具体实施方式
在下面的各种实施例的描述中,引用构成该描述的一部分的附图,附图中以例示的方式示出本发明可在其中实践的各种实施例。应该理解,可以在不偏离本发明范围的前提下利用其他实施例和进行结构和功能修改。
图1例示包括滚轮组件100的计算机输入设备的一个实例,其中滚轮组件100具有可以与不同类型的计算机输入设备一起使用的手指可配合的控制元件101(例如,滚轮),该计算机输入设备用来相对于显示设备屏幕2向多个方向并沿着多个轴线(X,Y)卷动图像,显示设备屏幕2和主计算机8、另一类型的计算设备或因特网装置一起使用。如图1所示,根据本发明的滚轮组件100的一个实施例可以被置于鼠标60内。或者,滚轮组件100可以被置于键盘或诸如跟踪球设备或类似输入设备(未示出)的其他外围计算机输入设备内。例如,滚轮组件也可以位于手持式计算机、更大的移动计算设备、联网板(web pad)或因特网装置的前盖中,或者可以位于膝上型计算机的机箱上。正如本领域中所熟知的那样,这些其他外围设备可以具有到主计算机8的有线或无线连接。滚轮组件100可以替换地位于计算机监视器中或膝上型计算机的基座部分中。正如以下更详细地描述的那样,除了其垂直卷动的正常旋转运动之外,手指可配合的控制元件101可以枢转以便在显示设备屏幕2上水平地卷动图像。
如图1所示,滚轮组件100具有可以与不同类型的计算机输入设备一起使用的手指可配合的控制元件101,该计算机输入设备被用来相对于显示设备屏幕(4,5)向多个方向并沿着多个轴线(X,Y)卷动图像,显示设备屏幕(4,5)和图1中所述的计算机或另一类型的计算设备或因特网装置一起使用。
如图1所示,根据本发明的滚轮组件100的一个实施例可以被置于鼠标60内。正如所熟知的那样,鼠标包括用于确定鼠标相对于跟踪表面平移运动的系统,以使得可以通过相应的鼠标运动来控制光标在显示设备上的运动。在传统方式中,鼠标60也包括外壳55和可按压的致动件,如主键45和/或辅键50。外壳55在其中有一开口40。滚轮组件30被安装在外壳55中。手指可配合的控制元件101的一部分可以通过延伸穿过输入设备的开口40来暴露,以使得可以由用户容易地接触和操纵。正如以下更详细地描述的那样,除了滚轮组件100的至少一部分可以由前到后或由后到前地旋转以垂直地卷动之外,手指可配合的控制元件101可以侧向枢转(也就是说,倾斜)以在显示设备屏幕2上水平地卷动图像1或引起计算机的另一动作。
尽管滚轮被描述为鼠标101的一部分,但本发明也包括其他实施例,这些其他实施例包括诸如键盘、跟踪球设备等等的其他设备中的滚轮组件。滚轮组件100的替代实施例可以位于键盘或诸如跟踪球设备或类似输入设备的其他计算机输入设备内。例如,它也可以位于手持式计算机、更大的移动计算设备、联网板或因特网装置的前盖中,或者可以位于膝上型计算机的机箱上。正如本领域中所熟知的那样,这些计算机输入设备中的任何一个可以具有到主计算机的有线或无线连接。滚轮组件100可以替换地位于计算机监视器或膝上型计算机的基座部分。
如图2所例示,滚轮组件的可旋转元件的一个实例是手指可配合的控制元件(例如,滚轮)101。手指可配合的控制元件101可以进一步在托架106中被可旋转地支撑,其中托架106准许手指可配合的控制元件101相对于托架106绕侧向定向轴线不断旋转。托架106包围手指可配合的控制元件101的下半部的至少一部分,留出控制元件101的上半部不受阻挡以便于用户操作。
滚轮组件100可以包含旋转感应系统,它用于检测手指可配合的控制元件101的旋转。这一实施例中的旋转感应系统是光学旋转传感器,具有旋转传感器编码器120、光源102和光检测器110。如图2所例示,光源102和光检测器110位于手指可配合的控制元件101的相反的侧面。托架106包含托架开口119,来自光源102的光可以通过这一开口。
