CN101167326B - 极化调制传输电路和通信设备 - Google Patents

极化调制传输电路和通信设备 Download PDF

Info

Publication number
CN101167326B
CN101167326B CN2006800141412A CN200680014141A CN101167326B CN 101167326 B CN101167326 B CN 101167326B CN 2006800141412 A CN2006800141412 A CN 2006800141412A CN 200680014141 A CN200680014141 A CN 200680014141A CN 101167326 B CN101167326 B CN 101167326B
Authority
CN
China
Prior art keywords
signal
parts
pam
amplitude modulation
transmission circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800141412A
Other languages
English (en)
Other versions
CN101167326A (zh
Inventor
松浦彻
足立寿史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101167326A publication Critical patent/CN101167326A/zh
Application granted granted Critical
Publication of CN101167326B publication Critical patent/CN101167326B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

提供了一种用于在宽范围的输出功率上低失真且高效率地输出传输信号的传输电路。信号产生部件(11)产生幅度信号和相位信号。角度调制部件(12)对所述相位信号执行角度调制并输出角度调制信号。调节器(14)经由可变增益放大部件(18)接收所述幅度信号并将根据所述幅度信号的大小控制的电压提供到幅度调制部件(15)。所述幅度调制部件(15)对所述角度调制信号执行幅度调制并将调制后的信号输出到可变衰减部件(16)。当功率信息的值小于预定阈值时,控制部件(19)增大所述可变增益放大部件(18)的增益和所述可变衰减部件(16)的衰减。

