CN101171306B - 通过颗粒疏水化制造可运输的含水淤浆的方法 - Google Patents

通过颗粒疏水化制造可运输的含水淤浆的方法 Download PDF

Info

Publication number
CN101171306B
CN101171306B CN2006800149626A CN200680014962A CN101171306B CN 101171306 B CN101171306 B CN 101171306B CN 2006800149626 A CN2006800149626 A CN 2006800149626A CN 200680014962 A CN200680014962 A CN 200680014962A CN 101171306 B CN101171306 B CN 101171306B
Authority
CN
China
Prior art keywords
particle
och
siloxane
sand
organo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800149626A
Other languages
English (en)
Other versions
CN101171306A (zh
Inventor
张克卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel-K Chemical Co Ltd
Original Assignee
Trican Well Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37307566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101171306(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trican Well Service Ltd filed Critical Trican Well Service Ltd
Publication of CN101171306A publication Critical patent/CN101171306A/zh
Application granted granted Critical
Publication of CN101171306B publication Critical patent/CN101171306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/22Synthetic organic compounds
    • C09K8/24Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Silicon Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

在诸如石油和管线工业等工业中使用的含水淤浆组合物,其包括颗粒、含水液体以及化合物,所述化合物使得所述颗粒表面极度疏水。通过在制造淤浆期间或之前,使所述颗粒表面极度疏水来生产所述淤浆。

