CN101232774A - 高热导率陶瓷基印刷电路板及其制作方法 - Google Patents

高热导率陶瓷基印刷电路板及其制作方法 Download PDF

Info

Publication number
CN101232774A
CN101232774A CNA2007100194401A CN200710019440A CN101232774A CN 101232774 A CN101232774 A CN 101232774A CN A2007100194401 A CNA2007100194401 A CN A2007100194401A CN 200710019440 A CN200710019440 A CN 200710019440A CN 101232774 A CN101232774 A CN 101232774A
Authority
CN
China
Prior art keywords
layer
circuit board
printed circuit
high heat
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100194401A
Other languages
English (en)
Other versions
CN100588308C (zh
Inventor
孙建国
梁秉文
李健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Henderson Intelligent Technology Co., Ltd.
Original Assignee
Nanjing Handson Science & Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Handson Science & Technology Corp filed Critical Nanjing Handson Science & Technology Corp
Priority to CN200710019440A priority Critical patent/CN100588308C/zh
Publication of CN101232774A publication Critical patent/CN101232774A/zh
Application granted granted Critical
Publication of CN100588308C publication Critical patent/CN100588308C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种高热导率陶瓷基印刷电路板,包括底层、中间绝缘层和表面导电层,导电层上分布有导电线路,底层是高热导率的氮化铝陶瓷层,中间绝缘层为高导热的环氧玻纤布粘结片或者高导热环氧树脂聚合物。其制作工艺:①选用环氧树脂覆铜薄,采用机械、超声波或化学方法对表面进行预处理,去油污、毛刺、杂质后形成清洁平整的绝缘层;②采用气相淀积法表面陶瓷化的方法,在预处理后的绝缘层表面加工制作散热陶瓷层;③在绝缘层的外面进一步覆盖导电层,进而在导电层上面蚀刻制作导电线路。本发明印刷电路板具有良好的导热性能、电气绝缘性能和机械加工性能,适用于大功率LED发光二极管器件电路、厚膜混合集成电路等。

