所述计算器计算出的所述移动物体的所述位置和所述方向中的至少一个来校准所述陀螺仪。
18.一种陀螺仪校准设备,其校准安装在移动物体上的用于检测位置信息的陀螺仪,所述陀螺仪校准设备包括:
初始值获取部件,用于获取初始位置值,所述初始位置值为被设置在初始位置的所述移动物体的位置;
检测值获取部件,用于获取当所述移动物体保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
指示部件,其指示所述检测值获取部件重新开始获取多于一个的值;及
校准值设置部件,其基于由所述检测值获取部件获取的所述多于一个的值来生成校准位置值,并将所述校准位置值设置为所述初始位置值的校准值。
19.一种机器人,包括:
检测机器人的位置的陀螺仪;及
校准所述陀螺仪的校准器,
所述校准器包括:
初始值获取部件,用于获取初始位置值,所述初始位置值为被设置在初始位置的所述移动物体的位置;
检测值获取部件,其获取当所述移机器人保持在所述初始位置时,由所述陀螺仪在预定一段时间检测到的多于一个的值;
指示部件,如果干扰被检测到,则其指示所述检测值获取部件重新开始获取多于一个的值;及
校准值设置部件,其基于由所述检测值获取部件获取的所述多于一个的值来生成校准位置值,并将所述校准位置值设置为所述初始位置值的校准值。
CNA2006800282853A 2005-08-01 2006-08-01 装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法 Pending CN101233389A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005223503A JP2007040762A (ja) 2005-08-01 2005-08-01 光ジャイロ較正装置、光ジャイロを搭載するロボット及び光ジャイロ較正プログラム
JP223503/2005 2005-08-01

Publications (1)

Publication Number Publication Date
CN101233389A true CN101233389A (zh) 2008-07-30

Family

ID=37671262

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800282853A Pending CN101233389A (zh) 2005-08-01 2006-08-01 装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法

Country Status (4)

Country Link
US (1) US20090133467A1 (zh)
JP (2) JP2007040762A (zh)
CN (1) CN101233389A (zh)
WO (1) WO2007015149A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898658A (zh) * 2014-03-06 2015-09-09 丰田自动车株式会社 自主移动机器人及其控制方法
CN106199066A (zh) * 2016-07-08 2016-12-07 上海与德通讯技术有限公司 智能终端的方向校准方法、装置
CN107328427A (zh) * 2017-07-04 2017-11-07 歌尔科技有限公司 陀螺仪性能测试方法及装置
CN108646733A (zh) * 2018-04-27 2018-10-12 杭州艾豆智能科技有限公司 一种自动矫正的移动机器人及其矫正方法
CN109459063A (zh) * 2018-12-14 2019-03-12 中国人民解放军海军工程大学 双轴旋转惯导系统的十六位置误差调制方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591471B1 (ko) * 2008-11-03 2016-02-04 삼성전자주식회사 물체의 특징 정보를 추출하기 위한 장치와 방법, 및 이를 이용한 특징 지도 생성 장치와 방법
JP4957753B2 (ja) * 2009-06-15 2012-06-20 セイコーエプソン株式会社 ロボット、搬送装置、及び慣性センサーを用いた制御方法
US9223008B1 (en) * 2010-03-02 2015-12-29 Advanced Optical Systems Inc. Load tracking and stabilization
US8325351B2 (en) * 2010-10-29 2012-12-04 Trimble Navigation Limited Layout method
WO2012094349A2 (en) 2011-01-05 2012-07-12 Orbotix, Inc. Self-propelled device with actively engaged drive system
US10281915B2 (en) 2011-01-05 2019-05-07 Sphero, Inc. Multi-purposed self-propelled device
US9429940B2 (en) 2011-01-05 2016-08-30 Sphero, Inc. Self propelled device with magnetic coupling
US9090214B2 (en) 2011-01-05 2015-07-28 Orbotix, Inc. Magnetically coupled accessory for a self-propelled device
US9218316B2 (en) 2011-01-05 2015-12-22 Sphero, Inc. Remotely controlling a self-propelled device in a virtualized environment
US9341720B2 (en) 2011-01-11 2016-05-17 Qualcomm Incorporated Camera-based position location and navigation based on image processing
DE102011006427A1 (de) * 2011-03-30 2012-10-04 Robert Bosch Gmbh Drehratensensor und Verfahren zur Kalibrierung eines Drehratensensors
US9827487B2 (en) 2012-05-14 2017-11-28 Sphero, Inc. Interactive augmented reality using a self-propelled device
CN104428791A (zh) * 2012-05-14 2015-03-18 澳宝提克斯公司 通过检测图像中的圆形物体操作计算装置
US10056791B2 (en) 2012-07-13 2018-08-21 Sphero, Inc. Self-optimizing power transfer
DE102013215409A1 (de) * 2013-08-06 2015-02-12 Robert Bosch Gmbh Projektionseinheit für eine selbsttätig mobile Plattform, Transportroboter und Verfahren zum Betrieb einer selbsttätig mobilen Plattform
US9829882B2 (en) 2013-12-20 2017-11-28 Sphero, Inc. Self-propelled device with center of mass drive system
CN104880200B (zh) * 2014-05-13 2017-12-22 北京航天计量测试技术研究所 复合制导系统初始姿态现场校准系统及方法
US20160054355A1 (en) * 2014-08-20 2016-02-25 Honeywell International Inc. Compact inertial measurement unit with interface adapter
ES2931044T3 (es) 2015-12-16 2022-12-23 Techmah Medical Llc Un método de calibración de una unidad de medición inercial
JP6653446B2 (ja) * 2016-05-06 2020-02-26 パナソニックIpマネジメント株式会社 ロボット
JP6776960B2 (ja) * 2017-03-14 2020-10-28 トヨタ自動車株式会社 自律移動体
DE102017113419A1 (de) 2017-06-19 2018-12-20 Keba Ag Vorrichtung und Verfahren zum Bestimmen eines Winkels zwischen zwei Werkstückflächen
CN113597274B (zh) * 2019-03-21 2023-04-07 尚科宁家运营有限公司 自适应传感器阵列系统和方法
CN110987008B (zh) * 2019-12-10 2023-08-11 上海航天控制技术研究所 一种低精度mems陀螺组合零位偏置快速标定方法
US20240013436A1 (en) * 2022-07-10 2024-01-11 MOV. AI Ltd. Unconstrained calibration system and method for sensor suites in robotics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795731A (fr) * 1972-02-21 1973-08-21 Dassault Electronique Installation pour le reglage d'un appareil indicateur de cap
JPH0291513A (ja) * 1988-09-28 1990-03-30 Sumitomo Electric Ind Ltd ジャイロの零点補正方法及びその装置
JP3018497B2 (ja) * 1990-11-30 2000-03-13 住友電気工業株式会社 旋回角速度センサのオフセット補正装置
US5991692A (en) * 1995-12-28 1999-11-23 Magellan Dis, Inc. Zero motion detection system for improved vehicle navigation system
US5795988A (en) * 1996-07-01 1998-08-18 Alliedsignal Inc. Gyroscope noise reduction and drift compensation
DE19730483C2 (de) * 1997-07-16 1999-06-02 Siemens Ag Verfahren zur Festlegung der Drehlage einer autonomen mobilen Einheit und autonome mobile Einheit
DE19828944C1 (de) * 1998-06-29 2000-03-30 Siemens Ag Verfahren zum Kalibrieren eines Winkelsensors und Navigationssystem mit Winkelsensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898658A (zh) * 2014-03-06 2015-09-09 丰田自动车株式会社 自主移动机器人及其控制方法
CN104898658B (zh) * 2014-03-06 2017-11-03 丰田自动车株式会社 自主移动机器人及其控制方法
CN106199066A (zh) * 2016-07-08 2016-12-07 上海与德通讯技术有限公司 智能终端的方向校准方法、装置
CN106199066B (zh) * 2016-07-08 2019-09-24 上海与德通讯技术有限公司 智能终端的方向校准方法、装置
CN107328427A (zh) * 2017-07-04 2017-11-07 歌尔科技有限公司 陀螺仪性能测试方法及装置
CN107328427B (zh) * 2017-07-04 2021-03-19 歌尔光学科技有限公司 陀螺仪性能测试方法及装置
CN108646733A (zh) * 2018-04-27 2018-10-12 杭州艾豆智能科技有限公司 一种自动矫正的移动机器人及其矫正方法
CN109459063A (zh) * 2018-12-14 2019-03-12 中国人民解放军海军工程大学 双轴旋转惯导系统的十六位置误差调制方法
CN109459063B (zh) * 2018-12-14 2020-09-01 中国人民解放军海军工程大学 双轴旋转惯导系统的十六位置误差调制方法

