CN101213462B - 电场/磁场传感器及它们的制造方法 - Google Patents

电场/磁场传感器及它们的制造方法 Download PDF

Info

Publication number
CN101213462B
CN101213462B CN2006800241393A CN200680024139A CN101213462B CN 101213462 B CN101213462 B CN 101213462B CN 2006800241393 A CN2006800241393 A CN 2006800241393A CN 200680024139 A CN200680024139 A CN 200680024139A CN 101213462 B CN101213462 B CN 101213462B
Authority
CN
China
Prior art keywords
electric
field sensor
magneto
magnetic field
fiber optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800241393A
Other languages
English (en)
Other versions
CN101213462A (zh
Inventor
中田正文
岩波瑞树
大桥启之
增田则夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN101213462A publication Critical patent/CN101213462A/zh
Application granted granted Critical
Publication of CN101213462B publication Critical patent/CN101213462B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种电场/磁场传感器及它们的制造方法,通过气浮沉积法将法布里佩洛型谐振器结构的电气光学膜直接形成在光纤维的顶端部的研磨面而得到所述电场传感器。

Description

电场/磁场传感器及它们的制造方法
技术领域
本发明涉及电场/磁场传感器及它们的制造方法,特别涉及适用于LSI芯片/封装的微细领域的具有高灵敏度、高空间分辨率的电场/磁场传感器及它们的制造方法。
背景技术
专利文献1(日本专利文献特开昭59-166873号公报)和专利文献2(日本专利文献特开平2-28574号公报)公开了用于检测电场或磁场等物理量的传感器及检测系统。
图1是表示利用光技术的现有的高空间分辨率电场传感器的结构的截面图,图2是表示利用了图1中的电场传感器的检测系统的一个例子的图。
参照图1,电场传感器905通过粘接层906粘接在光纤维901的顶端。电场传感器905包括作为电场检测元件的微小的电气光学结晶907以及用于反射施加给电气光学结晶907的底面的光的电介质多层反射层908。
参照图2,检测系统包括连续激光光源900、纤维放大器902、911、偏光控制器903、光循环器904、设置在作为测量对象的电路基板909上方的电场传感器905、检偏振器910、光电检测器912、连接它们之间的光纤维901、以及光谱分析器913。
以下简要说明本检测系统的电场检测原理。从连续激光光源900射出的光通过纤维放大器902放大,由偏光控制器903控制偏光面后,通过光循环器904入射到电场传感器905中。电场传感器905的入射光被施加在电气光学结晶907底面上的电介质多层反射层908反射后,再次返回到光纤维901。由于通过从电路基板909产生的电场而使电气光学结晶907的折射率发生变化,因此在结晶中传播的激光的偏光状态发生变化,并接受与外部电场的强度相应的调制。调制后的光再次通过光循环器904后被检偏振器910转换为强度调制光,由纤维放大器911放大后,由光电检测器912转换为电信号。
电信号被光谱分析器913检测到,此时发生的峰值被当作因外部电场而引起的信号。对于本检测系统的原理,由于信号强度根据外部电场的强度而不同,因此通过改变电路基板909上的电场传感器905的位置可以得到电场分布。