Description

高热导率陶瓷基印刷电路板及其制作方法
技术领域
本发明涉及印刷电路板,尤其涉及一种高热导率陶瓷基印刷电路板及其制作方法,属于印刷电路板技术领域。
背景技术
在封装技术的发展中,功能提升及缩小化造成发热密度越来越高,一些LED产品只靠封装设计已无法散去足够的热,必须藉由PCB的设计来加强散热功能。目前,大功率半导体发光二极管(LED)照明光源主要应用于金属铝材料为基材的印刷电路板,首当其冲的是选用金属铝基的印刷电路板作为LED的载体,铝基板一方面起固定作用,另一方面起散热作用,LED正常工作时产生的热量首先通过铝基印刷电路板导出。对于运用传统加工工艺制造的金属铝基印刷电路板,在上导电层与底层铝基板之间承担电气绝缘的导热绝缘层,其热传导率比较低,如:树脂的导热率一般为0.3w/mk,而玻璃纤维的导热率也不足1w/mk,因此,铝基印刷电路板限制了大功率半导体发光二极管用作照明光源时其优越性能的发挥。
随着LED科学研究的不断发展和芯片工艺生产水平的不断提升,大功率LED封装技术日臻成熟,发光效率得以大大提高,其应用领域不断拓展。但是,LED发光将电能转变为光能的过程中,由于有电阻和辐射复合,LED会产生大量的热。如果,大功率LED用于特种灯具,或用于恶劣环境使用的灯具,这些灯具的外壳防护等级一般都在IP65以上,如果外壳为非金属(如塑胶)材料,尽管LED连接上了铝基板(MCPCB),但铝基板上的热量如果不能被有效地传导至外壳表面,则聚集的热量会使铝基板的温度急剧上升,导致温度过高,增加了LED失效的可能性,造成LED光衰加剧、寿命缩短。因此,如何选择印刷电路板材料及散热研究已成为目前基板设计的一大挑战。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高热导率陶瓷基印刷电路板及其制作方法,旨在有效解决印刷电路板的散热问题,明显改善导热性能、电气绝缘性能和机械加工性能。
本发明的目的通过以下技术方案来实现:
高热导率陶瓷基印刷电路板,包括底层、中间绝缘层和表面导电层,导电层上分布有导电线路,其特征在于:所述底层是高热导率的氮化铝陶瓷层,中间绝缘层为高导热的环氧玻纤布粘结片或者高导热环氧树脂聚合物。
进一步地,上述的高热导率陶瓷基印刷电路板,其中,所述陶瓷层的厚度为10~1000um,陶瓷粉末的颗粒大小为10~200nm,其绝缘电阻≥100MΩ。
更进一步地,上述的高热导率陶瓷基印刷电路板,其中,所述导电层的材料是铜、金、银或钯,导电层的局部还涂有铟金合金或者金锡合金。
更进一步地,上述的高热导率陶瓷基印刷电路板,其中,所述高热导率陶瓷基印刷电路板为双面板,在高热导率陶瓷层的下面也有导电层。
再进一步地,上述的高热导率陶瓷基印刷电路板的制作方法,其特征在于:包括以下步骤——
①选用环氧树脂覆铜薄,采用机械、超声波或者化学方法对板材表面进行预处理,去油污、毛刺,杂质,形成清洁平整的绝缘层;
②采用气相淀积表面陶瓷化的方法在预处理后的绝缘层表面制作陶瓷层:用高能量密度的激光束、离子束作为热源,辅助和诱导气相反应制备薄膜材料,用气流吹送陶瓷粉末,向电路板高速喷射,利用与电路板的撞击而形成膜,表面形成强化陶瓷薄膜,然后对陶瓷薄膜进行封闭气相淀积处理,经烘干后获得高热导率陶瓷层;
③在绝缘层的外面全部覆盖导电层,再在导电层上面蚀刻制作导电线路;或者在绝缘层的外面局部涂覆防护膜,再通过溅射或蒸镀的方法直接制作导电线路。
本发明技术方案的突出的实质性特点和显著的进步主要体现在:
(1)本发明在玻璃纤维布粘结片或者环氧树脂聚合物表面生成陶瓷薄膜层,采用气相淀积法,工艺稳定可靠,主要反应在常温下进行,原材料符合环保要求;
(2)高热导率陶瓷基印刷电路板的热膨胀率小,具有优异的散热性能,其散热效果卓越;在陶瓷膜厚度100μm时,板的原材料厚度方向的热膨胀系数差异小,受热基材膨胀变化差异小,避免铜线路和金属化孔间断裂而造成破坏;另外,氮化铝陶瓷薄膜的热阻较低,具有良好的散热特性;
(3)防静电性能较好,在陶瓷膜厚度100μm时,表面绝缘电阻可达100MΩ,为静电耗散材料,能够有效扩散静电,防止静电击穿电器元件;
(4)高热导率陶瓷基板具有高机械强度和韧性,在高热导率陶瓷基板上可实现大面积的印制板的制造,与玻璃纤维布粘结片或者环氧树脂聚合物结合牢固,能够有效地克服导电层、绝缘层、基板之间因不同膨胀系数而引起的应力效应,可承受钻孔、冲剪、切割、蚀刻等加工;