Also Published As

Publication number Publication date
JP2007040762A (ja) 2007-02-15
US20090133467A1 (en) 2009-05-28
JP2009503532A (ja) 2009-01-29
WO2007015149A2 (en) 2007-02-08
WO2007015149A3 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
CN101233389A (zh) 装备有陀螺仪的机器人以及陀螺仪校准设备、程序和方法
CN111238453B (zh) 智能定位模块
CN101960256B (zh) 测量仪器的自动校准
US9453729B2 (en) Layout equipment and layout method
CN100580374C (zh) 激光测定方法及激光测定系统
CN102365526B (zh) 测量装置和测量系统
US7762135B2 (en) Compensated measurement of angular displacement
US7453395B2 (en) Methods and systems using relative sensing to locate targets
CN104807475B (zh) 动中通卫星天线倾角校准过程中零点漂移值的测量方法
CA2867562A1 (en) Three-dimensional measuring method and surveying system
CN104061912A (zh) 建筑激光系统
CN101566528A (zh) 参数检测系统
JP2008164590A (ja) 慣性航法システムを増補するシステムおよび方法
IL222257A (en) Determining the azimuth relative to the north geographically
US20010019101A1 (en) Target, surveying systems and surveying method
JP2019060620A (ja) 移動状態判別装置、電子時計、移動状態判別方法及びプログラム
KR101791955B1 (ko) 측량정보의 오차발생 범위를 최소화하는 수준 측지측량 장치
US10026311B2 (en) Method and apparatus for determining direction of the beginning of vehicle movement
JPH08178652A (ja) 測量装置
JP2021056013A (ja) Gnss装置
JP2003240546A (ja) 高低差計測システム
CN111504344B (zh) 用于对非接触姿态测量设备进行标定的标定系统及方法
JPH10153442A (ja) ナビゲーション装置
EP4354079A1 (en) Position measurement device and position measurement method
JPH10339641A (ja) 非接触距離検出機能付きナビゲーション装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080730