在图2所例示的实例中,旋转传感器编码器120放置在手指可配合的控制元件101里,以使得旋转传感器编码器120和手指可配合的控制元件101一起旋转以断续地将来自光源102的光与光检测器110阻隔开来。因此,手指可配合的控制元件101的旋转可以通过检测从光源102穿过手指可配合的控制元件101中的旋转传感器编码器120的隔开的开口和托架开口119到达光检测器110的光来检测。或者,代替穿过的配置,可旋转元件可以包括在编码器轮上交替的光吸收面和光反射面。例如,手指可配合的控制元件101的旋转利用反射编码器方法,以使得编码器传输光并感应从手指可配合的控制元件101上的编码器轮反射的光。编码器和编码器轮定向为使得光以平行于手指可配合的控制元件101和编码器轮的旋转轴线的方向被传输。编码器轮包括角度上隔开的交替的反射和非反射部分,这些反射和非反射部分可以由编码器区分,以使得可以确定编码器轮和编码器之间的角度位移。在编码器轮面向编码器的一侧,通过蚀刻和不蚀刻角度上隔开的区域,可以引起光反射能力的对比。当手指可配合的控制元件101被旋转时,编码器轮上非反射部分吸收入射光,编码器轮上反射部分将入射光反射回到其光接收检测器。检测器感应到这些中断并被耦合到控制器,该控制器基于旋转量和旋转方向产生并延迟到主计算机的信号以在Y方向上下卷动图像。在这样的实施例中,光学对的两个元件在编码器的同一侧上。
或者,旋转传感器编码器可以与手指可配合的控制元件101在侧面隔开。在这样的配置中,光学对的光源和光检测器可以位于手指可配合的控制元件101的一侧上。编码器可以通过在手指可配合的控制元件的旋转轴线处的轴被附连到手指可配合的控制元件。手指可配合的控制元件的旋转引起旋转传感器编码器的旋转,而旋转传感器编码器的旋转断续地阻断从光源到光检测器的光通路。如上所述,基于在光检测器被接收到的断续光传输模式,手指可配合的控制元件的移动或旋转被检测到并被分析。
图2例示滚轮组件。图3是图2的倾斜传感器的分解剖开立体图。图4是图2的滚轮组件的倾斜传感器的后视图。如图2-4所例示,手指可配合的控制元件101可以进一步相对于旋转轴线枢转。在这一实例中,手指可配合的控制元件101具有从手指可配合的控制元件101的前端延伸到后端且平行于旋转轴线的倾斜轴线。在一个实例中,倾斜轴线与旋转轴线共面,或者可以在旋转轴线上方的平面中。在该实例中,倾斜轴线位于在旋转轴线下方的平面中。而且,托架106可以包含手指可配合的控制元件101的至少一部分。托架106可以包括前轴122、后轴121、从后轴121延伸的倾斜接触元件118,它们可以是根据需要用任何合适的材料(如塑料)制成的整体模制结构。前轴122可以沿着手指可配合的控制元件101的倾斜轴线从该托架的前端方面延伸通过垂直前端支柱104的开口130。例如,前轴122配装入垂直前端支柱104的开口130,其中垂直前端支柱104支撑前轴106以避免托架的前端部分的向下位移而仍然允许手指可配合的控制元件101的旋转和枢转。而且,垂直前端支柱104的开口130设置充足的游隙以使得托架的后端部分能够响应于被按压而向下移动。
而且,托架106可以包括后轴121,其中后轴121沿着手指可配合的控制元件101的倾斜轴线从托架的后面方面延伸通过塔式支架124的槽131,以使得槽131的相反(两)侧防止后轴121相对于塔式支架124的侧向位移。这使得后轴121能够在槽131里枢转而仍然避免后轴121的侧向位移。因此,后轴121可以从托架106延伸,其中托架106和手指可配合的控制元件101一致地枢转。