(5)电磁屏蔽性能良好,高热导率陶瓷基板可充当屏蔽板,起到屏蔽电磁波的作用,可用于制造较大面积的线路板,在改善电子兼容性方面具有较广阔的应用前景;
(6)高热导率陶瓷基印刷电路板可适用于有特殊要求的电路,如:大功率LED发光二极管器件电路、厚膜混合集成电路、多晶片模块(multichip module)、陶瓷基片难以胜任的大规模基片、使用普通散热器不能解决可靠性的电路等。
附图说明
下面结合附图对本发明技术方案作进一步说明:
图1:本发明单面型高热导率陶瓷基印刷电路板的结构示意图;
图2:本发明双面型高热导率陶瓷基印刷电路板的结构示意图;
图3:本发明高热导率陶瓷基印刷电路板的制作工艺流程图。
图中各附图标记的含义是:1-导电层,2-绝缘层,3-高热导率陶瓷层,4-导电层。
具体实施方式
众所周知,氮化铝的性能和用途与氧化铍类似,具有高热导率(120~200W/mk)和优良的电气、机械性能,但不像氧化铍那样具有毒性。氮化铝的热膨胀系数(4.4×10-6/℃)低,可与硅的热膨胀系数(3×10-6/℃)形成良好的匹配。氮化铝在陶瓷中具有较高的导热性(比氧化铝高3~5倍)、低的电导率、介电常数及介电损耗。陶瓷层的厚度为10~1000um,陶瓷粉末的颗粒大小为10~200nm,其绝缘电阻≥100MΩ;同时,氮化铝薄膜的导热率可达120w/mk,远远高于一般的纤维和树脂,而且薄膜质地致密均匀,耐热性及抗腐蚀性好。
本发明提供一种以陶瓷薄膜层作为底层的印刷电路板,陶瓷薄膜层的化学成分是铝的氮化物,即氮化铝。单面板高热导率陶瓷基印刷电路板的基本结构分为三层,如图1所示,包括外部导电层1、中间导热绝缘层2、氮化铝陶瓷薄膜层3;外部导电层1可以是全部覆盖的金属层,也可以是直接制作的导电线路;中间导热绝缘层2为高导热的环氧玻纤布粘结片或者特殊的高导热环氧树脂聚合物;高热导率的氮化铝陶瓷薄膜层3的厚度为10~1000μm,其绝缘电阻≥100MΩ。
图2为双面板高热导率陶瓷基印刷电路板的结构示意图,基本结构分为四层:外部导电层1和4、绝缘层2及陶瓷层3,外部导电层1和4的材料为铜箔,厚度一般在9~70μm,可通过加大铜箔厚度和面积使导电层获得较大的载流能力;绝缘层2的绝缘介质一般采用高导热的环氧玻纤布粘结片或者特殊的高导热环氧树脂聚合物,绝缘层的厚度为50~100μm,热阻小、粘结性能优良、具有抗热老化的能力,并且能够承受机械及热应力;高热导率陶瓷层3的材料为氮化铝,具有很强的尺寸稳定性和机械加工性能及优良的散热性。
高热导率陶瓷基印刷电路板的制作工艺为:①选用环氧树脂覆铜薄,采用机械、超声波或者化学方法对板材表面进行预处理,去油污、毛刺,杂质,形成清洁平整的绝缘层;②采用气相淀积表面陶瓷化的方法在预处理后的绝缘层表面制作陶瓷层:用高能量密度的激光束、离子束作为热源,辅助和诱导气相反应制备薄膜材料,用气流吹送陶瓷粉末,向电路板高速喷射,利用与电路板的撞击而形成膜,表面形成强化陶瓷薄膜,然后对陶瓷薄膜进行封闭气相淀积处理,经烘干后获得高热导率陶瓷层;③在绝缘层的外面全部覆盖导电层,再在导电层上面蚀刻制作导电线路;或者在绝缘层的外面局部涂覆防护膜,再通过溅射或蒸镀的方法直接制作导电线路。
图3是采用气相沉积技术的加工工艺流程图,制作时,通常采用厚度为100~1000μm的高导热的环氧玻纤布粘结片或者特殊的高导热环氧树脂聚合物,大面积的材料表面需要采用机械和化学方法进行预处理,经过去油和水洗,形成清洁平整的平面;然后利用高能量密度的激光束、离子束等作为热源,辅助和诱导气相反应制备薄膜材料,用气流吹送陶瓷粉末,陶瓷粉末的颗粒大小控制在10~200nm,向电路板高速喷射,利用与电路板的撞击而形成膜,表面形成强化陶瓷薄膜,然后对此陶瓷薄膜进行封闭气相淀积处理,烘干后形成高热导率陶瓷基印刷电路板的导热绝缘层,克服了普通化学气相沉积和物理气相沉积超硬薄膜材料性能上的不足,显著提高了薄膜的沉积效果。
经过气相沉积加工之后,表面陶瓷状氧化膜致密、均匀,颜色一致性好,厚度范围可以控制在10~1000um,硬度和相对耐磨性得到提高,抗氧化和耐腐蚀性能大大改善,且氮化铝的耐热度不低于1000℃。
底层制作完毕,即可在其外层加工导电层,并布置导电线路,导电层和导电线路的制作工艺方法可以采取先在导热绝缘层上制作全部覆盖的金属层,也可在制作双面板时双面敷铜,然后再在金属层上蚀刻制作导电线路。通常,导电层的导电线路采用金属铜来制作,但是,根据印刷电路板的应用需求,还可以使用或在铜层上辅助使用金、银、钯等金属来制作导电线路;在直接封装大功率LED的芯片贴片之处还可以专门蒸涂铟金、金锡或相似的合金,以形成适合芯片底面焊接的合金涂层。