另外,通过将图1中的电气光学结晶907替换为磁性光学结晶,则图2的系统成为具有高空间分辨率的磁场检测系统。对于此时的磁场检测原理,可以通过将上述的电场检测原理的说明中的“电场”替换为“磁场”来进行说明。
如上所述,具有高空间分辨率的现有的电场检测系统或磁场检测系统的特征在于,具有在光纤维901的顶端粘接有被微加工过的电气光学结晶或磁性光学结晶的结构。
电场检测系统或磁场检测系统的适用领域和空间分辨率受到电气光学结晶或磁性光学结晶的尺寸限制,尺寸越小,越能够适用于更微小的领域,空间分辨率也越高。空间分辨率由在结晶内传播的传感器光的体积确定,传感器光的体积越小空间分辨率越高。例如,对于在光纤维的顶端粘接有磁性光学结晶的现有的磁场传感器,使用平面尺寸270μm×270μm、厚度11μm的结晶,可以实现具有10μm级的空间分辨率的磁场传感器。
但是,在这样的结构中,由于结晶的微加工技术的瓶颈,因此实现传感器的进一步小型化、高空间分辨率化则较为困难,无法提供可以适用于LSI芯片、封装的微细领域的传感器。
另外,如上所述,对于现有类型的传感器,由于将结晶粘接在光纤维的顶端,因此在粘接层会产生光的损耗,该损耗将导致传感器的低灵敏度化,从而检测由LSI芯片等发生的微小电场或磁场也变得困难。
发明内容
本发明的目的在于可以实现比现有的电场/磁场传感器小型化且具有高灵敏度、高空间分辨率的传感器,并提供可以适用于LSI芯片、封装的微细领域的传感器。
本发明是基于以下见解而完成的,即:为了实现具有高灵敏度、高分辨率的电场/磁场传感器,将电气光学层或磁性光学层用薄膜直接形成在光纤维的顶端。
本发明的电场传感器的特征在于,电气光学层直接形成在光纤维的顶端。通过成为这样的构成,可以使电气光学层薄膜化,从而能够实现高分辨率。另外,可以利用干涉效果,实现高灵敏度。
本发明的电场传感器的特征还在于,在光纤维的顶端直接形成电气光学层,在电气光学层的表面形成反射层。本发明的电场传感器还通过在光纤维的顶端将电气光学层、下部的反射层和上部的反射层以从上下夹持该电气光学层的方式直接层积在光纤维上构成法布里佩洛共振器,可以实现高灵敏度化。
优选的是,电气光学层的直径d在光纤维的核心的直径dc及金属包层的直径dr之间满足dc≤d≤dr的关系。
另外,通过使电气光学层的厚度t为t≥1μm,可以提高法布里佩洛谐振器的Q值,从而实现高灵敏度化。特别优选的是,电气光学层通过气浮沉积法成膜。根据气浮沉积法,由于可以形成1μm以上膜厚的电气光学膜,因此可以提高灵敏度。
电气光学层的组成为锆钛酸铅、添加有镧的锆钛酸铅、钛酸钡、添加有锶的钛酸钡、添加有钽的铌酸钾中的某一个。
本发明的磁场传感器的特征在于,磁性光学层直接形成在光纤维的顶端。通过成为该构成,可以使磁性光学层的薄膜化,从而能够实现高分辨率。另外,可以利用干涉效果,实现高灵敏度化。
本发明的磁场传感器的特征还在于,在光纤维的顶端直接形成磁性光学层,在磁性光学层的表面形成反射层。本发明的磁场传感器还通过在光纤维的顶端将磁性光学层、下部的反射层和上部的反射层以从上下夹持该磁性光学层的方式直接层积在光纤维上构成法布里佩洛共振器,可以实现高灵敏度化。
优选的是,磁性光学层的直径d在光纤维的核心的直径dc及金属包层的直径dr之间满足dc≤d≤dr的关系。
另外,通过使磁性光学层的厚度t为t≥1μm,可以提高法布里佩洛谐振器的Q值,从而实现高灵敏度化。特别优选的是,磁性光学层通过气浮沉积法成膜。根据气浮沉积法,由于可以形成1μm以上膜厚的磁性光学膜,因此可以提高灵敏度。
磁性光学层为具有石榴石结构、尖晶石结构、磁铅石结构中的某一种结构的铁氧体。另外,磁性光学层也可以为包含铁、镍、钴中任一个的强磁性膜。
根据本发明,提供一种电场传感器的制造方法,其特征在于,将折射率根据电场而发生变化的电气光学层直接形成在光纤维的顶端。另外,也可以在电气光学层的表面形成反射层。
根据本发明,还提供一种电场传感器的制造方法,其特征在于,包括以下步骤:将第一反射层直接形成在光纤维的顶端;将折射率根据电场而发生变化的电气光学层直接形成在所述第一反射层上;将第二反射层直接形成在所述电气光学层上。
另外,在上述的制造方法中,通过形成折射率根据磁场而发生变化的磁性光学层来取代电气光学层,可以提供磁场传感器的制造方法。
