CN101229527B - 一种无机非金属胶体颗粒的电场分选方法及装置 - Google Patents

一种无机非金属胶体颗粒的电场分选方法及装置 Download PDF

Info

Publication number
CN101229527B
CN101229527B CN2008100556962A CN200810055696A CN101229527B CN 101229527 B CN101229527 B CN 101229527B CN 2008100556962 A CN2008100556962 A CN 2008100556962A CN 200810055696 A CN200810055696 A CN 200810055696A CN 101229527 B CN101229527 B CN 101229527B
Authority
CN
China
Prior art keywords
particle
sorting
conical electrode
colloidal
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100556962A
Other languages
English (en)
Other versions
CN101229527A (zh
Inventor
张辉
盛新志
王耀
黄锋
刘莲云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN2008100556962A priority Critical patent/CN101229527B/zh
Publication of CN101229527A publication Critical patent/CN101229527A/zh
Application granted granted Critical
Publication of CN101229527B publication Critical patent/CN101229527B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种无机非金属胶体颗粒的电场分选方法及装置,该方法为:将质量浓度1.0%、粒径0.1~1μm、pH值远离等电点的无机非金属球形胶体溶液,加入到上下两端具有圆锥形电极的分选容器中;根据颗粒所带电荷的性质及欲分选粒径来调节电场强度,并给电极通电;当被分选颗粒受到的合力为零时,它们将悬浮在溶液中,而其它小于或大于分选粒径的颗粒将上浮或沉降到上下端圆锥形电极附近;打开阀门,放出沉积的大颗粒,收集被分选的颗粒。该装置的分选容器侧壁上有一加液管;上下端圆锥形电极均为空心结构,锥角为60°,下端圆锥形电极底部尖端处开有小孔;小孔通过细管与颗粒收集器相通。该装置可实现无机非金属胶体颗粒的可控精确分选。

