一种通信系统中十六进制正交幅度调制的软解调的方法
技术领域
本发明涉及一种软解调方法,尤其涉及一种通信系统中十六进制正交 幅度调制 (16 Quadrature Amplitude Modulation, 以下简称 16QAM) 的 软解调方法。 背景技术
自适应调制编码 (Adaptive Modulation and Coding, 以下简称 AMC) 是移动通信系统中广泛采用的链路自适应技术, 通过自适应选择链路调 制和编码方式来适应链路的衰落情况, 从而达到增加系统容量和改善通 信质量的目的。
AMC 策略经常采用的调制方式有正交相移键控 (Quadrature Phase Shift Keying, 以下简称 QPSK) 和 16QAM两种。 16QAM比 QPSK有更高的 带宽效率 (是 QPSK的两倍) , 但其功率效率却比 QPSK低, 即为达到相 同的误码率 (Bit Error Rate, 以下简称 BER) , 16QAM需要的 Eb/No (每 比特能量与噪声功率谱密度的比值) 要高于 QPSK, 换言之, 16QAM更不 容易解调, 其原因在于 16QAM的星座点比 QPSK要密集, 解调过程既需要 估计相位, 又需要估计幅度。
接收端解调时有两种方法:硬判决解调和软判决解调。前者的主要思 想是解调时就硬判决出与调制器输入端对应的比特信息, 即输入到译码 器的是硬判决后的二进制比特信息, 译码器使用已知的码字结构去判断 编码器输入端的码字。 硬判决并不是一个很好的方法, 因为对于每次硬 判决, 解调器都要丢失一些可能会用到的信息。 采用将编码和调制结合 的方法, 解调器就不会将一些错误传递到译码器。 解调器只是对各种符 号进行暂时的估计, 通常被称作软判决, 这样就可以不丢失一些对于译 码器来说有用的信息。 一般情况下, 采用软判决, 信号的 Eb/No 会相对 于硬判决具有 2dB的优势, 因此实际系统中大多采用软判决方式。
QPS 调制时一个符号承载两个比特信息, 分别映射到 I (同相) 支 路和 Q (正交)支路上, 接收端在软解调时, 只要将接收到的载波剥离后 的符号的同相部分映射到 I支路上, 正交部分映射到 Q支路上, 即可实 现软解调, 即 I支路和 Q支路分别对应一个二进制比特的实值信息, 软 解调后的实值信息串并转换发送到译码器即可实现软判决译码。 而对于 16QAM, 实现软解调就比较复杂了, 这主要因为 16QAM调制时一个符号承 载四个比特信息, 分别有两个比特信息映射到 I支路和 Q支路上, 接收 端在软解调时, 接收到的载波剥离后的符号的同相部分对应两个比特信 息, 同样正交部分也对应两个比特信息, 且符号对应的星座幅度也不同。
图 1给出了典型的 16QAM编码调制 /解调译码基本框图, 传输块在添 加循环冗余校验 (Cyclic Redundancy Check, 以下简称 CRC) 比特后, 输入到 Turbo编码模块(步骤 101 )进行纠错编码, 然后进行物理层混合 自动重传请求 HARQ (步骤 102) 、 16QAM基带调制 (步骤 103) , 随后进 行扩频处理(步骤 104) , 包括信道化和加扰操作, 基带信号调制载波信 号, 已调信号通过信道 (步骤 105) 发射出去。 UE接收端接收到信号后, 首先进行载波剥离, 分离出同相的正交信号, 随后进行解扩(步骤 106), 解扩后的同相和正交符号送到 16QAM软判决解调器(步骤 107)进行软解 调, 得到与发送二进制比特序列 对应的实值软信息序列 2, 随后 经过物理层解 HARQ处理 (步骤 108) , 送到 Turbo译码器 (步骤 109) 进行纠错译码, 译出与发送比特序列对应的接收比特序列。