另外,根据本发明,可以提供具有上述电场传感器的电场检测系统、具有上述磁场传感器的磁场检测系统。
附图说明
图1是表示现有的电场传感器的结构的截面图;
图2是表示利用了图1中的电场传感器的电场检测系统的结构的框图;
图3是表示本发明第一实施例的电场传感器的结构的截面图;
图4是表示利用了图3中的电场传感器的电场检测系统的结构的框图;
图5是模拟示出本发明的电场传感器的SEM照片的图;
图6是表示本发明的电场传感器和现有的电场传感器的反射光谱的图;
图7表示本发明的电场传感器的电场分布和现有的电场传感器的电场分布的图;
图8是表示在本发明的电场传感器中可以进一步提高传感器灵敏度的第二实施例的截面图;
图9是表示在本发明的电场传感器中与图8的第二实施例相比可以进一步提高传感器灵敏度的第三实施例的截面图;
图10是表示本发明的电场传感器的反射光谱的PZT的膜厚相关性的图;
图11是表示本发明的磁场传感器的结构的截面图;
图12是表示利用图11的磁场传感器的磁场检测系统的结构的框图。
具体实施方式
参照附图来说明本发明的实施例。
图3是表示本发明第一实施例的电场传感器的结构的截面图,图4是表示利用图3的电场传感器的电场检测系统的结构的框图。
参照图3,电场传感器105包括:构成光纤维101的核心层106、包围核心层106的金属包层107、以及形成在光纤维101的顶端部的电气光学层108。光纤维101的顶端部通过研磨被加工平坦,电气光学层108直接形成在其研磨面上。
参照图4,电场检测系统包括连续激光光源100、纤维放大器102、112、偏光控制器103、光循环器104、设置在作为测量对象的电路基板109上方的电场传感器105、检偏振器111、光电检测器113、连接在它们之间的光纤维101、以及光谱分析器114。
从连续激光光源100射出的激光通过纤维放大器102放大,由偏光控制器103控制偏光面后,通过光循环器104入射到电场传感器105中。由于从电路基板109发生的电场会使得电气光学层108的折射率发生变化,因此反射激光110的偏光状态发生变化。发射激光110通过光循环器104由检偏振器111转换为表示偏光状态的光,由纤维放大器112放大后,通过光电检测器113转换为电信号。转换得到的电信号通过光谱分析器114进行分析。
由于与因电场传感器105引起的偏光状态的变化量相关的分辨率由电气光学层108的厚度确定,因此优选较薄的电气光学层108。另外,电场传感器105的输出为表示因电场引起的折射率的变化量的电气光学系数与电气光学层108的厚度之积。因此,为了同时满足高分辨率和高输出,使作为传感器部分的电气光学层108具有干涉效果,延长表观上的光路长度很重要。
在图1所示的现有例子中,虽然采用了使大块的电气光学部件薄层化并使其粘接在光纤维的顶端的结构,但是,在这样的结构中,要做出与光纤维端面的平行度则较为困难,无法得到充分的干涉效果。另外,对于大块部件的薄层化,10μm左右是加工上的极限,无法提高分辨率。
在本实施例中,通过将电气光学层108用薄膜直接形成在光纤维101的顶端,来实现具有高灵敏度、高分辨率的电场传感器。
电气光学层108通过气浮沉积法(aerosol deposition)形成,该方法对超微粒子脆性材料施加机械冲击力负荷而使其粉碎、然后接合而形成成形体。膜厚为9微米。将Pb(Zr0.6Ti0.4)O3(以下,称为PZT)作为原料粉末在以下条件下成膜,即:以氧气为载气、喷嘴与基板的入射角为10度、气体流量为12升/分钟、喷嘴基板间距离为5mm、成膜速度为0.8μm/min、加振器的振动数为250rpm。
成膜后,在大气中,通过在600℃下进行15分左右的热处理,来显现电气光学层108的电气光学效果。并且,在200℃、施加100Kv/cm左右的电场的条件下,进行分极处理。一次电气光学系数r33为200pm/V。
图5模拟示出了通过气浮沉积法形成在光纤维201的端部的PZT膜202的SEM照片。PZT膜202紧贴在光纤维201的端部,以9微米的厚度形成。气浮沉积法的特征在于可以在短时间内形成类似PZT的复合氧化物的厚膜。
热处理后,为了去除电气光学层202(108)的膜表面的凹凸,而将其研磨到膜厚7微米并使其平坦化。