Description

一种无机非金属胶体颗粒的电场分选方法及装置
技术领域
本发明属于颗粒的电泳分选领域,特别涉及一种无机非金属胶体颗粒的电场分选方法及装置。
背景技术
单分散颗粒是指组成、形状相同,而且尺寸分布很狭窄的颗粒。单分散颗粒为验证涉及颗粒粒径的理论提供了简单、数学处理方便的模型;在优质陶瓷制备、催化剂或催化剂载体、色谱柱填料、防腐等领域,单分散颗粒也具有广泛的应用,近十几年来,单分散颗粒材料还在光子晶体和有序孔材料的化学法制备领域发挥了重要作用。此外,单分散颗粒还可以作为校验粒度仪的标准粒子或参照粒子。
目前,能够制备的无机非金属球形颗粒有SiO2、ZrO2、Al2O3、TiO2等,但这些球形颗粒材料中,只有SiO2能够合成出单分散颗粒,其它材料的单分散颗粒很难获得。
发明内容
本发明的目的是提供一种无机非金属胶体颗粒的电场分选方法及装置,一种在外电场作用下的可控精确分选方法及装置。通过对无机非金属胶体颗粒施加外电场进行粒径可控的精确分选,以期得到单分散颗粒。
本发明的目的是这样实现的:
一种无机非金属胶体颗粒的电场分选方法,该方法的具体步骤为:
步骤1,制备质量浓度1.0%、PH值远离等电点的无机非金属胶体溶液:胶粒形状为球形,粒径0.1~1μm,分散介质为蒸馏水;使用机械搅拌和超声分散使颗粒在溶液中混合均匀;
步骤2,将步骤1制备的胶体溶液,加入到上下两端具有圆锥形电极的分选容器中,上端圆锥形电极的全部外表面与液面正好接触;
步骤3,根据颗粒所带电荷的正负决定上下端圆锥形电极是阳极或是阴极,颗粒所带电荷为负时,上端圆锥形电极接电源阳极,下端圆锥形电极接电源阴极,反之亦然;根据所要分选出的颗粒粒径及颗粒迁移率来调节电场强度,电场强度E为
E = d 2 ( ρ w - ρ s ) g 9 μη - - - ( 1 )
式中:d为所要分选的颗粒粒径;ρw和ρs分别为水和颗粒的密度;g为重力加速度;η为水的粘度;μ为颗粒迁移率,可用微电泳仪测得;
在上端圆锥形电极位置一定的情况下,通过调节电源电压获得电场强度或在电源电压一定的情况下,调节上端圆锥形电极的位置来实现电场强度;
步骤4,打开直流稳压电源,给电极通电;
步骤5,当胶体溶液中被分选的颗粒所受到的重力、浮力和电场力的合力为零时,此种颗粒将悬浮在溶液中;那些小于分选粒径的颗粒将向上运动并最终聚集在上端圆锥形电极附近,而大于分选粒径的颗粒将向下运动并最终沉积在下端圆锥形电极上;大于或小于分选粒径的颗粒运动速度υ
υ = d ′ 2 ( ρ s - ρ w ) g 18 η + 1 2 μ ′ E - - - ( 2 )
式中:d‘为大于或小于分选粒径的颗粒粒径;ρw和ρs分别为水和颗粒的密度;g为重力加速度;η为水的粘度;μ′为大于或小于分选粒径的颗粒迁移率,可用微电泳仪测得;E为分选时施加的电场强度,即公式(1)的计算值;
在允许的相对分选偏差范围内,临界粒径颗粒的运动速度最小,因此分选所需的时间取决于临界粒径颗粒的运动速度;
在分选容器内径及被分选粒径的相对分选偏差一定的情况下,如果上下端圆锥形电极的间距小,则分选效率高、产率低,如果上下端圆锥形电极的间距大,则分选效率低、产率高;在上下端圆锥形电极间距及被分选粒径的相对分选偏差一定的情况下,分选容器的内径大小只影响分选产率,不影响分选效率;在分选容器内径及上下端圆锥形电极间距一定的情况下,所分选粒径的相对分选偏差越小,分选效率及产率越低;
步骤6,打开下端圆锥形电极下面的阀门,首先是沉积的颗粒成平锥状向下移动,并由大到小按顺序流出,当被分选的颗粒开始流出时,收集样品;在颗粒流出的过程中,为保持胶体液面高度不变,在打开下端圆锥形电极下面阀门的同时打开分选容器侧壁上的加液管阀门,使分散介质-水缓慢流入分选容器中,以维持液面高度不变。
所述的无机非金属胶体颗粒为SiO2、Zr(OH)4或Al(OH)3
胶体溶液的PH值可通过加入0.1mol·L-1HCl溶液或NaOH溶液来调节。
一种无机非金属胶体颗粒的电场分选装置,该装置包括:分选容器、上端圆锥形电极、下端圆锥形电极、直流稳压电源、颗粒收集器;分选容器的侧 壁上有一带阀门的加液管;上下端圆锥形电极均为空心结构,圆锥角度为60°,两个圆锥形电极均通过导线与直流稳压电源相连;上端圆锥形电极安装于分选容器内的上部,其上装有可上下升降的高度调节杆,其位置可调,下端圆锥形电极与分选容器粘接在一起,其位置固定,下端圆锥形电极的底部尖端处开有小孔;小孔与带有阀门的细管相连通,细管与颗粒收集器相通。