滚轮组件100包含倾斜传感器114,在倾斜传感器114中可以检测手指可配合的控制元件101的枢转。在这一配置中,倾斜传感器114包含倾斜接触元件118,该倾斜接触元件118是从后轴121与手指可配合的控制元件101共面定向延伸的细长结构。在这一实例中,后轴121沿着手指可配合的控制元件101的倾斜轴线延伸通过塔式支架124。如图3所示,倾斜接触元件118从后轴121的底面在中线处向下延伸,以使得倾斜接触元件118向下延伸并基本上垂直于倾斜轴线。
电路板112的开口包含在倾斜接触元件118的每一侧上的倾斜接触开关116。当被旋转时,倾斜接触元件118定位在两个接触开关116之间。在一种配置中,在电路板中设置一个孔,可以通过该孔定位倾斜接触元件118。手指可配合的控制元件的枢转引起托架106绕倾斜轴线的相应旋转运动,这一旋转运动又引起后轴旋转相应的量,这也引起邻接其末端和邻接后轴的倾斜接触元件118枢转。在这发生时,倾斜接触元件118的较低一部分将会侧向移动并接触在与倾斜相反方向的一侧的接触开关116。基于倾斜元件118和与倾斜相反方向的一侧的相应接触开关116的接触,因此检测手指可配合的控制元件101的枢转。具体地说,滚轮组件100向右倾斜引起旋转接触元件118和左侧的接触开关接触,而滚轮组件100向左倾斜引起旋转接触元件118和右侧的接触开关接触。
图4进一步例示倾斜接触开关116可以位于电路板112的开口处,其中倾斜接触元件118穿过该开口。在这一实例中的电路板112在基座123上面。倾斜接触开关116的定向节省了电路板112上的空间。在这一实例中的倾斜接触开关116被分开,接近电路板112中的倾斜接触元件118。通过这样做,电路板112上的诸接触开关占用较少的空间,这为其他组件提供了额外的空间,并且对电路板112上的电子组件的定位和配置具有较少的限制。
应该注意,图3和4只例示本发明一个实例,并不旨在限制本发明。例如,在一个替代实例中,倾斜接触开关116可以与电路板112分离。在这一实例中,电路板112可以位于比倾斜接触元件118低的位置(例如,接近基座123),并且可以在其上包含一个结构,该结构用于包含在倾斜接触元件118的每一侧的倾斜接触开关116。这样,电路板112的定位独立于倾斜接触开关116的定位。在另一替代实例中,基座123可以在其上包含一个结构,该结构用于包含在倾斜接触元件118的每一侧的倾斜接触开关116,在倾斜接触元件118中用于包含倾斜接触开关116的结构可以穿过电路板112的开口。
可以限制手指可配合的控制元件101的枢转以避免过度枢转。这可以用于避免倾斜接触元件118对接触开关施加过大的力量。例如,延伸通过垂直前端支柱104中的开口的前轴122的横截面可以是相对于垂直前端支柱104的开口130的预先确定的形状,以避免过度枢转。图9示出前轴122的一个实例,它具有在垂直前端支柱104的三角形的开口130中的三角形的横截面。当手指可配合的控制元件100被倾斜时,力量被施加到前轴122,并通过垂直前端支柱104的开口130传输。由于前轴122的横截面和开口130的相关形状,前轴122和开口130避免手指可配合的控制元件100的过度倾斜。然而,前轴122的横截面和垂直前端支柱104的开口的相关形状不被限制于此,可以是限制手指可配合的控制元件101的过度枢转的任何组合。例如,前轴122的横截面和Z形托架的开口可以是防止过度枢转的椭圆形或矩形。同样地,后轴121的横截面和用于容纳后轴121的塔式支架124中的槽131也可以是避免手指可配合的控制元件101的过度枢转的任何组合。