图6表示电气光学层202(108)的膜表面平坦化后反射量的波长相关性。301为本发明的反射光谱,可以得到30dB左右的调制度。这表明通过由本发明形成的电气光学层可以得到较大的共振结构,适合作为EO传感器。320表示用于比较而使用现有例子的EO结晶的EO传感器的反射光谱。在现有例子中,调制度为2dB左右,从而无法得到充分的共振结构。
在上述的说明中,对组成为PZT时的电气光学层的组成进行了说明,但是,并不限于该组成,例如,也可以是添加了La的组成。
另外,除了锆钛酸铅系的材料以外,电气光学效果较大的钛酸钡、锶代钛酸钡、钽代铌酸钾等也是有效的材料。
在本发明中,电气光学层108的成膜使用气浮沉积法也是发明的特征之一。其理由如下。
本发明的目的之一在于提供具有高灵敏度、高分辨率的电场传感器。为此,将电气光学层108用薄膜直接形成在光纤维101的顶端显得很重要。另外,为了得到高干涉效果,优选电气光学层108的膜厚为1μm以上。要在玻璃、塑料、包含高分子的树脂或任意组成的电介质上实现1μm的强电介质透明膜,使用现有的技术中的溅射法或溶胶/凝胶法将非常困难,而使用气浮沉积法可以容易实现。
电气光学层108的直径d在光纤维101的核心106的直径dc与金属包层107的直径dr之间满足dc≤d≤dr的关系较为重要。当直径d为dc以下时,由于入射激光会发生散射,因此无法得到充分的反射光量。另外,要通过成膜手法形成为金属包层107的直径dr以上也很困难。
图7表示在配线宽度/间隔为5μm的三线弯曲配线的上方使用本实施例的电场传感器105测量电场分布的结果和使用现有的电场传感器测量的结果。向弯曲配线施加10MHz、15dBm的信号。图7是将电场传感器配置在配线的上方10μm的位置并使其在横截配线的方向上以1μm间距进行扫描时得到的分布。使用现有传感器在相邻配线间观测的电场峰值不清楚,与此相对,通过应用本发明的传感器可以清楚地观测电场峰值。即,图7是表示本发明的电场传感器比现有的电场传感器具有高空间分辨率的一个例子。
图8是表示本发明的第二实施例的电场传感器的构成的截面图,示出了可以进一步提高传感器灵敏度的结构。对于本实施例,在与第一实施例的电场传感器的电气光学层108相同的电气光学层508的表面上附加了电介质多层反射膜504。
在图8中,对于电场传感器505,在由核心层506和包围其的金属包层507构成的光纤维501的顶端部形成有电气光学层508。光纤维501的顶端部通过研磨被加工平坦,电气光学层508直接形成在光纤维501的研磨面上。电气光学层508的构成及制造方法与第一实施例相同。
在平坦化的电气光学层508上使用离子镀膜法形成电介质多层反射层504。电介质多层反射膜504通过重复成膜厚度为303nm的SiO2膜和厚度为186nm的Ta2O5膜而构成。在成膜时,边通过监测器测量光学光谱,边通过开闭蒸镀源上的开闭器,进行膜厚的控制。通过使用电介质多层膜反射层504可以在减小对测量的电场的影响的同时提高干涉效果。
图9是表示本发明的第三实施例的电场传感器的构成的截面图,示出了可以进一步提高传感器灵敏度的结构。对于本实施例,通过以从上下夹持与第一实施例的电场传感器的电气光学层108相同的电气光学层608的方式将下侧的电介质多层膜反射层603和上侧的电介质多层膜反射层604直接层积在光纤维601的顶端部,来形成法布里佩洛谐振器结构。
对于电场传感器605,在由核心层606和包围其的金属包层607构成的光纤维601的顶端部形成有下侧的电介质多层膜反射层603。光纤维601的顶端部通过研磨被加工平坦,下侧的电介质多层膜反射层603直接形成在光纤维601的研磨面上。
下侧的电介质多层膜反射层603由离子镀膜法形成。下侧的电介质多层膜反射层603通过重复成膜厚度为303nm的SiO2膜和厚度为186nm的Ta2O5膜而构成。在成膜时,边通过监测器测量光学光谱,边通过开闭蒸镀源上的开闭器,进行膜厚的控制。在下侧的电介质多层膜反射层603上形成电气光学层608、上侧的电介质多层膜反射层604。电气光学层608和上侧的电介质多层膜反射层604的构成及制造方法与第二实施例相同。
图10表示第三实施例的反射率光谱的电气光学层PZT的膜厚相关性。随着PZT的膜厚变厚,反射率下降的共振峰值的半值幅度变小。由于在高灵敏度的传感中,Q值需要在1000以上,因此膜厚PZT需要1μm以上。