下端圆锥形电极的底部尖端小孔的孔径为1mm;根据胶体颗粒所带电荷的正负,与胶体溶液相接触的上端或下端圆锥形电极表面要进行绝缘处理,以防止通电后圆锥形电极上的电荷中和掉颗粒所带的电荷;具体为当胶体颗粒所带电荷为负时,与胶体溶液相接触的上端圆锥形电极的外表面要绝缘;当胶体颗粒所带电荷为正时,与胶体溶液相接触的下端圆锥形电极的内表面要绝缘。
本发明的有益效果是,通过对无机非金属胶体颗粒施加外电场进行粒径可控的精确分选,能够获得单分散颗粒。该装置中圆锥形电极的设计,能够从分选容器下面取出分选颗粒;装置结构简单,材料选择范围宽,容易加工。
附图说明
图1一种无机非金属胶体颗粒的电场分选装置示意图;
图中:上端圆锥形电极高度调节杆1、上端圆锥形电极2、直流稳压电源3、分选容器4、下端圆锥形电极5、阀门6、铁架台7、颗粒收集器8、阀门9。
具体实施方式
以分选球形SiO2和Zr(OH)4胶体颗粒为例对无机非金属胶体颗粒的电场分 选方法作进一步说明。
实施例一:
分选球形SiO2胶体颗粒,具体步骤为:
步骤1,制备质量浓度为1.0%、PH=8.4、分散介质为蒸馏水的球形SiO2 胶体溶液:胶体颗粒含有四种粒径,分别为0.15μm,0.3μm,0.5μm、1μm,每种粒径的相对标准偏差均<5%,每种粒径的颗粒所占的质量百分比均为颗粒总质量的25%,胶体颗粒带负电;使用机械搅拌和超声分散使颗粒在溶液中混合均匀;
步骤2,将步骤1制备的胶体溶液,加入到上下两端具有圆锥形电极的分选容器中,上端圆锥形电极接电源阳极,下端圆锥形电极接电源阴极,上端圆锥形电极的外表面要涂抹一层绝缘胶并与液面正好接触;
步骤3,若分选粒径d=0.15μm,ρw=1.0g/cm3,ρs=1.9g/cm3,g=9.8m/s2,μ=-2.335μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=1.061V/m;
步骤4,打开直流稳压电源,给电极通电;
步骤5,胶体溶液中0.15μm的SiO2颗粒将悬浮在溶液中,粒径为0.3μm、0.5μm、1μm的SiO2颗粒将向下运动并最终沉积在下端圆锥形电极上;取相对分选偏差为5%,则d′=0.3μm、μ′=-4.667μm·cm/V·s时,根据公式(2)计算得该尺寸颗粒的运动速度υ=0.0892mm/h;
如果分选容器中上下端圆锥形电极间距为4cm,则0.3μm颗粒全部沉降到下端圆锥形电极上所需时间为18.7天,即分选开始19天后分选结束;
步骤6,打开下端圆锥形电极下面的阀门,沉积的0.3μm、0.5μm、1μm颗粒成平锥状向下移动并流出,当被分选的0.15μm的颗粒开始流出时,收 集样品;在颗粒流出的过程中,为保持胶体液面高度不变,在打开下端圆锥形电极下面阀门的同时打开分选容器侧壁上的加液管阀门,使分散介质-水缓慢流入分选容器中,以维持液面高度不变。
实施例二:
分选球形SiO2胶体颗粒,具体步骤同实施例一:
若分选粒径d=0.3μm,ρw=1.0g/cm3, ρs=1.9g/cm3,g=9.8m/s2,μ=-4.667μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=2.123V/m;
取相对分选偏差为5%,则d1′=0.15μm、μ1′=-2.335μm·cm/V·s,d2′=0.5μm、μ2′=-7.783μm·cm/V·s时,根据公式(2)计算得它们的运动速度分别为υ1=-0.0446mm/h,υ2=0.198mm/h;
如果分选容器中上下端圆锥形电极的间距为4cm,则0.15μm颗粒全部移动到上端圆锥形电极附近所需时间为37.4天,0.5μm颗粒全部沉降到下端圆锥形电极上所需时间为8.4天,即分选开始38天后分选结束。
实施例三:
分选球形SiO2胶体颗粒,具体步骤同实施例一:
若分选粒径d=1μm,ρw=1.0g/cm3,ρs=1.9g/cm3,g=9.8m/s2,μ=-15.570μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=7.072V/m;
取相对分选偏差为5%,则d′=0.5μm、μ′=-7.783μm·cm/V·s时,根据公式(2)计算得该尺寸颗粒的运动速度υ=-0.495mm/h;
如果分选容器中上下端圆锥形电极的间距为4cm,则0.5μm颗粒全部移 动到上端圆锥形电极附近所需时间为3.4天,即分选开始4天后分选结束。
实施例四:
分选球形Zr(OH)4胶体颗粒,具体步骤为:
步骤1,制备质量浓度为1.0%、PH=9.0、分散介质为蒸馏水的球形Zr(OH)4 胶体溶液:胶粒粒径为0.1~1μm,胶粒带负电;使用机械搅拌和超声分散使颗粒在溶液中混合均匀;
步骤2,将步骤1制备的胶体溶液,加入到上下两端具有圆锥形电极的分选容器中,上端圆锥形电极接电源阳极,下端圆锥形电极接电源阴极,上端圆锥形电极的全部外表面要涂抹一层绝缘胶并与液面正好接触;
步骤3,若分选粒径d=1μm,ρw=1.0g/cm3,ρs=3.25g/cm3,g=9.8m/s2,μ=-2.054μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=134.0V/m;
步骤4,打开直流稳压电源,给电极通电;
步骤5,胶体溶液中1μm的Zr(OH)4颗粒将悬浮在溶液中,小于1μm的颗粒将向上运动并最终聚集在上圆锥形端电极附近;取相对分选偏差为9%,则d′=0.91μm、μ′=-1.869μm·cm/V·s时,根据公式(2)计算得该尺寸颗粒的运动速度υ=-0.405mm/h;
如果分选容器中上下端圆锥形电极的间距为4cm,则0.91μm颗粒全部移动到上端圆锥形电极附近所需时间为4.1天,即分选开始5天后分选结束;
步骤6,打开下端圆锥形电极下面的阀门,被分选的1μm颗粒开始流出并收集样品;在颗粒流出的过程中,为保持胶体液面高度不变,在打开下端圆锥形电极下面阀门的同时打开分选容器侧壁上的加液管阀门,使分散介质-水缓慢流入分选容器中,以维持液面高度不变。
实施例五:
分选球形Zr(OH)4胶体颗粒,具体步骤同实施例四:
若分选胶体颗粒粒径d=0.5μm,ρw=1.0g/cm3,ρs=3.25g/cm3,g=9.8m/s2,μ=-1.027μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=67.0V/m;
取相对分选偏差为9%,则d1′=0.545μm、μ1′=-1.119μm·cm/V·s,d2′=0.455μm、μ2′=-0.935μm·cm/V·s时,根据公式(2)计算得它们的运动速度分别υ1=0.121mm/h,υ2=-0.101mm/h;
如果分选容器中上下端圆锥形电极的间距为4cm,则0.455μm颗粒全部移动到上端圆锥形电极附近所需时间为13.8天,0.545μm颗粒全部沉降到下端圆锥形电极上所需时间为16.5天,即分选开始17天后分选结束。
实施例六:
分选球形Zr(OH)4胶体颗粒,具体步骤同实施例四:
若分选粒径d=0.1μm,ρw=1.0g/cm3,ρs=3.25g/cm3,g=9.8m/s2,μ=-0.205μm·cm/V·s,η=0.890mPa·S,根据公式(1)计算得电场强度E=13.4V/m;
取相对分选偏差为9%,则d1′=0.109μm、μ1′=-0.224μm·cm/V·s,d2′=0.091μm、μ2′=-0.187μm·cm/V·s时,根据公式(2)计算得它们的运动速度分别为υ1=0.00486mm/h,υ2=-0.00406mm/h ;
如果分选容器中上下端圆锥形电极的间距为4cm,则0.091μm颗粒全部移动到上端圆锥形电极附近所需时间为410.5天,0.109μm颗粒全部沉降到下端圆锥形电极上所需时间为342.9天,即分选开始411天后分选结束。
所述的无机非金属胶体颗粒还包括Al(OH)3
结合附图对一种无机非金属胶体颗粒的电场分选装置作进一步说明:
该装置包括:高度调节杆1、上端圆锥形电极2、直流稳压电源3、分选容器4、下端圆锥形电极5、阀门6、铁架台7、颗粒收集器8、加液管阀门9;
分选容器4的侧壁上有一带阀门9的加液管;
上端圆锥形电极2和下端圆锥形电极5均为空心结构,圆锥角度为60°,两个圆锥形电极均通过导线与直流稳压电源相连;
上端圆锥形电极2安装于分选容器4内的上部,其上装有可上下升降的高度调节杆1,其位置可调;下端圆锥形电极5与分选容器4粘接在一起,其位置固定,下端圆锥形电极5的底部尖端处开有小孔,孔径1mm;
小孔与带有阀门6的细管相连通,细管与颗粒收集器8相通;
使用时,将上述装置固定在铁架台7上。
所述上端圆锥形电极2和下端圆锥形电极5的材质为:在通电情况下,不发生电化学反应的材料,如钛、铂单质金属或石墨,镀钌、铱的金属等。
所述的分选容器4的内径及高度依分选效率及产率而定,材质为无机玻璃或有机玻璃。
圆锥形电极的设计,能够从分选容器下面取出分选颗粒。
该装置结构简单,材料选择范围宽,容易加工。