目前为解决该问题, 人们通常所采用的是一种计算输入到 Turbo 译 码器的软判决解调方法, 其思想是计算每个星座点同相分量和正交分量 对应的每个比特的对数似然比(log likelihood ratio, 以下简称 LLR), 即软解调后的信息是对应调制器输入比特的 LLR。应用此方法时, 对于某 些比特的 LLR, 可能需要估计载干比 (Carrier Signal to Interference, 以下简称 C/I ) , 而 C/I的误差可能影响软解调的性能; 另外 LLR的计算 方法比较复杂, 硬件实现难度比较大。
发明内容
本发明所要解决的技术问题是提供一种通信系统中十六进制正交幅
度调制的软解调方法, 以提供一种简单易实现的 16QAM软解调方法, 从 而能够方便地实现自适应调制和编码策略。
本发明为解决上述技术问题, 提供的方案为:
通过导频功率以及业务信道与导频信道的功率偏差,估计业务信道的 接收功率, 从而得到十六进制正交幅度调制星座的平均功率 PaV(; ;
对所接收的中频信号进行载波剥离,得到同相符号序列信息 I和正交 符号序列信息 Q;
根据所述十六进制正交幅度调制时输入的二进制比特序列 与
I、 Q支路的星座映射关系, 确定不同判决区段及其对应的差错概率判决 曲线, 并据此在不同判决区段利用对应的判决曲线对所述得到的同相符 号序列信息与正交符号序列信息进行判决,以得到实值软信息序列 。
本发明进而还可以将所述得到的实值序列 输入到译码器中, 进 行纠错译码, 译出与发送比特对应的接收比特序列。
本发明所述十六进制正交幅度调制的软解调方法充分结合了硬判决 和软判决的优点, 算法简单, 易于实现。
附图概述
图 1是典型的 16QAM编码调制 /解调译码基本框图;
图 2是 QPSK和 16QAM的星座图;
图 3是 16QAM I支路和 Q支路映射规律图
图 4是 16QAM分段软判决区段剖面线;
图 5是 16QAM软判决解调算法流程。
本发明的最佳实施方式
本发明的基本思想是采用硬判决和软判决结合而成的分段软判决方 法 (Clipped Soft Decision, 简称 CSD) , 充分利用了软判决对于较高
不确定性的判决优点和硬判决可防止过高估计 (ovei^estimations ) 的 优点, 从而使得 CSD软判决算法简单易实现, 性能也比较好。
下面以高速下行分组接入系统 (High Speed Downlink Packet Access, 以下简称 HSDPA) 中 16QAM软判决作为例子, 对本发明作进一步 详细描述。
HSDPA是 3GPP在 R5协议中为了满足上 /下行数据业务不对称的需求 而提出的一种新技术, 它很好地解决了系统覆盖与容量之间的矛盾, 大 大提升了系统容量, 满足了用户的高速业务需求。 与 R99相比, HSDPA采 用自适应调制编码 (Adaptive Modulation and Coding, 以下简称 AMC) 和混合自动重传请求(Hybrid Automatic Repeat Request,以下简称 HARQ) 进行链路自适应。
16QAM CSD软判决的核心算法是根据 16QAM调制器输入端 四个 比特对应星座图上的特点以及上述四个比特不同的差错概率判决曲线, 采用类似于 QPSK基带映射的比例分段方法实现软判决解调, 即通过划分 对应上述 的不同判决区段(对应硬判决的思想), 分别进行软判决, 以得到与 16QAM调制器输入端四个比特对应的四个实值软比特信息序列
H。 表 1给出了 HSDPA中 16QAM的基带调制映射, 采用 16QAM调制时, 四个连续二进制符号 首先串并成 I支路上的 和 Q支路上 ^ , 然 后按照表 1 的映射规则进行映射。 需要注意的是按照表 1映射出的星座 图的平均星座功率正好等于 1。
表 1
i lql i2q2 I branch Q branch
0000 0. 3162 0. 3162
0001 0. 3162 0. 9487
0010 0. 9487 0. 3162
0011 0. 9487 0. 9487
0100 0. 3162 -0. 3162
0101 0. 3162 -0. 9487
0110 0. 9487 -0. 3162
0111 0. 9487 - 0. 9487