在使用中,当用户想要在显示设备屏幕2上(见图1)沿着多个轴线4、5(见图1)向多个方向的卷动图像1时,他或她将会相对于外壳55旋转和/或侧向枢转滚轮组件30,以分别产生被计算机解释为引起垂直和/或侧向卷动的信号。当滚轮组件100被用户旋转时,旋转运动被旋转运动感应系统感应到(也就是说,基于来自光源102的光在光检测器110处被检测到),而且图像1向平行Y轴线4(见图1)延伸的正或负的垂直方向卷动,也就是说,上或下卷动。当滚轮组件100被用户侧向倾斜或者枢转时,枢转运动被倾斜传感器114感应到,而且图像1(见图1)向平行X轴线4(见图1)延伸的正或负水平方向卷动,也也就是说,左或右卷动。
根据以上所述,滚轮组件100可以至少具有两个位置,也就是说,第一位置和第二位置。用于容纳后轴121的塔式支架124的槽131可以包含允许手指可配合的控制元件101向下运动的空间。例如,当在中间位置时滚轮组件100是在第一位置中。然而,如果手指可配合的控制元件101和托架106可以定位到第二位置中,滚轮组件100和托架106可以接触位于滚轮组件100之下的开关(也就是说,Z形开关108)。通过用Z形开关108接触滚轮组件100,对应于Z形开关的致动,滚轮组件100可以在显示设备屏幕上引起附加功能的性能。在这一实例中,滚轮组件101可以绕第二枢转轴线向前枢转,该第二枢转轴线平行于滚轮101的旋转轴线并和垂直前端支柱104的开口130相交。
手指可配合的控制元件101和/或托架106被偏置到相对于其潜在枢转的中间位置(也就是说,被偏置到相对于外壳中的开口的直立位置)。当用户枢转手指可配合的控制元件101时,手指可配合的控制元件101和托架106被改变为离开它们的中间位置。例如,手指可配合的控制元件101和托架106的枢转使得手指可配合的控制元件101和托架106绕倾斜轴线倾斜,其中该倾斜轴线由轴线121、122限定且基本上垂直于手指可配合的控制元件101的旋转轴线。在倾斜或枢转力量被解除后,托架106和手指可配合的控制元件101的偏置将托架106和手指可配合的控制元件101返回到中间位置。
在一个实例中,偏置用于托架106和手指可配合的控制元件101的倾斜偏置设备包括弹性叶片401。图5A和6A是例示使用倾斜偏置设备的两个例子的滚轮组件100的侧视图,该倾斜偏置设备包括影响托架106和/或手指可配合的控制元件101的侧向偏置的弹性叶片401。图5B和6B分别是图5A和6A中带有弹性叶片401的滚轮组件100的后视图。
如图5A和5B例示,滚轮组件100可以包含弹性叶片401。在这一实例中,弹性叶片401位于手指可配合的控制元件101或托架106的底面。然而,弹性叶片401的位置不受到这样的限制,弹性叶片401也可以位于相对于滚轮组件100的许多其他位置。例如,弹性叶片401也可以位于或手指可配合的控制元件101的前面或背面。
弹性叶片401可以被构造成托架的一部分。例如,弹性叶片401可以和托架106一起构成整体结构,可以和前轴122、后轴121和倾斜接触元件118一起被模制。弹性叶片401也可以通过作为悬臂梁结构的悬臂座和托架或手指可配合的控制元件101形成一体。弹性叶片401可以是用任何固体或半刚性的材料制成。在这一实例中,弹性叶片401是任何半刚性或刚性材料的压平细长的元件,具有近端402a和远端402b。近端402a定位在手指可配合的控制元件101的中线处,并定向在平行于手指可配合的元件101或托架106的纵向轴线的平面中。弹性叶片401向下延伸指向远端402b。在这一实例中,弹性叶片401的近端402a从托架106的底面延伸,在远端穿过电路板112的槽。弹性叶片401的近端402a可以被整体地模制到托架。电路板112中的槽宽度可以等于弹性叶片401的宽度,以使得在手指可配合的元件101枢转时弹性叶片401的远端402b具有极少甚至没有侧向位移。或者,电路板112的槽可以比弹性叶片401的宽度略宽,以在手指可配合的控制元件101枢转时考虑到弹性叶片401的最小侧向移动。