Claims (4)

1.一种无机非金属胶体颗粒的电场分选方法,其特征在于:该方法的具体步骤为:
步骤1,制备质量浓度1.0%、PH值远离等电点的无机非金属胶体溶液:胶粒形状为球形,粒径0.1~1μm,分散介质为蒸馏水;使用机械搅拌和超声分散使颗粒在溶液中混合均匀;
步骤2,将步骤1制备的胶体溶液,加入到上下两端具有圆锥形电极的分选容器中,上端圆锥形电极的全部外表面与液面正好接触;
步骤3,根据颗粒所带电荷的正负决定上下端圆锥形电极是阳极或是阴极,颗粒所带电荷为负时,上端圆锥形电极接电源阳极,下端圆锥形电极接电源阴极,反之亦然;根据所要分选出的颗粒粒径及颗粒迁移率来调节电场强度,电场强度E为
E = d 2 ( ρ w - ρ s ) g 9 μη - - - ( 1 )
式中:d为所要分选的颗粒粒径;ρw和ρs分别为水和颗粒的密度;g为重力加速度;η为水的粘度;μ为颗粒迁移率,可用微电泳仪测得;
步骤4,打开直流稳压电源,给电极通电;
步骤5,当胶体溶液中被分选的颗粒所受到的重力、浮力和电场力的合力为零时,此种颗粒将悬浮在溶液中;那些小于分选粒径的颗粒将向上运动并最终聚集在上端圆锥形电极附近,而大于分选粒径的颗粒将向下运动并最终沉积在下端圆锥形电极上;大于或小于分选粒径的颗粒运动速度υ为
υ = d ′ 2 ( ρ s - ρ w ) g 18 η + 1 2 μ ′ E - - - ( 2 )
式中:d′为大于或小于分选粒径的颗粒粒径;ρw和ρs分别为水和颗粒的密度;g为重力加速度;η为水的粘度;μ′为大于或小于分选粒径的颗粒迁移率,可用微电泳仪测得;E为分选时施加的电场强度,即公式(1)的计算值;
步骤6,打开下端圆锥形电极下面的阀门,首先是沉积的颗粒成平锥状向下移动,并由大到小按顺序流出,当被分选的颗粒开始流出时,收集样品;在颗粒流出的过程中,为保持胶体液面高度不变,在打开下端圆锥形电极下面阀门的同时打开分选容器侧壁上的加液管阀门,使分散介质-蒸馏水缓慢流入分选容器中,以维持液面高度不变。
2.根据权利要求1所述的一种无机非金属胶体颗粒的电场分选方法,其特征在于:所述的无机非金属胶体颗粒为SiO2、Zr(OH)4或Al(OH)3
3.一种无机非金属胶体颗粒的电场分选装置,其特征在于:该装置包括分选容器(4)、上端圆锥形电极(2)、下端圆锥形电极(5)、直流稳压电源(3)、颗粒收集器(8);分选容器(4)的侧壁上有一带有第一阀门(9)的加液管;上下端圆锥形电极均为空心结构,圆锥角度为60°,两个圆锥形电极均通过导线与直流稳压电源相连;上端圆锥形电极(2)安装于分选容器(4)内的上部,其上装有可上下升降的高度调节杆(1),其位置可调,下端圆锥形电极(5)与分选容器(4)粘接在一起,其位置固定,下端圆锥形电极(5)的底部尖端处开有小孔;小孔与带有第二阀门(6)的细管相连通,细管与颗粒收集器(8)相通。
4.根据权利要求3所述的一种无机非金属胶体颗粒的电场分选装置,其特征在于:下端圆锥形电极(5)的底部尖端小孔的孔径为1mm;根据胶体颗粒所带电荷的正负,与胶体溶液相接触的上端或下端圆锥形电极表面要进行绝缘处理,以防止通电后圆锥形电极上的电荷中和掉颗粒所带的电荷;具体为当胶体颗粒所带电荷为负时,与胶体溶液相接触的上端圆锥形电极的外表面要绝缘;当胶体颗粒所带电荷为正时,与胶体溶液相接触的下端圆锥形电极的内表面要绝缘。
CN2008100556962A 2008-01-07 2008-01-07 一种无机非金属胶体颗粒的电场分选方法及装置 Expired - Fee Related CN101229527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100556962A CN101229527B (zh) 2008-01-07 2008-01-07 一种无机非金属胶体颗粒的电场分选方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100556962A CN101229527B (zh) 2008-01-07 2008-01-07 一种无机非金属胶体颗粒的电场分选方法及装置