Description

极化调制传输电路和通信设备
技术领域
本发明涉及一种可用于诸如移动电话或无线LAN设备的通信设备的传输电路,更具体而言,涉及一种用于在宽范围的输出功率上低失真且高效地输出传输信号的传输电路以及使用这种传输电路的通信设备。
背景技术
通常,用于放大具有可变包络的调制信号的射频功率放大器使用A类或AB类线性放大器,以对该可变包络进行线性放大。这种线性放大器提供了极好的线性度,但是总是伴随有DC偏置分量地消耗功率,从而具有比C类到E类的非线性放大器更低的功率效率。因此,当应用于使用电池作为电源的移动通信设备时,这种射频功率放大器存在由于高功耗而只能在很短时间内可用的问题。当应用于包含多个高功率传输电路的无线系统的基站时,这种射频功率放大器存在使得设备变大并且增加功率损耗的问题。
针对这些问题,已经提出了一种使用极化调制方法的传输电路作为可高效操作的传输电路。图24是示出了使用极化调制方法的常规传输电路500的结构的方框图。如图24中所示,常规传输电路500包括信号产生部件501、角度调制部件502、电源端子503、调节器504、幅度调制部件505以及输出端子506。
信号产生部件501产生幅度信号和相位信号。幅度信号被输入到调节器504。从电源端子503向调节器504提供DC电压。调节器504向幅度调制部件505提供与所输入的幅度信号相对应的电压。相位信号被输入到角度调制部件502。角度调制部件502对所输入的相位信号执行角度调制,并且输出角度调制信号。从角度调制部件502输出的角度调制信号被输入到幅度调制部件505。幅度调制部件505利用从调节器504提供的电压对所述角度调制信号执行幅度调制,并且输出所得到的信号作为调制信号。从输出端子506输出该调制信号作为传输信号。按照这种方式,传输电路500能够高效地输出传输信号。
然而,从使用极化调制方法的传输电路输出的传输信号可能会由于幅度调制部件505等的非线性特性而偶尔失真。图25示出了来自幅度调制部件505的输出功率相对于来自调节器504的输入电压的特性。从图25可以清晰地看出,幅度调制部件505具有非线性区域和线性区域。为了获得小的输出功率,幅度调制部件505需要在非线性区域操作。当幅度调制部件505在这样的非线性区域操作时,传输信号不希望地发生了失真。
已经公开了一种用于在使用极化调制方法的传输电路中对幅度调制部件505等的非线性性进行补偿的技术(例如,参见USP6366177)。使用这种技术的一种常规传输电路例如是图26中所示的传输电路600。图26是示出传统传输电路600的示例性结构的方框图。参考图26,预失真部件601创建预失真表,用于根据传输信号对幅度调制部件505的非线性性进行补偿。然后,基于所述预失真部件601创建的预失真表,幅度控制部件602和相位控制部件603分别对幅度信号和相位信号进行预失真,并将所得到的信号输入到调节器504和幅度调制部件505。按照这种方式,传输电路600能够对幅度调制部件505等的非线性性进行补偿。
对于使用极化调制方法的传输电路,已经提出了一种对幅度信号的小幅度分量进行限制从而抑制幅度调制部件505在非线性区域操作的技术(例如,参见日本特开专利公开No 2005-45782)。一种使用这种技术的常规传输电路例如是图27中所示的传输电路700。图27是示出了常规传输电路700的示例性结构的方框图。参考图27,当幅度信号的大小变得小于预定阈值时,幅度限制部件701对幅度信号的波形进行成形,使得幅度信号的这种大小较小的部分的大小升高到预定大小。按照这种方式,即使当幅度信号的大小小于该预定阈值时,传输电路700也能够在线性区域操作幅度调制部件505。
利用图26中所示的传输电路600,很难补偿幅度调制部件505的非线性,因为非线性很容易根据温度而变化。即使当输入到幅度调制部件505的功率足够低,也不能获得其功率等于或低于预定水平的输出信号。因此,传输电路600具有如下问题,即,当幅度调制部件505的温度变化时或者当要输出的功率很低时,不能补偿幅度调制部件505的非线性。
利用图27中所示的传输电路700,当幅度信号的大小变得小于预定阈值时,对幅度信号的小幅度分量进行限制。传输电路700具有如下问题,即,传输信号由于这种限制而失真。
因此,本发明的目的是提供一种用于在宽范围的输出功率上低失真且高效率地输出传输信号的传输电路,以及使用这种传输电路的通信设备。
发明内容
本发明致力于用于基于输入的数据产生传输信号并且输出所述传输信号的传输电路。为了获得上述目的,根据本发明的传输电路包括:信号产生部件,用于基于通过对所述数据执行信号处理而获得的幅度分量和相位分量,产生幅度信号和相位信号;可变增益放大部件,用于利用受控增益对所述幅度信号进行放大或者衰减;调节器,用于输出与从所述可变增益放大部件输出的所述幅度信号的大小相一致的信号;角度调制部件,用于对所述相位信号执行角度调制并将所得到的信号作为角度调制信号输出;幅度调制部件,用于利用从所述调节器输出的信号将所述角度调制信号幅度调制为调制信号,利用受控衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出;以及控制部件,用于接收表示要输出的传输信号的功率水平的功率信息,并基于所述功率信息控制要在所述可变增益放大部件中设置的增益以及要在所述幅度调制部件中设置的衰减。所述控制部件将所述功率信息的值与至少一个预定阈值进行比较,并基于比较结果确定要在所述可变增益放大部件中设置的增益以及要在所述幅度调制部件中设置的衰减。
所述幅度调制部件包括:第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;以及可变衰减部件,用于利用所述受控衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出。当所述功率信息的值小于所述至少一个预定阈值时,所述控制部件在所述可变增益放大部件中设置预定增益并在所述可变衰减部件中设置预定衰减。
优选地,所述传输电路还包括查找表,在所述查找表中,与所述功率信息的值相对应地登记能够在所述可变衰减部件中设置的衰减以及能够在所述可变增益放大部件中设置的增益。在这种情况下,所述能够在所述可变衰减部件中设置的衰减和所述能够在所述可变增益放大部件中设置的增益互相成正比;并且所述控制部件基于所述查找表确定在所述可变衰减部件中设置的所述衰减以及在所述可变增益放大部件中设置的所述增益。