图11是表示本发明的磁场传感器的结构的截面图,图12是表示使用图11的磁场传感器的磁场检测系统的构成的框图。
参照图11,磁场传感器805包括:构成光纤维801的核心层806、包围核心层806的金属包层807、以及形成在光纤维801的顶端部的磁性光学层808。光纤维801的顶端部通过研磨被加工平坦,磁性光学层808直接形成在光纤维801的研磨面上。
参照图12,磁场检测系统包括连续激光光源800、纤维放大器802、812、偏光控制器803、光循环器804、设置在作为测量对象的电路基板809上的电场传感器805、检偏振器811、光电检测器813、连接它们之间的光纤维801、以及光谱分析器814。
从连续激光光源800射出的激光通过纤维放大器802放大,由偏光控制器803控制偏光面后,通过光循环器804入射到电场传感器805中。
由于通过从电路基板809产生的磁场而使磁性光学层808的法拉第旋转角发生变化,因此反射激光810的偏光状态发生变化。发射激光810通过光循环器804由检偏振器811转换为表示偏光状态的光,由纤维放大器812放大后,通过光电检测器813转换为电信号。转换得到的电信号可以通过光谱分析器814进行分析。
由于与因磁场传感器805引起的偏光状态的变化量相关的分辨率由磁性光学层808的厚度确定,因此优选较薄的电气光学层808。另外,磁场传感器805的输出为法拉第旋转角与磁性光学层808的厚度之积。因此,为了同时满足高分辨率和高输出,使作为传感器部分的磁性光学层808具有干涉效果,延长表观的光路长度则较为重要。在现有例子中,虽然采用了使大块的磁性光学部件薄层化并使其粘接在光纤维的顶端的结构,但是,要做出与光纤维端面的平行度则较为困难,无法得到充分的干涉效果。另外,对于大块部件的薄层化,10μm左右是加工上的极限,无法提高分辨率。
在本实施例中,通过将磁性光学层808用薄膜直接形成在光纤维801的顶端,来实现高灵敏度、高分辨率的磁场传感器。
磁性光学层808通过气浮沉积法形成,该方法对超微粒子脆性材料施加机械冲击力负荷而使其粉碎、然后进行接合而形成成形体。膜厚为400nm。在以下条件下成膜:将Bi代YIG石榴石作为原料粉末,以氧气为载气、喷嘴与基板的入射角为30度、气体流量为8升/分、喷嘴基板间距离为5mm、成膜速度为1.0μm/min、加振器的振动数为250rpm。
成膜后,在大气中,通过在600℃下进行15分左右的热处理,来显现磁性光学层808的磁性光学效果。法拉第旋转角为7deg/μm。热处理后,为了去除磁性光学层808的膜表面的凹凸,而将其研磨到膜厚3600nm并使其平坦化。
在上述的说明中,以Bi代YIG石榴石为例说明了磁性光学层,但是,并不限于该组成,例如,也可以为添加Ce的组成。
另外,除了YIG石榴石系的材料以外,磁性光学效果较大的具有尖晶石结构、磁铅石结构中的某一个结构的铁氧体等也是有效的材料。
在本发明中,磁性光学层的成膜使用气浮沉积法也是发明的特征之一。其理由如下。
本发明的目的之一在于提供具有高灵敏度、高分辨率的磁场传感器。为此,将磁性光学层用薄膜直接形成在光纤维的顶端则较为重要。另外,为了得到高干涉效果,优选其膜厚为1μm以上。要在玻璃、塑料、包含高分子的树脂或任意组成的电介质上实现1μm的强磁性体透明膜,使用现有的技术中的溅射法或溶胶、凝胶法无法实现,而只能使用气浮沉积法。
磁性光学层808的直径d在光纤维801的核心的直径dc与金属包层的直径dr之间满足dc≤d≤dr的关系较为重要。当磁性光学层808的直径d为核心的直径dc以下时,由于入射激光会发生散射,因此无法得到充分的反射光量。另外,要使用成膜手法将磁性光学层808形成为金属包层的直径dr以上也很困难。
并且,作为磁性光学层808,可以使用包含铁、镍、钴中某一个的强磁性膜的极薄层。
本发明的磁场传感器不限于图11的例子,通过将第一实施例至第三实施例的电场传感器的电气光学膜替换为磁性光学膜,可以发挥同样的效果。即,也可以将多层反射层形成在图11的磁场传感器805中的磁性光学层808的表面。
另外,本发明的磁场传感器也可以具有以用第一多层反射层和第二多层反射层从上下夹持图11的磁场传感器805中的磁性光学层808的方式层积的结构。
由以上的说明可知,根据本发明,可以提供具有高灵敏度、高分辨率的电场/磁场传感器。