Description

通过颗粒疏水化制造可运输的含水淤浆的方法
发明背景
发明领域
本发明涉及含水淤浆组合物以及制造所述组合物的方法。
现有技术的讨论
在包括石油、管线、建筑以及清洁在内的许多工业中通常使用或遇到含水颗粒淤浆。淤浆是通常由颗粒和含水液体组成的混合物,并且在许多工业操作中起必要的作用。例如,在将颗粒在地面上运输、从地表运输至地层或从地层运输至地表时,使用淤浆。最常使用的颗粒包括砂、陶粒、碳酸盐颗粒、玻璃球、铝土矿(氧化铝)、树脂包衣的颗粒以及煤颗粒。颗粒大小通常为约10至约100目(美国筛),并且所述颗粒的密度显著大于水的密度。例如,砂的密度约为2.6g/cm3,而水的密度为1g/cm3。迄今为止砂是最常用的颗粒。
为了制备相对稳定的淤浆,必须将颗粒于静态和/或动态条件下长时间悬浮在液体介质中。常识告诉我们,液体介质的粘性或粘弹性必须足够高以便能够悬浮颗粒。增加液体介质的粘性或粘弹性的最常用的方法是向液体介质中加入增粘剂,例如天然或合成聚合物或粘弹性表面活性剂。为了利用粘弹性和发泡性质而在使用聚合物时还使用发泡剂是常见的。然而,在淤浆中使用聚合物增加了成本并且导致操作困难。在特殊的操作中,例如在地层水力压裂中,由于在地层中剩余大量的残余物,在淤浆中使用聚合物阻碍油气的产生。至于粘弹性表面活性剂,虽然与常规的聚合物相比其残余物较少,但是其成本通常更高。在许多其它应用中,例如在砾石充填层、完井以及通过管线运输砂的应用中,更加期望不使用增粘剂而使颗粒淤浆稳定。
水力压裂操作广泛应用于石油工业以提高油气的产量。在水力压裂中,通过井筒在足以引起压裂的压力下将压裂液注入地层,这提高了油气的产量。通常,被称为支撑剂的颗粒悬浮在压裂液中并作为淤浆被输送至裂缝处。支撑剂包括砂、陶粒、玻璃球、铝土矿颗粒、树脂包衣的砂以及其它工业中已知的颗粒。其中,砂是迄今为止最为常用的支撑剂。常用的压裂液包括水基的流体和烃基的流体。在水基的压裂液中,通常使用聚合物或粘弹性表面活性剂以增加流体的粘弹性。在大多数情况下,流体的粘弹性性质对于将支撑剂输送至地层深处是重要的。在压裂处理的最后阶段,压裂液回流至表面并且支撑剂留在裂缝中,形成支撑剂填充层以防止裂缝在压力释放后闭合。填充支撑剂的裂缝提供传导性较高的通道,其使得油和/或气更加有效地渗入井筒。支撑剂填充层的传导性在增产中起重要作用。已知来自压裂液的聚合物残余物显著降低了支撑剂填充层的传导性。与聚合增粘剂相比,粘弹性表面活性剂对地层和支撑剂填充层的造成较小的损害。然而,它们更加昂贵得多。因此,亟需将支撑剂以低成本有效运地输至较深地层深处的低成本组合物,同时又对地层和支撑剂填充层造成较少的损害的组合物。在确定传导性时,支撑剂的粒度、浓度和填充方式也是决定传导性的重要因素。虽然最近几年进行了广泛的研究,但是在有限的进展实现了将裂缝中支撑剂填充层的传导性最大化方面仅实现了有限的进展。因此,亟需制备用于具有改善的传导性的支撑剂填充层的组合物制造方法。
压裂处理后的支撑剂回流长期困扰石油工业。回流降低了地层中支撑剂的量,从而导致传导性较低的裂缝。如诸如美国专利第6,047,772号所公开的那样,已经尝试了多种方法解决回流问题。在一方法中,使用树脂包衣支撑剂并使其非常粘。这样,支撑剂颗粒趋于凝聚以减少回流。该方法不仅非常昂贵,而且在支撑剂填充层中引入的粘性树脂趋于降低其传导性。因此,亟需用于制造能够形成稳定的支撑剂填充层的淤浆的组合物和方法,所述支撑剂填充层阻止支撑剂回流而且同时具有高传导性。
当为了开采油气而对地层进行钻孔时,通常使用水基钻井液。在钻井时产生大量颗粒,即所谓的切削。切削具有从细粒至砾石的不同尺寸。钻井液通过井筒循环以便与切削就地形成淤浆并将其运出井筒。在大多数情况下,向钻井液中添加聚合物和粘土以便为了有效输送切削而提高其粘性/粘弹性。然而,聚合物和粘土能够容易地穿透地层中的孔隙或较薄的裂缝并显著降低地层的渗透性,尤其是接近井筒时。降低的地层渗透性阻碍油和/或气的生产。因此,非常期望提供能够与切削就地形成稳定淤浆并将其运出井筒,同时对地层造成极小的损害的钻井液。
油价格的上升及其令人担忧的枯竭速率已经引起人类思考使用煤来作为油的替代物。若干因素减缓了煤对油的替代。一个因素是难以节省成本地长距离通过管线运输煤。因此,非常期望提供用于制造稳定的、高度流动性的并且节省成本地进行运输的煤淤浆的组合物。
在油砂操作中,在从砂表面除去油后剩余大量砂。在工业中长期需要发现更加节约成本的方法以通过管线长距离有效运输砂。因此,稳定的、高度流动性的砂淤浆组合物及其低成本制备方法将会是十分有用的。
本发明的目的是通过提供含水组合物来满足上述需求,所述含水组合物能够在稳定的、高传导性的支撑剂填充层中用于有效地将支撑剂输送至地层,并且用于输送切削、煤或砂。
发明概述
因此,本发明涉及含水淤浆组合物,其包含颗粒、含水液体和使得所述颗粒表面极度疏水的化合物。
本发明还涉及制造含水淤浆组合物的方法,其包括如下步骤:将颗粒与含水液体混合,并且在将所述颗粒与所述含水液体进行混合期间或之前,使所述颗粒表面极度疏水。
本发明是基于以下发现:当颗粒的表面变得极度疏水时,淤浆具有若干新颖的性质。例如,颗粒趋于粘着地移动,而不是作为单个颗粒进行移动;在相同条件下,沉降颗粒的总体积与使用常规方法形成的淤浆相比趋于显著增大;形成的颗粒填充层趋于具有高传导性并且易于脱水,并且不使用增稠剂,淤浆趋于流动和稳定。颗粒填充层的较大总体积表明较大的空隙率,因此具有较高的传导性。这尤其有益于改善压裂处理,因为如上所述,支撑剂填充层的传导性是影响压裂处理的主要性质。颗粒的极度疏水表面还降低了流体施加的曳力,并且使支撑剂更加难以被流体带走。这尤其有益于在压力处理后将支撑剂回流最小化,并得到增加的支撑剂传导性。在常规淤浆中,液体的粘性和粘弹性起支配作用,而颗粒表面和液体之间的界面相互作用所起的作用可以忽略不计。然而,本发明发现,当颗粒表面变得极度疏水时,表面和含水液体之间的界面相互作用变得愈加重要,并且甚至起支配作用。