需说明的是,高导热的环氧玻纤布粘结片板材的制作工艺为:首先,配置原料板材树脂胶液,将二甲基甲酰胺、乙二醇甲醚、双氰胺、环氧树脂、促进剂搅拌混合,再将一甲基咪唑预先溶于适量的二甲基甲酰胺,然后加到上述物料中,继续充分搅拌,熟化7小时后,取样检测,待符合技术要求后进入制造流程。
再将玻纤布开卷后,经导向辊进入胶槽,浸胶后通过挤胶辊,控制树脂含量,然后进入烘箱,经过烘箱期间,去除溶剂等挥发物,同时使树脂处于半固化状态,出烘箱后,按尺寸要求进行剪切,并整齐的叠放在储料架上,调节挤胶辊的间隙以控制树脂含量,调节烘箱各温区的温度、风量和车速控制凝胶时间和挥发物含量。为了确保品质,必须定时地对各项技术要求进行检测,检测树脂含量、凝胶时间、树脂流动度、挥发物含量,待各项指标符合要求后,生成粘结片;粘结片应整齐叠放,粘结片中的环氧树脂处于半固化状态,在存放过程中,粘结片的品质将随存放条件和存放时间的变化而变化,在湿度大的情况下,粘结片的吸湿率会明显增大,粘结片吸湿后将严重影响产品质量,将粘结片在温度25℃以下、相对湿度50%以下的条件进行存放。
然后将粘结片进行压制,基材的压制过程大体分成升温、保温和降温三个阶段。压制过程可手工操作,也可由电脑控制。在升温阶段,使热量从加热板逐步传递到层间每块产品,使树脂熔化、流动。同时,根据树脂的熔化和流动情况,进行加压。
最后,对表面先进行机械和化学方法预处理,形成光洁平整的平面,然后铺覆薄薄一层的环氧玻璃布,再涂复一层特殊的聚合物构成高导热的环氧玻纤布粘结片板材。
值得注意的是,当高热导率陶瓷基印刷电路板是图2所示的双面板时,制作过程在单面板的基础上,通过化学沉铜方式在陶瓷基下表面实现表面敷铜。主要工序包括:①基板预处理烘烤,②刷板表面的清洁、除渣工艺,③除油活化,④沉铜后板件除去表面钝化膜,⑤直接电镀酸铜。
其具体工艺为:首先,基板预处理烘烤,基板会吸潮和本身在压合成基板时部分树脂固化不良,在钻孔时会因树脂本身的强度不够而造成钻孔的质量很差,因此开料时需进行必要的烘烤,可将基板放入烤箱中,温度控制在50~80℃,时间控制在10~20分钟,去除内部潮气和水分。将烘烤后的基板进行刷板处理,刷板通过机械方法去除表面的污染和清除毛刺和披锋,进行表面的清洁。进行合理适当的除渣工艺,增加孔比的结合力和内层连接的可靠性。另外,在氮化铝陶瓷薄膜层3下表面形成前,应注意陶瓷粉末的颗粒大小,粉末颗粒控制在10~200nm,否则表层颗粒较难活化,沉铜后因镀层在极度不平的基底上沉积,化学铜的应力会成倍的加大,严重时会明显看到沉铜后化学铜一片片从表层上脱落,造成后续无铜的产生。
其次,将单面板放入沉积槽液中,除油活化,除油剂的温度控制在50~80℃,时间20~30分钟,如果槽液温度过高,槽液使用时间过长老化,胶体钯会发生沉淀。处理时间不足、加热管或挂篮的材质不良或错用而造成槽液中的铁离子、铜离子或其他金属离子含量偏高,而影响槽液的活性。当然水分的带入、其他污染物、槽液中四价锡的增加,对槽液的活化性都有一定影响。加速一般使用氟硼酸,活化和加速后沉积数小时,沉铜后板件一般要浸硫酸除去表面的残碱和碱性的钝化膜,直接电镀酸铜。残存湿气需吹干,如果吹干温度过高会造成化学铜的氧化,引发后续的变形。所以沉铜后应迅速电镀一次铜,存留时间不能过长,一般不超过12小时。然后再在金属层上蚀刻制作导电线路,进行机械加工,制得所需的印制板。
综上所述,高热导率陶瓷基印刷电路板具有良好的导热性能、电气绝缘性能和机械加工性能。高热导率陶瓷基印制电路板取代了传统的环氧树脂基板、易碎的陶瓷基片;同时,高热导率陶瓷基板有效解决了元器件的散热问题,降低了产品工作温度,提高了产品可靠性和稳定性,延长了产品的使用寿命。
本发明提供的高热导率陶瓷基印刷电路板可应用于某些特定的功率型电子线路及装置,如:大功率LED发光二极管器件电路、厚膜混合集成电路、多晶片模块(multichip module)、陶瓷基片难以胜任的大规模基片、使用普通散热器不能解决可靠性的电路等。
当然,以上仅是本发明的具体应用范例,对本发明的保护范围不构成任何限制。凡采用等同变换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (5)