在使用中,当手指可配合的控制元件101向任一方向枢转时,托架和滚轮将会枢转,但是弹性叶片401的远端402b仍然在电路板112的槽里面。当在手指可配合的控制元件101上的枢转力被释放时,弯曲的弹性叶片401中所存储的力量强迫手指可配合的控制元件101和托架106返回中间位置。
图6A和6B例示滚轮组件100中的弹性叶片的替代实例。图6A是滚轮组件100的侧视图,而图6B例示滚轮组件100的后视图。为清晰起见,电路板112被例示为虚线结构。为清晰起见,在图6B中没有例示特定的元件。除了弹性叶片401的远端延伸到导向器403中的导向槽而不是电路板的槽之内以外,这一实例与在图5A和5B中所例示的实例类似。导向器403设置在基座123上,并且优选地位于手指可配合的控制元件101和托架106的中线和下面,而且包含配合弹性叶片401的槽。导向器403的槽的宽度可以等同于弹性叶片401的宽度,或者可以比弹性叶片401的宽度略宽以允许弹性叶片的最小侧向移动。
在另一实例中,手指可配合的元件101的旋转的检测和表征基本上并不影响手指可配合的元件101的枢转的检测和表征。图7和8例示滚轮组件100的一个实例,在这一实例中,可以完成手指可配合的元件101的旋转和枢转的检测和表征而不会干扰另一运动。例如,如在以上诸例子中所描述,如果手指可配合的控制元件101被旋转,那么例如通过光学旋转传感器,通过在光检测器110处检测到从光源102发出且穿过旋转传感器编码器120的光,准确地检测到旋转。同样如以上诸例子中所描述,如果手指可配合的控制元件101被枢转,枢转可以例如)被倾斜传感器114检测到,在倾斜传感器114中,中心定位的倾斜接触元件118被侧向移位到接触倾斜接触开关116。
图7和8例示手指可配合的控制元件101同时被枢转和旋转的细节。在这一实例中,手指可配合的元件101和托架106的倾斜轴线601从手指可配合的元件101的前面延伸到后面。如之前所描述,包括光源102和光检测器110的光学对被用来检测手指可配合的元件101的旋转。光源102和光检测器110位于手指可配合的元件101的编码器的相反的(两)侧,以使得来自光源102的光穿过手指可配合的控制元件101(和托架106中的开口)沿着光轴702(也就是说,光迹线路径)到达光检测器110。在这一实例中,光轴702与倾斜轴线601成直线。光轴702可以接近倾斜轴线601。例如,光轴可以距离倾斜轴线大约3毫米或者距离倾斜轴线少于3毫米。或者,光轴可以距离倾斜轴线1毫米。在另一实例中,光轴702可以距离倾斜轴线少于1毫米。而且,光轴702可以与倾斜轴线601相交。如图7所例示的,倾斜轴线601(被描述为“X”)与光轴702(在图7中被描述带框箭头而在图8中被描述为“+”)相交。这一配置最小化或消除基于绕着倾斜轴线601的手指可配合的控制元件101的旋转检测功能的干扰。
应该理解,本发明的诸方面可以采取许多种形式和实施例。在此被示出的诸实施例旨在例示而非限制本发明,应该理解,可以在不偏离本发明的精神范围的前提下进行各种更改。尽管本发明的示例性实施例已经被示出和描述,但是在前述公开中预期广泛的修改、改变和替换,且在一些实例中不需要使用其他相应特征就够使用本发明的一些特征。因此,应该明白,所附权利要求书应被广泛地按与本发明的范围一致的方式来解释。