通常,固体基质和液体之间的界面相互作用主要取决于液体的表面性质和表面张力。通常,能够通过观察固体基质上液滴的形状来表征表面的宏观性质,这是表面的自由能以及液体的自由能的结果。当液体不完全润湿表面时,形成θ角,其被称为接触角。接触角是固体基质和液滴与固体基质接触点处切线之间形成的角。能够在宏观的、光滑的、无孔的平面固体基质上,通过在所述固体基质表面上仅仅放置液体或溶液的液滴并通过多种技术中任一种确定接触角来测量接触角。已知大多数的天然矿物是水润湿的。还已知某些烃化合物,例如某些常规的季铵盐表面活性剂、胺表面活性剂以及阳离子聚丙烯酰胺,能够用于降低某些颗粒的表面能,并使得颗粒表面更加疏水。然而,这样的化合物所赋予的“疏水性”没有足够高到被包括在本发明情况中的术语“极度高的疏水性”中。在本发明中,“极度疏水的”指在水在固体基质上的接触角大于约90°。能够使颗粒表面极度疏水的化合物指“给予极度疏水的化合物”(EHRC)。RHRC通常是含有有机硅烷或有机硅氧烷基团或氟代有机基团的那些化合物。由于这样的基团,EHRC能够赋予固体表面一定水平的疏水性,该水平是常规烃表面活性剂或聚合物所不能达到的。
能够在地面或地层中就地制备淤浆。在许多工业中淤浆有多种应用,其包括:
(a)在地表、从地表至地层或从地层至地表在各种距离运输颗粒,以及
(b)油井服务操作,包括刺激、钻井、完井、砂砾填充、控制砂产生等。
发明的详细说明
能够向淤浆中加入气体。用于淤浆的合适的气体包括空气、二氧化碳、氮气、甲烷及其混合物。能够在淤浆的制备过程中将气体引入。例如,当以足够的速率通过管道抽吸淤浆时,能够将气体,例如空气引入淤浆中。在这种情况下,“含水液体”指水、盐溶液、含有醇或其它溶剂的水、水和二氧化碳的混合物等。可以理解,在含水液体中除了水以外的添加剂的用量和使用方式应该不对本发明有不利影响。含水流体还能够含有支链或交联的聚合物。例如,在所谓的光滑水压裂中,通常添加少量聚合物以降低抽吸期间的摩擦。组合物中颗粒的大小约为10至100目(美国筛),即约为150至2000μm。应当理解,颗粒的尺寸分布能够较窄或较宽。合适的颗粒包括砂、陶瓷、玻璃珠、铝土矿、树脂包衣的砂、碳酸盐以及煤颗粒。
存在多种方法使颗粒表面极度疏水。一种方法是使用某些有机硅化合物以使诸如砂、陶粒、玻璃球和铝土矿等颗粒的表面极度疏水。有机硅化合物包括有机硅氧烷、有机硅烷、氟代有机硅氧烷以及氟代有机硅烷化合物。有机硅氧烷化合物包括硅氧烷季盐化合物以及硅氧烷胺,所述硅氧烷季盐化合物包括聚二甲基硅氧烷季盐或聚二甲基硅氧烷二季盐。有机硅烷化合物包括烷基氯硅烷,例如甲基三氯硅烷、二甲基二氯硅烷、三甲基氯硅烷、十八烷基三氯硅烷,烷基烷氧基硅烷,例如甲基、丙基、异丁基以及辛基三烷氧基硅烷。氟代有机硅烷化合物包括2-(全氟代正辛基)-乙基三乙氧基硅烷以及全氟代辛基二甲基氯硅烷。能够用于使颗粒表面极度疏水的其它类型的化合物是某些氟代化合物,例如某些氟代有机化合物。美国专利第4,564,456、4,689,085、5,098,979、5,209,775、5,240,760、5,359,104、6,132,638和6,830,811号以及加拿大专利第2,213,168号中描述了这样的实例。在某些情况下,当使用本文所述的组合物时,可能优选催化剂以加速EHRC和颗粒表面间的相互作用。对于不同的颗粒,相对于其它EHRC,可能更优选某些EHRC。
存在多种类型的能够用于赋予颗粒表面极度疏水性的有机硅化合物。一实例是下列通式所示的有机硅烷,
RnSiX(4-n)                        (I)
其中R是含有1至50个碳原子的有机基团,X是卤素、烷氧基、酰氧基或含有1至50个碳原子的胺,并且n为1至3。合适的有机硅烷的实例包括:CH3SiCl3、CH3CH2SiCl3、(CH3)2SiCl2、(CH3CH2)2SiCl2、(C6H5)2SiCl2、(C6H5)SiCl3、(CH3)3SiCl、CH3HSiCl2、(CH3)2HSiCl、CH3SiBr3、(C6H5)SiBr、(CH3)2SiBr2、(CH3CH2)2SiBr2、(C6H5)SiBr2、(CH3)3SiBr、CH3HSiBr2、(CH3)2HSiBr、Si(OCH3)4、CH3Si(OCH3)3、CH3Si(OCH2CH3)3、CH3Si(OCH2CH2CH3)3、CH3Si[O(CH2)3CH3]3、CH3CH2Si(OCH2CH3)3、C6H5Si(OCH3)3、C6H5CH2Si(OCH3)3、C6H5Si(OCH2CH3)3、CH2=CHCH2Si(OCH3)3、(CH3)2Si(OCH3)2、(CH3)2Si(OCH2CH3)2、(CH3)2Si(OCH2CH2CH3)2、(CH3)2Si[O(CH2)3CH3]2、(CH3CH2)2Si(OCH2CH3)2、(C6H5)2Si(OCH3)2、(C6H5CH2)2Si(OCH3)2、(C6H5)2Si(OCH2CH3)2、(CH2=CH2)Si(OCH3)2、(CH2=CHCH2)2Si(OCH3)2、(CH3)3SiOCH3、CH3HSi(OCH3)2、(CH3)2HSi(OCH3)、CH3Si(OCH2CH2CH3)3、CH2=CHCH2Si(OCH2CH2OCH3)2、(C6H5)2Si(OCH2CH2OCH3)2、(CH3)2Si(OCH2CH2OCH3)2、(CH2=CH2)2Si(OCH2CH2OCH3)2、(CH2=CHCH2)2Si(OCH2CH2OCH3)2、(C6H5)2Si(OCH2CH2OCH3)2、CH3Si(CH3COO)3、甲基二乙基氯硅烷、丁基三氯硅烷、二苯基二氯硅烷、乙烯基三氯硅烷、甲基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(甲氧基乙氧基)硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、氨基丙基三乙氧基硅烷、二乙烯基二-2-甲氧基硅烷、乙基三丁氧基硅烷、异丁基三甲氧基硅烷、己基三甲氧基硅烷、正辛基三乙氧基硅烷、二己基二甲氧基硅烷、三氯十八烷基硅烷,以及硅烷季铵盐,其包括3-(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵、3-(三甲基乙氧基甲硅烷基丙基)二癸基甲基氯化铵以及三乙氧基甲硅烷基大豆丙基二甲基氯化铵(triethoxysilyl soyapropyldimonium chloride)。