1.高热导率陶瓷基印刷电路板,包括底层、中间绝缘层和表面导电层,导电层上分布有导电线路,其特征在于:所述底层是高热导率的氮化铝陶瓷层,中间绝缘层为高导热的环氧玻纤布粘结片或者高导热环氧树脂聚合物。
2.根据权利要求1所述的高热导率陶瓷基印刷电路板,其特征在于:所述陶瓷层的厚度为10~1000um,其粉末的颗粒大小为10~200nm,其绝缘电阻≥100MΩ。
3.根据权利要求1所述的高热导率陶瓷基印刷电路板,其特征在于:所述导电层的材料是铜、金、银或钯,导电层的局部还涂有铟金合金或者金锡合金。
4.根据权利要求1所述的高热导率陶瓷基印刷电路板,其特征在于:所述高热导率陶瓷基印刷电路板为双面板,在高热导率陶瓷层的下面也有导电层。
5.权利要求1所述的高热导率陶瓷基印刷电路板的制作方法,其特征在于:包括以下步骤——
①选用环氧树脂覆铜薄,采用机械、超声波或者化学方法对板材表面进行预处理,去油污、毛刺,杂质,形成清洁平整的绝缘层;
②采用气相淀积表面陶瓷化的方法在预处理后的绝缘层表面制作陶瓷层:用高能量密度的激光束、离子束作为热源,辅助和诱导气相反应制备薄膜材料,用气流吹送陶瓷粉末,向电路板高速喷射,利用与电路板的撞击而形成膜,表面形成强化陶瓷薄膜,然后对陶瓷薄膜进行封闭气相淀积处理,经烘干后获得高热导率陶瓷层;
③在绝缘层的外面全部覆盖导电层,再在导电层上面蚀刻制作导电线路;或者在绝缘层的外面局部涂覆防护膜,再通过溅射或蒸镀、电镀的方法制作导电线路。
CN200710019440A 2007-01-24 2007-01-24 高热导率陶瓷基印刷电路板及其制作方法 Expired - Fee Related CN100588308C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710019440A CN100588308C (zh) 2007-01-24 2007-01-24 高热导率陶瓷基印刷电路板及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710019440A CN100588308C (zh) 2007-01-24 2007-01-24 高热导率陶瓷基印刷电路板及其制作方法