Claims (20)

1.一种电场传感器,其特征在于,具有:
光纤维;
第一反射层,直接形成在该光纤维的顶端;
电气光学层,通过气浮沉积法直接形成在所述第一反射层上,折射率根据电场而发生变化;以及
第二反射层,直接形成在所述电气光学层上。
2.如权利要求1所述的电场传感器,其特征在于,
在所述电气光学层的直径d与所述光纤维的核心的直径dc及金属包层的直径dr之间,dc≤d≤dr的关系成立。
3.如权利要求1所述的电场传感器,其特征在于,所述电气光学层的厚度t为t≥1μm。
4.如权利要求1所述的电场传感器,其特征在于,
所述电气光学层的组成为锆钛酸铅、添加有镧的锆钛酸铅、钛酸钡、锶代钛酸钡、钽代铌酸钾中的某一个。
5.一种磁场传感器,其特征在于,具有:
光纤维;
第一反射层,直接形成在该光纤维的顶端;
磁性光学层,通过气浮沉积法直接形成在所述第一反射层上,折射率根据磁场而发生变化;以及
第二反射层,直接形成在所述磁性光学层上。
6.如权利要求5所述的磁场传感器,其特征在于,
在所述磁性光学层的直径d与所述光纤维的核心的直径dc及金属包层的直径dr之间,dc≤d≤dr的关系成立。
7.如权利要求5所述的磁场传感器,其特征在于,所述磁性光学层的厚度t为t≥1μm。
8.如权利要求5所述的磁场传感器,其特征在于,
所述磁性光学层为具有石榴石结构、尖晶石结构、磁铅石结构中某一种结构的铁氧体。
9.如权利要求5所述的磁场传感器,其特征在于,所述磁性光学层为包含铁、镍、钴中的某一个的强磁性膜。
10.一种电场传感器的制造方法,其特征在于,包括以下步骤:
将第一反射层直接形成在光纤维的顶端;
将折射率根据电场而发生变化的电气光学层通过气浮沉积法直接形成在所述第一反射层上;以及
将第二反射层直接形成在所述电气光学层上。
11.如权利要求10所述的电场传感器的制造方法,其特征在于,
按照以下方式形成:在所述电气光学层的直径d与所述光纤维的核心的直径dc及金属包层的直径dr之间,dc≤d≤dr的关系成立。
12.如权利要求10所述的电场传感器的制造方法,其特征在于,所述电气光学层的厚度t为t≥1μm。
13.如权利要求10所述的电场传感器的制造方法,其特征在于,
所述电气光学层的组成为锆钛酸铅、添加有镧的锆钛酸铅、钛酸钡、锶代钛酸钡、钽代铌酸钾中的某一个。
14.一种磁场传感器的制造方法,其特征在于,包括以下步骤:
将第一反射层直接形成在光纤维的顶端;
将通过磁场使折射率发生变化的磁性光学层通过气浮沉积法直接形成在所述第一反射层上;以及
将第二反射层直接形成在所述磁性光学层上。
15.如权利要求14所述的磁场传感器的制造方法,其特征在于,
按照以下方式形成:在所述磁性光学层的直径d与所述光纤维的核心的直径dc及金属包层的直径dr之间,dc≤d≤dr的关系成立。
16.如权利要求14所述的磁场传感器的制造方法,其特征在于,所述磁性光学层的厚度t为t≥1μm。
17.如权利要求14所述的磁场传感器的制造方法,其特征在于,
所述磁性光学层为具有石榴石结构、尖晶石结构、磁铅石结构中某一种结构的铁氧体。
18.如权利要求14所述的磁场传感器的制造方法,其特征在于,所述磁性光学层为包含铁、镍、钴中某一个的强磁性膜。
19.一种电场检测系统,其特征在于,具有如权利要求1所述的电场传感器。
20.一种磁场检测系统,其特征在于,具有如权利要求5所述的磁场传感器。
CN2006800241393A 2005-06-30 2006-06-29 电场/磁场传感器及它们的制造方法 Expired - Fee Related CN101213462B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005191806 2005-06-30
JP191806/2005 2005-06-30
PCT/JP2006/313446 WO2007004691A1 (ja) 2005-06-30 2006-06-29 電界/磁界センサおよびそれらの製造方法