不同的聚硅氧烷化合物还能够被用于本发明。实例是使用有机阳离子或两性离子基团改性的聚硅氧烷,其包括有机甜菜碱聚硅氧烷以及有机聚硅氧烷季盐。一种类型的甜菜碱聚硅氧烷或聚硅氧烷季盐如下列通式所示
Figure GSB00000977246700071
其中每一R1至R6,以及R8至R10基团代表含有1至6个碳原子的有机基团,通常是甲基,R7代表甜菜碱聚硅氧烷的有机甜菜碱基团,所述甜菜碱聚硅氧烷例如甜菜碱聚硅氧烷共多羟基化合物,或者代表聚硅氧烷季盐的有机季盐基团,并且R7可以含有羟基基团或其它含有N、P或S的官能团,并且具有不同数目的碳原子,并且m和n是1至200。例如,当R7是有机季盐基团时,其能够由下列通式表示
Figure GSB00000977246700072
其中R1、R2、R3是具有1至22个碳原子的烷基基团或具有2至22个碳原子的烯基基团。R4、R5、R6是具有1至22个碳原子的烷基基团或具有2至22个碳原子的烯基基团。R6是-O-或NR8基团,R8是具有1至4个碳原子的烷基或羟烷基基团或者是氢;Z是具有1至4个碳原子的二价烃基团,其可以具有羟基基团并可以被氧原子、氨基基团或酰胺基团断开;x是2至4;R1、R2、R3、R4、R5、R6可以相同也可以不同,并且X-是无机或有机阴离子。可以从Degussa Corporation和Dow Corning Corporation商购这样的化合物。
有机改性的聚硅氧烷的其它实例包括二甜菜碱聚硅氧烷和聚硅氧烷二季盐,其能够由下列通式表示
Figure GSB00000977246700081
其中R12至R17均代表含有1至6个碳原子的有机基团,通常为甲基基团,R11和R18基团代表二甜菜碱聚硅氧烷的有机甜菜碱基团或二季盐的有机季盐基团,例如Quaternium 80(INCI),并且R11和R18可以含有羟基基团或其它含有N、P或S的官能团,并且具有不同数目的碳原子,并且m是1至200。例如,当R11和R18是有机季盐基团时,其能够由下列通式表示
Figure GSB00000977246700082
其中R1、R2、R3、R4、R5、R6、Z、X-和x如上定义。可以从DegussaCorporation和Dow Corning Corporation商购这样的化合物。对本领域技术人员应该显而易见的是,存在不同的聚硅氧烷单季盐和二季盐、单甜菜碱和二甜菜碱聚硅氧烷以及其它能够用于本发明的有机改性的聚硅氧烷。这些化合物广泛用于个人护理产品,例如美国专利第4,054,161、4,891,166、5,235,082、5,306,434、5,474,835、5,616,758、6,277,361和6,482,969号。
能够用于本发明组合物的有机硅化合物的其它实例是氟代有机硅烷或氟代有机硅氧烷化合物,其中硅烷或硅氧烷化合物中的至少部分有机基团是氟化的。合适的实例是氟化的氯硅烷或氟化的烷氧基硅烷,其包括2-(全氟代正辛基)-乙基三乙氧基硅烷、全氟代辛基二甲基氯硅烷、(CF3CH2CH2)2Si(OCH3)2、CF3CH2CH2Si(OCH3)3、(CF3CH2CH2)2Si(OCH2CH2OCH3)2和CF3CH2CH2Si(OCH2CH2OCH3)3。能够使用的其它化合物是氟取代的化合物,例如某些氟代有机化合物。
例如能够通过将水和颗粒以及EHRC混合来制备本发明的淤浆组合物。通常需要进行充分的剪切。或者,首先能够通过接触含有EHRC的流体介质处理颗粒以使得颗粒变得极度疏水,然后从介质中分离颗粒。流体介质能够是液体或气体。疏水颗粒随后能够用于制造淤浆。水是制造所述淤浆最优选的含水液体。能够使用不会对淤浆产生不利影响的方法向淤浆中添加一定浓度的某些盐、某些常规的烃表面活性剂或聚合物。例如,当向淤浆中添加常规的表面活性剂、聚合物或其它添加剂时,应该试图避免与EHRC形成不溶性的沉淀,或者引起颗粒表面的表面能发生较大的变化,或者显著降低含水液体的表面张力。在某些情况下,不期望含水液体的表面张力非常的低。当液体的表面张力太低时,能够加入更多的水或者能够使用新水代替部分含水液体。
能够在表层(地表以上)或地层中制备淤浆,其中在地层中就地混合颗粒、含水流体以及EHRC,例如聚硅氧烷二季盐。使用就地混合的情况的实例包括钻井和井筒清洗操作。或者,能够首先将颗粒与分散有或溶解有EHRC的液体混合,然后从液体中分离颗粒或干燥。如此处理的颗粒随后能够用于制备淤浆。根据本发明,在制造过程中能够处理包括砂、陶粒或树脂包衣的砂在内的多种支撑剂。如此处理的疏水颗粒能够被用作压裂操作的支撑剂。根据淤浆中颗粒的量和大小,能够使用较宽范围的EHRC浓度以便使颗粒表面极度疏水。通常,EHRC的添加量非常小并且对其加入的液体的粘度没有明显影响。例如,淤浆中EHRC的浓度能够低至几个ppm至几百ppm。在大多数应用中,无需加入超过总液体1%的EHRC。
以下实施例用于说明本发明的概念。
实施例1
向两个玻璃瓶(200ml)中各加入50ml水和50g 20/40目压裂砂。向其中一个瓶子中加入0.5ml来自Degussa Corp.的聚硅氧烷二季盐Tegopren 6923,而另一个用作对照。剧烈振荡两个瓶子,然后静置以使砂沉降。对比两个瓶子中沉降的砂的体积。在含有Tegopren 6923的瓶子中,沉降的砂的体积比另一个不含Tegopren 6923的瓶子中的沉降砂的体积高约40%。当将瓶子倾斜时,只含有水的瓶子中的沉降的砂趋于以个体砂粒的形式移动,而含有Tegopren 6923的瓶子中的沉降的砂趋于以粘团的形式移动。
实施例2
向玻璃瓶(200ml)中混合加入50ml水、50g 20/40目压裂砂、0.5ml Tegopren 6923和0.1ml来自Akzo Nobel Corp.的烃季铵盐Aquard18-50。剧烈振荡瓶子,然后静置以使砂沉降。振荡后砂粒立即完全分布在水中,形成稳定的淤浆。1小时后,约一半的砂沉降到底部,而另一半浮在顶部。
实施例3