Publications (2)

Publication Number Publication Date
CN101232774A true CN101232774A (zh) 2008-07-30
CN100588308C CN100588308C (zh) 2010-02-03

Family

ID=39898863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710019440A Expired - Fee Related CN100588308C (zh) 2007-01-24 2007-01-24 高热导率陶瓷基印刷电路板及其制作方法

Country Status (1)

Country Link
CN (1) CN100588308C (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767481A (zh) * 2009-01-06 2010-07-07 金安国纪科技股份有限公司 高导热覆铜板的制备方法
CN101990374A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基刚性电路板的制造方法
CN101990372A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基互联刚性电路板的制造方法
CN101990370A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基刚挠结合多层电路板的制造方法
CN101699936B (zh) * 2009-11-02 2011-03-30 广东达进电子科技有限公司 一种铜面光亮且可定位高导热陶瓷电路板的生产方法
CN101699935B (zh) * 2009-11-02 2011-03-30 广东达进电子科技有限公司 一种可定位高导热陶瓷电路板的生产方法
CN102036472A (zh) * 2011-01-05 2011-04-27 倪新军 一种微波高频金属基电路板
CN102076164A (zh) * 2011-01-17 2011-05-25 倪新军 一种微波高频电路板
CN101699932B (zh) * 2009-11-02 2011-09-14 广东达进电子科技有限公司 一种高导热陶瓷电路板的生产方法
CN101699933B (zh) * 2009-11-02 2011-11-30 广东达进电子科技有限公司 一种铜面光亮高导热陶瓷电路板的生产方法
CN102548197A (zh) * 2012-01-30 2012-07-04 华为技术有限公司 一种高速印制电路板
CN103361640A (zh) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 一种超材料的加工方法及超材料
CN103377950A (zh) * 2012-04-25 2013-10-30 赛米控电子股份有限公司 基底和用于制造至少一个功率半导体器件的基底的方法
CN107690230A (zh) * 2017-08-09 2018-02-13 上海安费诺永亿通讯电子有限公司 一种制作金属线路的方法及金属线路组件
CN108282968A (zh) * 2018-01-31 2018-07-13 维沃移动通信有限公司 一种印制电路板的基板及其制作方法
CN108950504A (zh) * 2018-08-03 2018-12-07 江苏环奥金属材料科技有限公司 一种在n型化合物半导体材料表面形成欧姆接触的合金靶材及其制备方法
CN109390452A (zh) * 2018-10-17 2019-02-26 广东远合工程科技有限公司 一种大功率led用碳纤维压印铁磁复合陶瓷基散热基板
CN110139503A (zh) * 2019-05-31 2019-08-16 深圳市英创立电子有限公司 印刷线路板表面贴装工艺
US10939563B2 (en) 2016-09-27 2021-03-02 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Flame retardant structure for component carrier
CN113194622A (zh) * 2021-04-27 2021-07-30 江门市德众泰工程塑胶科技有限公司 一种线路板及其制作方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767481A (zh) * 2009-01-06 2010-07-07 金安国纪科技股份有限公司 高导热覆铜板的制备方法
CN101699935B (zh) * 2009-11-02 2011-03-30 广东达进电子科技有限公司 一种可定位高导热陶瓷电路板的生产方法
CN101699933B (zh) * 2009-11-02 2011-11-30 广东达进电子科技有限公司 一种铜面光亮高导热陶瓷电路板的生产方法
CN101699932B (zh) * 2009-11-02 2011-09-14 广东达进电子科技有限公司 一种高导热陶瓷电路板的生产方法
CN101699936B (zh) * 2009-11-02 2011-03-30 广东达进电子科技有限公司 一种铜面光亮且可定位高导热陶瓷电路板的生产方法
CN101990370A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基刚挠结合多层电路板的制造方法
CN101990374B (zh) * 2010-08-03 2013-02-13 广东达进电子科技有限公司 一种陶瓷基刚性电路板的制造方法
CN101990372A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基互联刚性电路板的制造方法
CN101990372B (zh) * 2010-08-03 2012-07-04 广东达进电子科技有限公司 一种陶瓷基互联刚性电路板的制造方法
CN101990374A (zh) * 2010-08-03 2011-03-23 广东达进电子科技有限公司 一种陶瓷基刚性电路板的制造方法
CN101990370B (zh) * 2010-08-03 2012-10-31 广东达进电子科技有限公司 一种陶瓷基刚挠结合多层电路板的制造方法
CN102036472A (zh) * 2011-01-05 2011-04-27 倪新军 一种微波高频金属基电路板
CN102076164A (zh) * 2011-01-17 2011-05-25 倪新军 一种微波高频电路板
CN102076164B (zh) * 2011-01-17 2012-07-04 倪新军 一种微波高频电路板
CN102548197A (zh) * 2012-01-30 2012-07-04 华为技术有限公司 一种高速印制电路板
CN102548197B (zh) * 2012-01-30 2016-08-03 华为技术有限公司 一种高速印制电路板
CN103361640A (zh) * 2012-03-31 2013-10-23 深圳光启创新技术有限公司 一种超材料的加工方法及超材料
CN103377950A (zh) * 2012-04-25 2013-10-30 赛米控电子股份有限公司 基底和用于制造至少一个功率半导体器件的基底的方法
CN103377950B (zh) * 2012-04-25 2017-03-01 赛米控电子股份有限公司 基底和用于制造至少一个功率半导体器件的基底的方法
US10939563B2 (en) 2016-09-27 2021-03-02 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Flame retardant structure for component carrier
CN107690230A (zh) * 2017-08-09 2018-02-13 上海安费诺永亿通讯电子有限公司 一种制作金属线路的方法及金属线路组件
CN108282968A (zh) * 2018-01-31 2018-07-13 维沃移动通信有限公司 一种印制电路板的基板及其制作方法
CN108282968B (zh) * 2018-01-31 2020-01-31 维沃移动通信有限公司 一种印制电路板的基板及其制作方法
CN108950504A (zh) * 2018-08-03 2018-12-07 江苏环奥金属材料科技有限公司 一种在n型化合物半导体材料表面形成欧姆接触的合金靶材及其制备方法
CN109390452A (zh) * 2018-10-17 2019-02-26 广东远合工程科技有限公司 一种大功率led用碳纤维压印铁磁复合陶瓷基散热基板
CN110139503A (zh) * 2019-05-31 2019-08-16 深圳市英创立电子有限公司 印刷线路板表面贴装工艺
CN113194622A (zh) * 2021-04-27 2021-07-30 江门市德众泰工程塑胶科技有限公司 一种线路板及其制作方法