Publications (2)

Publication Number Publication Date
CN101213462A CN101213462A (zh) 2008-07-02
CN101213462B true CN101213462B (zh) 2012-08-29

Family

ID=37604549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800241393A Expired - Fee Related CN101213462B (zh) 2005-06-30 2006-06-29 电场/磁场传感器及它们的制造方法

Country Status (4)

Country Link
US (2) US8153955B2 (zh)
JP (1) JP5170387B2 (zh)
CN (1) CN101213462B (zh)
WO (1) WO2007004691A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163850B2 (ja) * 2007-03-05 2013-03-13 日本電気株式会社 電磁界測定装置
JP2008298528A (ja) * 2007-05-30 2008-12-11 Nec Corp 光学式膜厚モニター及びそれを用いた成膜装置
JP5151460B2 (ja) * 2007-12-25 2013-02-27 日本電気株式会社 磁気プローブ
JP5376619B2 (ja) * 2008-02-06 2013-12-25 日本電気株式会社 電磁界計測装置
JP5230280B2 (ja) * 2008-06-16 2013-07-10 新光電気工業株式会社 プローブカード及び回路試験装置
JP5590340B2 (ja) * 2009-06-29 2014-09-17 日本電気株式会社 電界/磁界プローブ
US8941402B2 (en) 2009-07-10 2015-01-27 Nec Corporation Electromagnetic field measuring apparatus, electromagnetic field measuring method used for the same, and non-transitory computer readable medium storing electromagnetic field measurement control program
EP3264110B1 (en) * 2015-02-24 2022-05-18 Hitachi, Ltd. Optical fiber sensor and measurement device using same
KR20180121586A (ko) * 2016-03-17 2018-11-07 코쿠리츠켄큐카이하츠호진 죠호츠신켄큐키코 전자기장 촬상장치
JP6815001B2 (ja) * 2016-08-19 2021-01-20 シチズンファインデバイス株式会社 磁界センサ素子及び磁界センサ装置
DE102016119340A1 (de) * 2016-10-11 2018-04-12 Heraeus Sensor Technology Gmbh Verfahren zur Herstellung eines Sensors, Sensor und Verwendung eines Sensors
JP7385210B2 (ja) * 2019-09-27 2023-11-22 シチズンファインデバイス株式会社 磁界センサ素子及び磁界センサ装置
KR102451464B1 (ko) * 2020-06-26 2022-10-07 한국표준과학연구원 전자기파 프로브 및 이를 포함하는 전자기파 검출 장치
KR102514006B1 (ko) * 2020-09-08 2023-03-24 한국표준과학연구원 편광 유지 광섬유를 이용한 전자파 측정 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778987A (en) * 1984-07-06 1988-10-18 Saaski Elric W Optical measuring device using a spectral modulation sensor having an optically resonant structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523092A (en) 1982-07-29 1985-06-11 Aetna Telecommunications Laboratories Fiber optic sensors for simultaneously detecting different parameters in a single sensing tip
JPS59166873A (ja) 1983-03-11 1984-09-20 Fuji Electric Corp Res & Dev Ltd 光応用電圧・電界センサ
US4533829A (en) * 1983-07-07 1985-08-06 The United States Of America As Represented By The Secretary Of The Air Force Optical electromagnetic radiation detector
JPS6162882A (ja) * 1984-09-05 1986-03-31 Matsushita Electric Ind Co Ltd 磁界検出装置
JPH0228574A (ja) 1988-07-19 1990-01-30 Sumitomo Electric Ind Ltd 光磁界センサ
JPH06109640A (ja) * 1992-09-29 1994-04-22 Mitsubishi Cable Ind Ltd 光ファイバオプトロードの製造方法
US5779365A (en) * 1992-11-25 1998-07-14 Minnesota Mining And Manufacturing Company Temperature sensor for medical application
US5625284A (en) * 1993-07-07 1997-04-29 Tokin Corporation Electric field sensor having sensor head with unbalanced electric field shield to shield branched optical waveguides against an applied electric field
US5602387A (en) * 1995-06-26 1997-02-11 The United States Of America As Represented By The Secretary Of The Air Force Method of protecting an RF receiver in a hostile electromagnetic environment
JPH1062625A (ja) * 1996-08-22 1998-03-06 Matsushita Electric Ind Co Ltd 波長フィルタ
EP1040361A4 (en) 1998-10-21 2005-01-12 Paul G Duncan METHOD AND DEVICE FOR OPTICAL MEASUREMENT USING RARE IRON IRONS GRANTS ONLY THE POLARIZATION ROTATION OF OPTICAL WAVE AREA
US6608952B2 (en) * 2001-08-15 2003-08-19 Fitel Usa Corp. Fiber apparatus and method for manipulating optical signals
US6771410B1 (en) * 2003-06-18 2004-08-03 Intel Corporation Nanocrystal based high-speed electro-optic modulator
JP2004012468A (ja) 2003-08-29 2004-01-15 Nippon Telegr & Teleph Corp <Ntt> 電界センサ
US7336062B2 (en) * 2004-11-08 2008-02-26 Lucent Technologies Inc. Optically measuring electric field intensities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778987A (en) * 1984-07-06 1988-10-18 Saaski Elric W Optical measuring device using a spectral modulation sensor having an optically resonant structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP昭61-62882A 1986.03.31
JP特开2004-12468A 2004.01.15
Jun AKEDO.Aerosol Deposition and Its Application.Journal of the Surface Science Society of Japan.2004,25(10),25-31. *