向两个玻璃瓶(200ml)中各加入100ml水和50g 20/40目陶瓷支撑剂。向其中一个瓶子中加入0.5ml来自Degussa Corp.的癸酰基/癸酰基氨丙基甜菜碱TEGO甜菜碱810和1ml含有20%来自Degussa Corp.的聚硅氧烷二季盐Tegopren 6924以及80%乙二醇一丁醚的溶液,而另一个瓶子用作对照。剧烈振荡两个瓶子,然后静置以使砂沉降。在含有Tegopren 6924的瓶子中,约25%的支撑剂浮在上部,剩余的75%沉降在底部。75%沉降的支撑剂的体积仍然显著高于对照。当将瓶子倾斜时,只含有水的瓶子中的沉降的支撑剂趋于以个体砂粒的形式移动,而含有Tegopren 6924的瓶子中的沉降的支撑剂趋于以粘团的形式移动。
实施例4
向两个玻璃瓶(200ml)中各加入100ml水和50g 40/70目压裂砂。加入0.1ml Tegopren 6924和0.1ml TEGO甜菜碱810,并且还加入2wt%KCl。另一个瓶子用作对照。剧烈振荡两个瓶子,然后静置以使砂沉降。对比两个瓶子中沉降的砂的体积。在含有Tegopren 6924的瓶子中,约15%的砂浮在上部,剩余的85%沉降在底部。85%沉降的砂的体积仍然显著高于对照。当将瓶子倾斜时,只含有水的瓶子中的沉降的支撑剂趋于以个体砂粒的形式移动,而含有Tegopren 6924的瓶子中的沉降的砂趋于以粘团的形式移动。
实施例5
向两个玻璃瓶(200ml)中各加入100ml水和50g 40/70目压裂砂。向其中一个瓶子中加入0.5ml TEGO甜菜碱810和1ml含有20%Tegopren 6924以及80%乙二醇一丁醚的溶液。充分混合后,从液体中分离砂,并在室温下干燥。将预疏水化的砂与100ml水混合并剧烈振荡。在含有Tegopren 6924的瓶子中,约40%的砂浮在上部,剩余的60%沉降在底部。60%沉降的砂的体积仍然显著高于对照。当将瓶子倾斜时,只含有水的瓶子中的沉降的支撑剂趋于以个体砂粒的形式移动,而含有Tegopren 6924的瓶子中的沉降的砂趋于以粘团的形式移动。
实施例6
向两个玻璃瓶(200ml)中各加入100ml水和50g煤颗粒。向其中一个瓶子中加入0.5ml TEGO甜菜碱810和1ml含有20%Tegopren6924以及80%乙二醇一丁醚的溶液。另一个瓶子用作对照。在含有Tegopren 6924的瓶子中,约45%的煤颗粒浮在上部,剩余的55%沉降在底部。55%沉降的煤颗粒的体积与对照相比低约15%。
实施例7
向两个玻璃瓶(200ml)中各加入100ml水和50g 40/70目压裂砂。向其中一个玻璃瓶中加入0.03ml Maquat QSX,Maquat QSX是硅烷季盐化合物,即三乙氧基甲硅烷基大豆丙基二甲基氯化铵(triethoxysilylsoyapropyl dimonium chloride)的丁二醇溶液。另一瓶子用作对照。充分混合后,丢弃沉淀的砂上的液体,并以相同量的水代替。剧烈振荡两个瓶子,然后静置以使砂沉降。对比两个瓶子中沉降的砂的体积。在含有Maquat QSX的瓶子中,约5%的支撑剂浮在上部,剩余的95%沉降在底部。95%沉降的支撑剂的体积仍然显著高于对照。当将瓶子倾斜时,只含有水的瓶子中的沉降的砂趋于以个体砂粒的形式移动,而含有Maquat QSX的瓶子中的沉降的砂趋于以粘团的形式移动。
实施例8
向两个玻璃瓶(200ml)中各加入100ml水和50g 20/40目树脂包衣的砂。向其中一个瓶子中加入0.5ml TEGO甜菜碱810和1ml含有20%Tegopren 6924以及80%乙二醇一丁醚的溶液。另一个瓶子用作对照。剧烈振荡两个瓶子,然后静置以使砂沉降。含有Tegopren 6924的沉降的砂的体积约是对照相比的2倍。
如上所述,在石油工业和其它工业中本发明尤其具有许多用途。实例包括多种油井服务操作,其包括疏水压裂、砾石填充、井筒清洗和钻井、通过管线的颗粒运输以及喷砂。
当被用于水力压裂操作时,大量支撑剂能够被有效地运输至地层而不使用增粘剂。这不仅是节约成本的,而且还消除了由聚合物残余物引起的对地层和支撑剂填充层的损害。能够向含有支撑剂的水基压裂液中加入EHRC,例如聚硅氧烷二季盐,以便制备淤浆,然后在支撑阶段抽吸入地层。能够使用多种含有压裂液,其包括水、盐水、线性聚合物流体、交联的聚合物流体以及粘弹性表面活性剂流体。在所谓的光滑的水压裂处理中,使用淤浆是非常有益的。在常规的光滑的水压流操作中,由于流体的低粘性,只有低浓度的支撑剂能够被有效地抽吸入地层深处,并且支撑剂趋于沉降在裂缝的底部,从而导致较低的传导性。使用本发明的组合物,能够容易地将高浓度的支撑剂抽吸入地层深处,并且支撑剂更均匀地分布于裂缝之中,使支撑剂填充层的传导性得到改善。在压裂操作过程中能够随时同时添加EHRC。或者,在压裂操作中能够使用已经具有极度疏水性的支撑剂。本发明淤浆的另一益处在于,在从油井回流后易于循环使用流体。鉴于在许多地方水供给有限,这具有很大的意义。
本发明还提供了用于避免在压裂处理后支撑剂回流的新方法。在油田操作中,能够使用本发明的组合物将支撑剂抽吸入地层。能够使用多种含水压裂液,例如水、盐水、线性聚合物流体、交联的聚合物流体以及粘弹性表面活性剂流体。或者,在支撑阶段后能够将含有EHRC的流体介质抽吸入地层,以便与已经存在于地层中的颗粒混合。在相同的条件下与常规的淤浆相反,淤浆中的颗粒趋于粘着地移动。值得注意的是,本发明淤浆中的支撑剂颗粒间的粘着性源于疏水相互作用,而非源于如美国专利第6,047,772号所述的粘性。
在砾石填充操作中本发明的淤浆尤其有用,其中砂淤浆通常被抽吸入井筒,以防止过量的砂从地层流入井筒。本发明的方法是节约成本的并且形成的砂填充层具有较高的传导性。类似地,淤浆还能够被用于所谓的地层加固操作。在这样的操作中,含有EHRC的流体被注入地层,以增加砂粒间的粘性,从而加固地层并减少砂的产生。
在钻井操作中,能够直接向水基钻井液中添加EHRC。当EHRC被加入到水或盐水中用作钻井液时尤其有用。在钻井操作中,流体就地与切削形成淤浆并将切削运出井筒。能够将气体,例如氮气或二氧化碳在钻井过程中与淤浆混合。因为不必使用聚合物或粘土来增粘流体,有更少的地层受到损害。此外,能够容易地将切削移至地表并且流体变得易于循环使用。使用本发明的淤浆能够对包括砂岩、碳酸盐、页岩和煤层在内的不同的地层进行钻孔。
类似地,在井筒清洗操作中,含有EHRC的水或盐水能够在井筒中循环并且与废石就地形成淤浆。随后将废石作为淤浆运出井筒。在从废石中分离后,流体易于循环使用。
对于通过管线运输颗粒,能够通过将各组成部分混合,然后通过管线抽吸淤浆来制备淤浆。