Also Published As

Publication number Publication date
CN100588308C (zh) 2010-02-03

Similar Documents

Publication Publication Date Title
CN100588308C (zh) 高热导率陶瓷基印刷电路板及其制作方法
CN100496188C (zh) 铝基印刷电路板及其制作方法
KR101489159B1 (ko) 금속 인쇄회로기판의 제조방법
CN102738377B (zh) 超高导热金属基线路板及其制备方法、应用
CN102740604A (zh) 制备电子电路绝缘金属基板的方法
US8754437B2 (en) LED module having a heat sink
CN105198491B (zh) 一种含导电铜柱的陶瓷基板制备方法
CN103079339A (zh) 一种金属陶瓷复合基板及其制造方法
WO2020215739A1 (zh) 一种纳米金属膜模块制备方法及其基板制备方法
US20110318886A1 (en) Method for forming circuit patterns on surface of substrate
CN108601206A (zh) 一种嵌氮化铝pcb基板及其制作方法
CN103917043B (zh) 图案化多绝缘材质电路基板
CN113795091A (zh) 一种低温烧结制备陶瓷电路板方法
KR20100025502A (ko) 절연 금속 부품 및 그 제조 방법
KR20140059080A (ko) 금속 인쇄회로기판의 제조방법
CN103912807A (zh) 大功率led光引擎
CN103094224A (zh) 功率模块封装
CN101298674A (zh) 绝缘导热金属基板的制造方法
CN102724805A (zh) 具有高散热与高导热特性的复合陶瓷基板
CN103117335A (zh) 具有电路的复合式金属陶瓷基板的制法及其结构
CN101826580A (zh) 一种新型led基板生产工艺及其应用
JP2013038094A (ja) 銅箔付き熱伝導性絶縁基板
Suganuma et al. Ink-jet printing of nano materials and processes for electronics applications
TWI391039B (zh) Circuit board with metal heat sink and manufacturing method thereof
CN105914283B (zh) 散热基板、功率模块及制备散热基板的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190226

Address after: 211100 Jiangsu Province Jiangning District High-tech Park Corning Road 777A

Patentee after: Jiangsu Henderson Intelligent Technology Co., Ltd.

Address before: 211100, No. 666, Jian Lu, Science Park, Jiangning, Jiangsu, Nanjing

Patentee before: Nanjing Handson Science & Technology Corporation

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100203

Termination date: 20200124