Also Published As

Publication number Publication date
US20120164321A1 (en) 2012-06-28
JP5170387B2 (ja) 2013-03-27
CN101213462A (zh) 2008-07-02
US8153955B2 (en) 2012-04-10
WO2007004691A1 (ja) 2007-01-11
US8519323B2 (en) 2013-08-27
JPWO2007004691A1 (ja) 2009-01-29
US20090224753A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
CN101213462B (zh) 电场/磁场传感器及它们的制造方法
US8233753B2 (en) Electric field sensor, magnetic field sensor, electromagnetic field sensor and electromagnetic field measuring system using these sensors
US7162109B2 (en) Optical modulator and method of manufacturing same
KR101014737B1 (ko) 자기 광학 소자
WO2002049984A1 (fr) Ceramique transparente, procede de production de celle-ci et element optique
WO1991010234A1 (fr) Tete de lecture multipiste magneto-optique
CN111272666B (zh) 一种基于磁光表面等离激元共振的生物蛋白传感器
US20210381952A1 (en) Saw based optical sensor device and package including the same
Wang et al. Innovative high-performance nanowire-grid polarizers and integrated isolators
JP5024954B2 (ja) 光学素子、光集積デバイス、および光情報伝搬システム
US6590694B2 (en) Faraday rotator
US20100000664A1 (en) Method for manufacturing optical surface mounting waveguide substrate
FR2741963A1 (fr) Capteur optique realise selon la technique de l&#39;optique integree et forme a base de polymeres
FR2645970A1 (fr) Micromagnetometre a detection capacitive
CN101975880B (zh) 一种光学电流互感器传感头及传感方法
CN101949969A (zh) 光学电流互感器传感头及传感方法
FR2647915A1 (fr) Appareil photocommande de deviation d&#39;un faisceau lumineux
JP2008216035A (ja) 電界および温度測定装置並びに電界および温度測定方法
JPH04256904A (ja) 偏光素子
JP2001021852A (ja) 多層膜光波長フィルタ
FR3043843B1 (fr) Composant electronique actionnable electro-chimiquement et procede de realisation du composant electronique actionnable
JP2021056047A (ja) 磁界センサ素子及び磁界センサ装置
Teowee et al. Measurement of electro-optic properties of ferroelectric thin films using the ultimate ellipsometer
JP2006091865A (ja) 光部品モジュール
JPH06265833A (ja) 波長フィルタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20160629