Claims (42)

1.含水淤浆组合物,其包含
(a)水;
(b)粒径大小为150μm至2000μm的颗粒;以及
(c)使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物,其中所述化合物选自有机硅烷、有机硅氧烷、氟代有机硅烷以及氟代有机硅氧烷,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒。
2.含水淤浆组合物,其包含
(a)水;
(b)粒径大小为150μm至2000μm的颗粒;以及
(c)使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物,其中所述化合物是氟代有机化合物,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒,
其中所述氟代有机化合物是氟代有机硅烷或氟代有机硅氧烷。
3.如权利要求1所述的组合物,其中所述化合物是具有下列通式的有机硅烷
RnSiX(4-n)
其中R是含有1至50个碳原子的有机基团,X是卤素、烷氧基、酰氧基或胺,并且n为1至3。
4.如权利要求3所述的组合物,其中所述有机硅烷选自:
CH3SiCl3、CH3CH2SiCl3、(CH3)2SiCl2、(CH3CH2)2SiCl2、(C6H5)2SiCl2、(C6H5)SiCl3、(CH3)3SiCl、CH3HSiCl2、(CH3)2HSiCl、CH3SiBr3、(C6H5)SiBr3、(CH3)2SiBr2、(CH3CH2)2SiBr2、(C6H5)2SiBr2、(CH3)3SiBr、CH3HSiBr2、(CH3)2HSiBr、Si(OCH3)4、CH3Si(OCH3)3、CH3Si(OCH2CH3)3、CH3Si(OCH2CH2CH3)3、CH3Si[O(CH2)3CH3]3、CH3CH2Si(OCH2CH3)3、C6H5Si(OCH3)3、C6H5CH2Si(OCH3)3、C6H5Si(OCH2CH3)3、CH2=CHCH2Si(OCH3)3、(CH3)2Si(OCH3)2、(CH3)2Si(OCH2CH3)2、(CH3)2Si(OCH2CH2CH3)2、(CH3)2Si[O(CH2)3CH3]2、(CH3CH2)2Si(OCH2CH3)2、(C6H5)2Si(OCH3)2、(C6H5CH2)2Si(OCH3)2、(C6H5)2Si(OCH2CH3)2、(CH2=CHCH2)2Si(OCH3)2、(CH3)3SiOCH3、CH3HSi(OCH3)2、(CH3)2HSi(OCH3)、CH3Si(OCH2CH2CH3)3、CH2=CHCH2Si(OCH2CH2OCH3)3、(C6H5)2Si(OCH2CH2OCH3)2、(CH3)2Si(OCH2CH2OCH3)2、(CH2=CH)2Si(OCH2CH2OCH3)2、(CH2=CHCH2)2Si(OCH2CH2OCH3)2、(C6H5)2Si(OCH2CH2OCH3)2、CH3Si(CH3COO)3、甲基二乙基氯硅烷、丁基三氯硅烷、乙烯基三氯硅烷、乙烯基三乙氧基硅烷、乙烯基三(甲氧基乙氧基)硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、氨基丙基三乙氧基硅烷、二乙烯基二-2-甲氧基硅烷、乙基三丁氧基硅烷、异丁基三甲氧基硅烷、己基三甲氧基硅烷、正辛基三乙氧基硅烷、二己基二甲氧基硅烷、三氯十八烷基硅烷、3-(三甲氧基甲硅烷基)丙基二甲基十八烷基氯化铵、3-(三甲基乙氧基甲硅烷基丙基)二癸基甲基氯化铵以及三乙氧基甲硅烷基大豆丙基二甲基氯化铵。
5.如权利要求1所述的组合物,其中所述有机硅氧烷是有机甜菜碱聚硅氧烷。
6.如权利要求1所述的组合物,其中所述有机硅氧烷是有机聚硅氧烷季盐。
7.如权利要求1所述的组合物,其中所述有机硅氧烷是二甜菜碱聚硅氧烷。
8.如权利要求1所述的组合物,其中所述有机硅氧烷是聚硅氧烷二季盐。
9.如权利要求1至8中任一权利要求所述的组合物,其包括气体。
10.如权利要求9所述的组合物,其中所述气体选自空气、氮气、二氧化碳、甲烷及其混合物。
11.生产含水淤浆组合物的方法,其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合的步骤,其中所述化合物选自有机硅烷、有机硅氧烷、氟代有机硅烷以及氟代有机硅氧烷,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒。
12.生产含水淤浆组合物的方法,其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合的步骤,其中所述化合物是氟代有机化合物,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒,
其中所述氟代有机化合物是氟代有机硅烷或氟代有机硅氧烷。
13.如权利要求11所述的方法,其中所述化合物是具有下列通式的有机硅烷
RnSiX(4-n)
其中R是含有1至50个碳原子的有机基团,X是卤素、烷氧基、酰氧基或胺,并且n为1至3。
14.如权利要求11所述的方法,其中所述有机硅氧烷是具有下列通式的有机聚硅氧烷
Figure FSB00001069897400041
其中每一R1至R6以及R8至R10代表含有1至6个碳原子的有机基团,R7代表有机甜菜碱聚硅氧烷的有机甜菜碱基团,或者代表有机聚硅氧烷季盐的有机季盐基团,并且m和n分别是1至200。
15.如权利要求14所述的方法,其中每一R1至R6以及R8至R10代表甲基。
16.如权利要求14或15所述的方法,其中所述颗粒是砂。
17.如权利要求11所述的方法,其中所述有机硅氧烷是具有下列通式的有机硅氧烷
Figure FSB00001069897400051
其中R12至R17均代表含有1至6个碳原子的有机基团,R11和R18均代表二甜菜碱聚硅氧烷的有机甜菜碱基团或聚硅氧烷二季盐的有机季盐基团,并且m是1至200。
18.如权利要求17所述的方法,其中R12至R17均代表甲基基团。
19.如权利要求17或18所述的方法,其中所述颗粒是砂。
20.如权利要求11所述的方法,其包括在气体的存在下将所述淤浆组合物进行剪切的步骤。
21.如权利要求20所述的方法,其中所述气体选自空气、氮气、二氧化碳、甲烷及其混合物。
22.如权利要求11所述的方法,其包括以下步骤:将所述颗粒与含有使所述颗粒极度疏水的化合物的介质接触;从所述介质中分离所述颗粒;以及将所述疏水颗粒与水混合。
23.如权利要求22所述的方法,其包括在气体的存在下将所述淤浆组合物进行剪切的步骤。
24.如权利要求22所述的方法,其中所述气体选自空气、氮气、二氧化碳、甲烷及其混合物。
25.如权利要求22所述的方法,其中所述有机硅氧烷是具有下列通式的有机聚硅氧烷
Figure FSB00001069897400061
其中每一R1至R6以及R8至R10代表含有1至6个碳原子的有机基团,R7代表有机甜菜碱聚硅氧烷的有机甜菜碱基团,或者代表有机聚硅氧烷季盐的有机季盐基团,并且m和n分别是1至200。
26.如权利要求25所述的方法,其中每一R1至R6以及R8至R10代表甲基。
27.如权利要求25或26所述的方法,其中所述颗粒是砂。
28.如权利要求22所述的方法,其中所述有机硅氧烷是具有下列通式的有机硅氧烷
Figure FSB00001069897400062
其中R12至R17均代表含有1至6个碳原子的有机基团,R11和R18基团代表二甜菜碱聚硅氧烷的有机甜菜碱基团或聚硅氧烷二季盐的有机季盐基团,并且m是1至200。
29.如权利要求28所述的方法,其中R12至R17均代表甲基基团。
30.如权利要求28或29所述的方法,其中所述颗粒是砂。
31.生产在不同地层中用于油井服务操作的含水淤浆组合物的方法,其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合的步骤,其中所述化合物选自有机硅烷、有机硅氧烷、氟代有机硅烷以及氟代有机硅氧烷,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒。
32.如权利要求31所述的方法,其中所述油井服务操作选自水压压裂、钻井、完井以及砂填充操作。
33.如权利要求31所述的方法,其包括在气体的存在下将所述淤浆组合物进行剪切的步骤。
34.如权利要求31所述的方法,其中形成的流体能够在从所述颗粒中分离后循环使用。
35.如权利要求31所述的方法,其中所述有机硅氧烷是具有下列通式的有机聚硅氧烷
Figure FSB00001069897400081
其中每一R1至R6以及R8至R10代表含有1至6个碳原子的有机基团,R7代表有机甜菜碱聚硅氧烷的有机甜菜碱基团,或者代表有机聚硅氧烷季盐的有机季盐基团,并且m和n分别是1至200。
36.如权利要求35所述的方法,其中每一R1至R6以及R8至R10代表甲基。
37.如权利要求31所述的方法,其中所述有机硅氧烷是具有下列通式的有机硅氧烷
Figure FSB00001069897400082
其中R12至R17均代表含有1至6个碳原子的有机基团,R11和R18均代表二甜菜碱聚硅氧烷的有机甜菜碱基团或聚硅氧烷二季盐的有机季盐基团,并且m是1至200。
38.如权利要求37所述的方法,其中R12至R17均代表甲基基团。
39.生产用于通过管线运输颗粒的含水淤浆组合物的方法,其包括以下步骤:其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合,以及通过所述管线抽吸所述淤浆,其中所述化合物选自有机硅烷、有机硅氧烷、氟代有机硅烷以及氟代有机硅氧烷,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒。
40.如权利要求39所述的方法,其中所述颗粒是砂。
41.生产在不同地层中用于油井服务操作的含水淤浆组合物的方法,其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合的步骤,其中所述化合物是氟代有机化合物,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒,
其中所述氟代有机化合物是氟代有机硅烷或氟代有机硅氧烷。
42.生产用于通过管线运输颗粒的含水淤浆组合物的方法,其包括以下步骤:其包括将水、粒径大小为150μm至2000μm的颗粒与使所述颗粒表面极度疏水从而水在所述颗粒基质的表面上的接触角大于90°的化合物混合,以及通过所述管线抽吸所述淤浆,其中所述化合物是氟代有机硅烷或氟代有机硅氧烷,
其中所述颗粒选自砂、树脂包衣的砂、陶瓷、碳酸盐、铝土矿以及页岩颗粒。
CN2006800149626A 2005-05-02 2006-05-02 通过颗粒疏水化制造可运输的含水淤浆的方法 Active CN101171306B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US67631605P 2005-05-02 2005-05-02
US60/676,316 2005-05-02
US71959705P 2005-09-23 2005-09-23
US60/719,597 2005-09-23
PCT/CA2006/000705 WO2006116868A1 (en) 2005-05-02 2006-05-02 Method for making transportable aqueous slurries by particulate hydrophobicization