Publications (2)

Publication Number Publication Date
CN101229527A CN101229527A (zh) 2008-07-30
CN101229527B true CN101229527B (zh) 2011-06-22

Family

ID=39896509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100556962A Expired - Fee Related CN101229527B (zh) 2008-01-07 2008-01-07 一种无机非金属胶体颗粒的电场分选方法及装置

Country Status (1)

Country Link
CN (1) CN101229527B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872719B (zh) * 2012-10-15 2014-09-03 王冰 回收贵重金属的叉指电极介电电泳分离系统
CN108480053B (zh) * 2018-02-08 2020-05-05 中国矿业大学 一种摩擦电选的非线性电场自动调节装置
CN108405169B (zh) * 2018-03-07 2020-03-10 中国工程物理研究院激光聚变研究中心 一种液体筛分微球装置
CN111252871B (zh) * 2020-02-28 2022-06-03 广东工业大学 一种静电场力耦合多级隔板水力作用去除胶体杂质的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839032A (en) * 1986-06-06 1989-06-13 Advanced Energy Dynamics Inc. Separating constituents of a mixture of particles
JP2002204980A (ja) * 2001-01-10 2002-07-23 Matsushita Electric Ind Co Ltd 静電選別装置
CN1473662A (zh) * 2002-08-19 2004-02-11 乐金电子(天津)电器有限公司 储氢合金颗粒分选装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839032A (en) * 1986-06-06 1989-06-13 Advanced Energy Dynamics Inc. Separating constituents of a mixture of particles
JP2002204980A (ja) * 2001-01-10 2002-07-23 Matsushita Electric Ind Co Ltd 静電選別装置
CN1473662A (zh) * 2002-08-19 2004-02-11 乐金电子(天津)电器有限公司 储氢合金颗粒分选装置

Also Published As

Publication number Publication date
CN101229527A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
CN101229527B (zh) 一种无机非金属胶体颗粒的电场分选方法及装置
Pawliszak et al. Mobile or immobile? Rise velocity of air bubbles in high-purity water
Nowak et al. Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel
Stojak et al. Review of electrocodeposition
Kiuchi et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity
Sarkar et al. Bubble size measurement in electroflotation
CN102213654A (zh) 有机溶液电解萃取和检测钢中非金属夹杂物的方法
US20140030527A1 (en) Dissymmetric particles (janus particles), and method for synthesizing same by means of bipolar electrochemistry
CN103033474A (zh) 电化学光学联用原位研究光谱池
JP2012520941A (ja) 廃棄工業用電解質を含む工業用電解質からの銅粉末および銅ナノ粉末を得るための方法
CN101214462B (zh) 一种无机非金属胶体颗粒的电场分选方法及其装置
Lohrengel Electrochemical capillary cells
Lill et al. Scanning droplet cell investigations on single grains of a FeAlCr light weight ferritic steel
Xu et al. Effect of Electrolyte pH on Oxygen Bubble Behavior in Photoelectrochemical Water Splitting
CN101008602A (zh) 一种电极表面张力变化的测量方法及其测量装置
WO2014139494A1 (de) Mikro-elektrodenflüssigkeitsmesszelle
US20140173786A1 (en) Electrochemically-grown nanowires and uses thereof
Zhang et al. Characterisation of the breaking force of latex particle aggregates by micromanipulation
JPH04232848A (ja) 流体動力学的に修正されたハルセル
Zhang et al. Electrofiltration of aqueous suspensions
žutić et al. Electrochemical characterization of fluid vesicles in natural waters
CN210051597U (zh) 一种粉状物料混匀均分取样装置
CN106442107B (zh) 用于应力测试的类岩石材料及其制备方法和应用
Essilfie Model of the Effect of Voltage on Contact Angle in an Electrolytic Cell Reaction
CN110006969A (zh) 一种基于电化学检测技术的多参数水环境集成微传感器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20120107