1000 -0. 3162 0. 3162
1001 -0. 3162 0. 9487
1010 -0. 9487 0. 3162
1011 -0. 9487 0. 9487
1100 -0. 3162 - 0. 3162
1101 -0. 3162 -0. 9487
1110 -0. 9487 -0. 3162
1111 - 0· 9487 -0. 9487
图 2是 QPSK和 16QAM的星座图, 从星座图上可以清晰地看出, QPSK 的星座幅度相同, 只是相位不同, 而 16QAM星座的相位和幅度均可能不 同, 且星座比 QPSK密集, 从而增加了解调尤其是软判决解调的复杂度。
图 3将表 1的映射规律做了归纳, 或 为二进制 0时, 必定映射为 正的实值信号,而若 ζι或 为二进制 1时,必定映射为负的实值信号。 和 的映射则比较复杂一些。
图 4在图 3的基础上进一步形象化地表示了分段软解调算法的原理。 由于^和 的映射规律相同, 和 的映射规律相同, 以下将以' '、 M乍为 例子说明 16QAM CSD软判决解调的原理。 从图 4可以看出, 同相符号信 息 I为正时, 对应的 ^应趋向于判决为 0, 且 I越大, 判决的正确几率 就越大; I为负时, 对应的 ^应趋向于判决为 1, 且 I越小, ;ι判决的正确 几率就越大; 同样正交符号信息 Q为正时, 对应的 应趋向于判决为 0, 且 Q越大, 判决的正确几率就越大; Q为负时, 对应的 应趋向于判决
为 1, 且 Q越小, 判决的正确几率就越大; 因此采用分段比例算法进行 软判决, 正好可以反映上述趋势。
对于2, 同相符号信息 1〉0.9487或 1<一0.9487时, 对应的 应趋 向于判决为 1; -0.3162<1<0.3162时, 对应的 应趋向于判决为 0; 一 0.9487<1<-0.3162或 0.3162<1<0.9487时, 对应的 趋向于判决 为 0还是 1取决于 I的大小, I越趋近于 0, 贝 ij;2判决为 0的正确几率就 越大, I越趋近于 1或一 1, 贝 判决为 1的正确几率就越大; 同样规律对 于 ,正交符号信息0〉0.9487或(3<—0.9487时,对应的 应趋向于判 决为 1; 一 0.3162<Q<0.3162时,对应的 应趋向于判决为 0; — 0.9487 <Q<-0.3162或 0.3162<Q<0.9487时, 对应 趋向于判决为 0还是 1 取决于 Q的大小, Q越趋近于 0, 则 判决为 0的正确几率就越大, Q越 趋近于 1或一 1, 则 判决为 1的正确几率就越大。
因此本发明的算法对应硬判决的比例算法进行软判决,正好可以反映 上述趋势。 软判决时, 对应不同的区段, 采用不同的软解调公式解调出 与 对应的软信息 2,但通过分析发现可将分段软判决解调公式进 行合并, 即可得到对应图 5的软判决解调算法。 图 5对应的软判决解调 公式中的 0·70?1对应平均星座功率为 1的 QPSK基带调制的同相或正交分
下面以如图 5所示来说明本发明在 16QAM CSD软判决解调算法的详 细流程。
步骤 501: UE 接收端通过导频功率以及业务信道与导频信道的功率 偏差估计业务信道的接收功率, 从而得到 16QAM星座各点的平均功率; 步骤 502: 将 I支路和 Q支路符号信息分离开;
应 的 , ^
步骤 504: 判断 I的正负, 若 1^0, 则转到步骤 505, 若 1<0, 则 转到步骤 506;
步骤 505: 按公式: 步骤 506: 按公式:
步骤 507: 判断 Q的正负, 若 Q 0, 则转到步骤 508, 若 Q<0, 则 转到步骤 509; 步骤 508: 按公式: 步骤 509: 按公式:
计算出 步骤 510: 将软解调后的 Ί、 ^ ,和 合并成与输入到 16QAM调制器 的比特序列 W 对应的实值序列 ;
步骤 511: 实值序列输入到译码器中, 进行纠错译码, 译出与发送比 特对应的接收比特序列。