Publications (2)

Publication Number Publication Date
CN101171306A CN101171306A (zh) 2008-04-30
CN101171306B true CN101171306B (zh) 2013-07-31

Family

ID=37307566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800149626A Active CN101171306B (zh) 2005-05-02 2006-05-02 通过颗粒疏水化制造可运输的含水淤浆的方法

Country Status (10)

Country Link
US (1) US7723274B2 (zh)
CN (1) CN101171306B (zh)
AU (1) AU2006243729B2 (zh)
BR (1) BRPI0610614A2 (zh)
CA (2) CA2943473C (zh)
EA (1) EA200702129A1 (zh)
GB (3) GB2465914B (zh)
MX (1) MX2007013682A (zh)
NO (1) NO20076188L (zh)
WO (1) WO2006116868A1 (zh)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US9714371B2 (en) 2005-05-02 2017-07-25 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
EA200702129A1 (ru) 2005-05-02 2008-04-28 Трайкэн Велл Сервис Лтд. Способ получения транспортабельных водных суспензий путем увеличения гидрофобности твердых частиц
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
BRPI0617261A2 (pt) * 2005-09-23 2011-07-19 Trican Well Service Ltd composições lodosas e métodos para produzir as mesmas
US20070079965A1 (en) * 2005-10-06 2007-04-12 Halliburton Energy Services, Inc. Methods for enhancing aqueous fluid recovery form subterranean formations
US8946130B2 (en) * 2005-12-09 2015-02-03 Clearwater International Llc Methods for increase gas production and load recovery
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7543646B2 (en) * 2006-07-31 2009-06-09 Baker Hughes Incorporated Suspension of concentrated particulate additives containing oil for fracturing and other fluids
WO2008070704A1 (en) 2006-12-07 2008-06-12 3M Innovative Properties Company Particles comprising a fluorinated siloxane and methods of making and using the same
US8302691B2 (en) 2007-01-19 2012-11-06 Halliburton Energy Services, Inc. Methods for increasing gas production from a subterranean formation
EP2109650B1 (en) * 2007-01-19 2012-06-13 Halliburton Energy Services, Inc. Compositions for increasing gas production from a subterranean formation
US8053395B2 (en) 2007-01-19 2011-11-08 Halliburton Energy Services, Inc. Compositions for increasing gas production from a subterranean formation
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
RU2009138310A (ru) * 2007-03-23 2011-04-27 Борд Оф Риджентс, Зе Юниверсити Оф Техас Систем (Us) Способ обработки формации растворителем
EP2134803A4 (en) * 2007-03-23 2011-08-03 Univ Texas METHOD AND SYSTEM FOR TREATING HYDROCARBON FROST INFORMATION
CN101835872B (zh) * 2007-03-23 2014-06-18 德克萨斯州立大学董事会 处理含烃地层的方法
CN101827913A (zh) * 2007-03-23 2010-09-08 德克萨斯州立大学董事会 处理压裂的地层的方法
US8138127B2 (en) * 2007-03-23 2012-03-20 Board Of Regents, The University Of Texas Compositions and methods for treating a water blocked well using a nonionic fluorinated surfactant
CA2585065A1 (en) * 2007-04-13 2008-10-13 Trican Well Service Ltd. Aqueous particulate slurry compositions and methods of making same
WO2008131540A1 (en) 2007-04-26 2008-11-06 Trican Well Service Ltd Control of particulate entrainment by fluids
MX2010000682A (es) * 2007-07-18 2010-03-30 Trican Well Service Ltd Metodos para elaborar una composicion de la suspension espesa de agente sustentante, y composicion obtenida.
US8727001B2 (en) 2007-09-25 2014-05-20 Halliburton Energy Services, Inc. Methods and compositions relating to minimizing particulate migration over long intervals
US8598094B2 (en) 2007-11-30 2013-12-03 Halliburton Energy Services, Inc. Methods and compostions for preventing scale and diageneous reactions in subterranean formations
WO2009073484A2 (en) * 2007-11-30 2009-06-11 Board Of Regents, The University Of Texas System Methods for improving the productivity of oil producing wells
US20100276142A1 (en) * 2007-12-05 2010-11-04 Skildum John D Method of treating proppants and fractures in-situ with fluorinated silane
EP2240552B1 (en) * 2007-12-21 2012-02-29 3M Innovative Properties Company Methods for treating hydrocarbon-bearing formations with fluorinated polymer compositions
US8418759B2 (en) * 2007-12-21 2013-04-16 3M Innovative Properties Company Fluorinated polymer compositions and methods for treating hydrocarbon-bearing formations using the same
US8696695B2 (en) * 2009-04-28 2014-04-15 Avinger, Inc. Guidewire positioning catheter
WO2009137285A1 (en) 2008-05-05 2009-11-12 3M Innovative Properties Company Methods for treating hydrocarbon-bearing formations having brine
JP2011528725A (ja) * 2008-07-18 2011-11-24 スリーエム イノベイティブ プロパティズ カンパニー カチオン性フッ素化ポリマー組成物、及びそれを用いて炭化水素含有地層を処理する方法
US8794322B2 (en) 2008-10-10 2014-08-05 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up
US8881811B2 (en) 2008-10-10 2014-11-11 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up and methods of use thereof
US8360149B2 (en) 2008-12-16 2013-01-29 Schlumberger Technology Corporation Surface modification for cross-linking or breaking interactions with injected fluid
WO2010080473A1 (en) 2008-12-18 2010-07-15 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
WO2010080353A2 (en) 2008-12-18 2010-07-15 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated phosphate and phosphonate compositions
US7921911B2 (en) * 2008-12-30 2011-04-12 Schlumberger Technology Corporation Surface-modifying agents for wettability modification
US8372789B2 (en) 2009-01-16 2013-02-12 Halliburton Energy Services, Inc. Methods of designing treatment fluids based on solid-fluid interactions
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
CN101838116B (zh) * 2009-03-19 2015-02-11 北京仁创科技集团有限公司 疏水颗粒、其制备方法、防水透气结构及其形成方法
EA201200409A1 (ru) * 2009-09-03 2012-08-30 Трайкэн Велл Сервис Лтд. Составы и способы для обслуживания скважин
CA2690768A1 (en) * 2010-01-21 2011-07-21 Trican Well Services Ltd. Compositions and methods for enhancing fluid recovery for hydraulic fracturing treatments
US8714248B2 (en) 2010-08-25 2014-05-06 Schlumberger Technology Corporation Method of gravel packing
US8459353B2 (en) * 2010-08-25 2013-06-11 Schlumberger Technology Corporation Delivery of particulate material below ground
US8448706B2 (en) 2010-08-25 2013-05-28 Schlumberger Technology Corporation Delivery of particulate material below ground
US9234415B2 (en) * 2010-08-25 2016-01-12 Schlumberger Technology Corporation Delivery of particulate material below ground
BR112013015611A2 (pt) 2010-12-20 2018-05-15 3M Innovative Properties Co métodos para tratamento de formações contendo hidrocarboneto e carbonato com óxidos de amina fluorado.
BR112013015923A2 (pt) 2010-12-21 2018-06-05 3M Innovative Properties Co método para tratamento de formações contendo hidrocarbonetos com amina fluorada.
WO2012125219A2 (en) 2011-01-13 2012-09-20 3M Innovative Properties Company Methods for treating siliciclastic hydrocarbon-bearing formations with fluorinated amine oxides
AR088063A1 (es) 2011-09-30 2014-05-07 Momentive Specialty Chem Inc Agentes apuntalantes y metodos para regular su humectabilidad superficial
US20130318863A1 (en) * 2012-06-05 2013-12-05 Jo-Shu Chang Core-shell magnetic composite and application on producing biodiesel using the same
WO2014078825A1 (en) 2012-11-19 2014-05-22 3M Innovative Properties Company Composition including a fluorinated polymer and a non-fluorinated polymer and methods of making and using the same
US10106724B2 (en) 2012-11-19 2018-10-23 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ionic polymers
CN103849370B (zh) * 2012-11-30 2016-04-06 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
US20140323364A1 (en) * 2013-03-15 2014-10-30 Melior Innovations, Inc. High Strength Low Density Synthetic Proppants for Hydraulically Fracturing and Recovering Hydrocarbons
WO2015088471A1 (en) * 2013-12-09 2015-06-18 Halliburton Energy Services, Inc. Acidizing with silane treatment to control fines migration in a well
CA2889374A1 (en) 2014-04-25 2015-10-25 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
CA2856942A1 (en) 2014-07-16 2016-01-16 Trican Well Service Ltd. Aqueous slurry for particulates transportation
US10017688B1 (en) 2014-07-25 2018-07-10 Hexion Inc. Resin coated proppants for water-reducing application
JP6645155B2 (ja) * 2014-12-08 2020-02-12 三菱ケミカル株式会社 毛髪化粧料用水系ポリマーエマルジョン、毛髪化粧料組成物
WO2016099320A1 (ru) * 2014-12-19 2016-06-23 Шлюмберже Канада Лимитед Способ получения гидрофобных агломератов проппанта и их применение
CA2880646A1 (en) 2015-01-30 2016-07-30 Trican Well Service Ltd. Composition and method of using polymerizable natural oils to treat proppants
WO2017181289A1 (en) * 2016-04-22 2017-10-26 Trican Well Service Ltd. Controlled release of chemicals in oilfield operations
CN106701051B (zh) * 2016-12-23 2019-12-03 卫辉市化工有限公司 一种固井用油基泥浆冲洗剂及冲洗液的制备方法
US11186762B2 (en) * 2017-08-31 2021-11-30 Halliburton Energy Services, Inc. Wettability modification for enhanced oil recovery
WO2019104018A1 (en) 2017-11-21 2019-05-31 3M Innovative Properties Company Particles, compositions including particles, and methods for making and using the same
AU2018274907A1 (en) * 2017-12-19 2019-07-04 Dow Global Technologies Llc Hydrophobic pigment modification
CN112483902B (zh) * 2020-12-09 2023-05-09 鞍钢集团矿业有限公司 一种矿浆输送用减阻剂及其制法与应用
CN112460488B (zh) * 2020-12-09 2023-05-09 鞍钢集团矿业有限公司 一种用于矿浆输送的复合药剂及其制法与应用
CN113150767B (zh) * 2021-03-29 2023-04-18 中国石油大学(华东) 一种用于co2压裂液体系的支撑剂及其改性方法和应用
CN115595129B (zh) * 2022-10-10 2023-07-14 南方海洋科学与工程广东省实验室(湛江) 负载金属氧化物的粘土流型调节剂制备方法、粘土流型调节剂及水基钻井液

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA756203B (en) 1974-10-11 1976-09-29 Dresser Ind Silane coated silicate minerals and method for preparing same
US4046795A (en) 1975-11-10 1977-09-06 Sws Silicones Corporation Process for preparing thiofunctional polysiloxane polymers
US4074536A (en) * 1976-08-02 1978-02-21 Halliburton Company Oil well consolidation treating
US4183814A (en) 1978-01-03 1980-01-15 Union Carbide Corporation Asbestos composition having organo-silane coating
US4231428A (en) 1978-12-04 1980-11-04 Phillips Petroleum Company Well treatment method
JPS58146434A (ja) 1982-02-26 1983-09-01 Neos Co Ltd 水スラリ−炭用添加剤
DE3208598A1 (de) 1982-03-10 1983-09-22 Degussa Ag, 6000 Frankfurt Verfahren zur herstellung von mit organosilanen oberflaechenmodifizierten zeolithen
DE3323881C2 (de) 1983-07-02 1985-06-13 Th. Goldschmidt Ag, 4300 Essen Organopolysiloxane mit Buntesalzgruppen, deren Herstellung und Verwendung zur Oberflächenbehandlung von anorganischen oder organischen Materialien
US4512405A (en) * 1984-02-29 1985-04-23 Hughes Tool Company Pneumatic transfer of solids into wells
DE3417912C1 (de) 1984-05-15 1985-07-25 Goldschmidt Ag Th Betaingruppen enthaltende Siloxane,deren Herstellung und Verwendung in kosmetischen Zubereitungen
US4564456A (en) 1984-06-01 1986-01-14 Dow Corning Corporation Method of treating water to inhibit corrosion and diminish mineral deposition
US4689085A (en) 1986-06-30 1987-08-25 Dow Corning Corporation Coupling agent compositions
DE3719086C1 (de) 1987-06-06 1988-10-27 Goldschmidt Ag Th Diquartaere Polysiloxane,deren Herstellung und Verwendung in kosmetischen Zubereitungen
US4933327A (en) 1988-04-18 1990-06-12 Dow Corning Corporation Organosilicon quaternary ammonium antimicrobial compounds
US4898957A (en) 1988-04-18 1990-02-06 Dow Corning Corporation Organosilicon diamine antimicrobial compound
US5064613A (en) 1989-11-03 1991-11-12 Dow Corning Corporation Solid antimicrobial
US4960845A (en) 1989-11-08 1990-10-02 Siltech Inc. Sulfated silicone polymers
US5149765A (en) 1990-06-27 1992-09-22 Siltech Inc. Terminal phosphated silicone polymers
US5164522A (en) 1990-06-29 1992-11-17 Karlshamns Ab Cationic silicones
US5166297A (en) 1991-03-25 1992-11-24 Siltech Inc. Silicone ester quaternary compounds
US5098979A (en) 1991-03-25 1992-03-24 Siltech Inc. Novel silicone quaternary compounds
US5209775A (en) 1992-01-23 1993-05-11 Dow Corning Corporation Water repellents containing organosilicon compounds
US5240760A (en) 1992-02-07 1993-08-31 Minnesota Mining And Manufacturing Company Polysiloxane treated roofing granules
JPH0723211B2 (ja) * 1992-03-09 1995-03-15 豊順鉱業株式会社 変性ベントナイト
FR2695558B1 (fr) * 1992-09-11 1994-10-21 Oreal Composition cosmétique contenant des particules solides revêtues avec un polymère amphotère.
US5306434A (en) 1992-10-20 1994-04-26 Alberto-Culver Company Hair care composition containing dispersed silicone oil
US5256805A (en) 1992-11-25 1993-10-26 Siltech Inc. Silicone amido amine salts
US5235082A (en) 1993-01-08 1993-08-10 Dow Corning Corporation Cationic diquaternary ammonium salt functional silicones
US5824226A (en) * 1994-12-21 1998-10-20 Loyola University Of Chicago Silane-modified clay
US6047772A (en) 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5653794A (en) * 1995-12-01 1997-08-05 Scm Chemicals, Inc. Silane treated inorganic pigments
DE69706661T2 (de) 1996-04-02 2002-02-07 S.C. Johnson & Son, Inc. Verfahren zur hydrophobierung einer substratoberfläche mit organofunktionellen silanen niedriger konzentration
DE69720122T2 (de) 1996-08-16 2003-10-16 Nippon Telegraph And Telephone Corp., Tokio/Tokyo Wasserabweisende Beschichtung, Verfahren zu ihrer Herstellung, sowie deren Verwendung in Beschichtungen und für beschichtete Gegenstände
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US20050187112A1 (en) * 1997-02-12 2005-08-25 Kb International, Llc Composition and method for a dual-function soil-grouting excavating or boring fluid
US5908708A (en) 1997-03-05 1999-06-01 Engelhard Corporation Aqueous dispersion of a particulate solid having a hydrophobic outer surface and films produced thereby
US6132638A (en) 1997-06-04 2000-10-17 Colgate-Palmolive Co. Dust control composition
GB9804725D0 (en) 1998-03-05 1998-04-29 Unilever Plc Shampoo compositions
JP3850612B2 (ja) 1999-12-28 2006-11-29 花王株式会社 固形粉末化粧料
CA2329600A1 (en) 2000-12-22 2002-06-22 Kewei Zhang Fracturing fluid
CA2408052A1 (en) * 2000-05-03 2001-11-08 Trican Well Service Ltd. Fracturing fluid
US6403163B1 (en) 2000-06-27 2002-06-11 Chemrex, Inc. Method of treating surfaces with organosilicon water repellent compositions
US6323268B1 (en) 2000-06-27 2001-11-27 Dow Corning Corporation Organosilicon water repellent compositions
WO2002022759A1 (en) * 2000-09-11 2002-03-21 Thuslick, Inc. Mud system and method
DE10104033A1 (de) 2001-01-31 2002-08-14 Wella Ag Haarpflegemittel mit diquaternären Silikonpolymeren
US6482969B1 (en) 2001-10-24 2002-11-19 Dow Corning Corporation Silicon based quaternary ammonium functional compositions and methods for making them
US20040023818A1 (en) * 2002-08-05 2004-02-05 Nguyen Philip D. Method and product for enhancing the clean-up of hydrocarbon-producing well
US6830811B2 (en) 2002-10-02 2004-12-14 Dow Corning Corporation Method of preparing hydrophobic partially aggregated colloidal silica
WO2005100007A2 (en) * 2004-04-12 2005-10-27 Carbo Ceramics, Inc. Coating and/or treating hydraulic fracturing proppants to improve wettability, proppant lubrication, and/or to reduce damage by fracturing fluids and reservoir fluids
EA200702129A1 (ru) 2005-05-02 2008-04-28 Трайкэн Велл Сервис Лтд. Способ получения транспортабельных водных суспензий путем увеличения гидрофобности твердых частиц
BRPI0617261A2 (pt) 2005-09-23 2011-07-19 Trican Well Service Ltd composições lodosas e métodos para produzir as mesmas

Also Published As

Publication number Publication date
CN101171306A (zh) 2008-04-30
AU2006243729B2 (en) 2011-06-16
NO20076188L (no) 2007-11-30
CA2545563C (en) 2016-10-25
GB2465914A (en) 2010-06-09
BRPI0610614A2 (pt) 2010-07-13
GB2465915B (en) 2010-08-25
EA200702129A1 (ru) 2008-04-28
MX2007013682A (es) 2008-04-09
CA2943473A1 (en) 2006-11-02
US20070015669A1 (en) 2007-01-18
AU2006243729A1 (en) 2006-11-09
GB201004431D0 (en) 2010-05-05
CA2545563A1 (en) 2006-11-02
WO2006116868A1 (en) 2006-11-09
GB2465915A (en) 2010-06-09
US7723274B2 (en) 2010-05-25
GB2465914B (en) 2010-08-25
CA2943473C (en) 2019-06-25
WO2006116868A8 (en) 2009-04-02
GB2440479A (en) 2008-01-30
GB0722236D0 (en) 2007-12-27
GB2440479B (en) 2010-08-11
GB201004430D0 (en) 2010-05-05

Similar Documents

Publication Publication Date Title
CN101171306B (zh) 通过颗粒疏水化制造可运输的含水淤浆的方法
CN101268150B (zh) 浆液组合物及其制备方法
US9976075B2 (en) Method for making particulate slurries and particulate slurry compositions
US10138416B2 (en) Control of particulate entrainment by fluids
US10202542B2 (en) Aqueous slurry for particulates transportation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190703

Address after: alberta canada

Patentee after: Intel-K Chemical Co., Ltd.

Address before: alberta canada

Patentee before: Trican Well Service Ltd