优选地,所述可变增益放大部件包括:至少一个放大器,用于利用特定增益对输入信号进行放大,并输出所得到的信号;以及多个开关,用于切换所述至少一个放大器的连接。所述可变衰减部件包括:至少一个衰减器,用于利用特定衰减对输入信号进行衰减,并输出所得到的信号;以及多个开关,用于切换所述至少一个衰减器的连接。在这种情况下,所述控制部件将所述功率信息的值与所述至少一个阈值进行比较,并基于比较结果切换所述可变增益放大部件中的所述多个开关的连接以及所述可变衰减部件中的所述多个开关的连接。
优选地,所述幅度调制部件包括:第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;第二幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;以及多个开关,用于切换所述调节器和所述第一幅度调制部件或所述第二幅度调制部件之间的连接。注意,所述第二幅度调制部件的最大输出功率比所述第一幅度调制部件更大。在这种情况下,当所述功率信息的值小于预定阈值时,所述控制部件增大所述可变增益放大部件的增益并切换所述多个开关的连接,使得所述第一幅度调制部件得以利用;并且当所述功率信息的值等于或大于所述预定阈值时,所述控制部件减小所述可变增益放大部件的增益并切换所述多个开关的连接,使得所述第二幅度调制部件得以利用。
按照这种方式,所述传输电路能够根据所述功率信息的值选择更有效的幅度调制部件,从而能够降低整个传输电路的功耗。
所述幅度调制部件可以包括:第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;第二幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;开关,用于切换所述调节器和所述第一幅度调制部件之间的连接;分离(dividing)部件,用于为所述第一幅度调制部件和所述第二幅度调制部件分离所述角度调制信号;以及组合部件,用于将从所述第一幅度调制部件输出的调制信号和从所述第二幅度调制部件输出的调制信号进行组合,并将所得到的信号作为传输信号输出。注意,所述第一幅度调制部件和所述幅度调制部件的最大输出功率相等。在这种情况下,当所述功率信息的值小于预定阈值时,所述控制部件增大所述可变增益放大部件的增益并切换所述开关的连接,使得所述调节器和所述第一幅度调制部件互相断开;并且当所述功率信息的值等于或大于所述预定阈值时,所述控制部件减小所述可变增益放大部件的增益并切换所述开关的连接,使得所述调节器和所述第一幅度调制部件互相连接。
按照这种方式,利用所述传输电路,即使输出很小时,所述幅度调制部件的输出也不会变得太小。因此,所述传输电路能够在宽的输出功率范围上低失真且高效率地输出传输信号。
所述传输电路还可以包括功率重用部件,用于将输入信号转换为功率并将所述功率提供给所述调节器。在这种情况下,所述分离部件是第一定向耦合器,用于为所述第一幅度调制部件和所述第二幅度调制部件相等地分离所述角度调制信号。所述组合部件是第二定向耦合器,用于以组合形式或以分离形式输出从所述第一幅度调制部件和所述第二幅度调制部件输出的所述调制信号。当所述第一幅度调制部件和所述第二幅度调制部件都操作时,所述第二定向耦合器对从所述第一幅度调制部件和所述第二幅度调制部件输出的所述调制信号进行组合,并将所得到的信号作为传输信号输出;并且当只有所述第二幅度调制部件操作时,所述第二定向耦合器相等地分离从所述第二幅度调制部件输出的所述调制信号,并将所得到的一个信号分量作为传输信号输出,将所得到的另一个信号分量输出到所述功率重用部件。
优选地,所述调节器是串联调节器。因此,所述传输电路能够输出宽范围的调制信号。
所述调节器可以是开关调节器。因此,所述传输电路可以高效操作。
所述调节器可以包括开关调节器和串联调节器。在这种情况下,所述开关调节器接收所述功率信息并将根据所述功率信息控制的电压提供给所述串联调节器。所述串联调节器使用从所述开关调节器提供的电压向所述幅度调制部件提供根据所述幅度信号的大小控制的电压,其中所述幅度信号是从所述可变增益放大部件输出的。因此,所述传输电路能够降低串联调节器处的损耗,从而进一步降低功耗。
根据本发明的传输电路可以包括:信号产生部件,用于基于通过对所述数据执行信号处理而获取的幅度分量和相位分量产生幅度信号和角度调制信号;可变增益放大部件,用于利用受控增益放大或衰减所述幅度信号;调节器,用于输出与从所述可变增益放大部件输出的所述幅度信号的大小相一致的信号;幅度调制部件,用于利用从所述调节器输出的信号将所述角度调制信号幅度调制为调制信号,利用受控衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出;以及控制部件,用于接收表示要输出的传输信号的功率水平的功率信息,并且基于所述功率信息控制要在所述可变增益放大部件中设置的增益以及要在所述幅度调制部件中设置的衰减。
在这种情况下,所述信号产生部件包括:正交信号产生部件,用于通过对所述数据执行信号处理来产生包括同相信号和正交相位信号的基带信号,所述同相信号和所述正交相位信号是正交数据;向量调制部件,用于对所述同相信号和所述正交相位信号执行向量调制;包络检测部件,用于检测从所述向量调制部件输出的信号的包络分量,并将所检测到的包络分量作为所述幅度信号输出;以及限幅器,用于将从所述向量调制部件输出的信号的包络分量限制到预定大小,并将所述大小受限的信号作为所述角度调制信号输出。所述控制部件将所述功率信息的值与至少一个预定阈值进行比较,并基于比较结果确定要在所述可变增益放大部件中设置的增益和要在所述幅度调制部件中设置的衰减。
本发明还致力于一种包括上述传输电路的通信设备。所述通信设备包括:传输电路,用于产生传输信号;以及天线,用于输出所述传输电路所产生的所述传输信号。所述传输电路还可以包括:接收电路,用于处理经由所述天线接收的接收信号;以及天线双工器,用于将所述传输电路产生的所述传输信号输出到所述天线,并将经由所述天线接收的所述接收信号输出到所述接收电路。
如上所述,根据本发明的传输电路即使在功率信息的值很小时也能够通过利用可变增益放大部件来放大所述幅度信号以及利用所述可变衰减部件来衰减所述调制信号来增大所述幅度调制部件的输出功率。因此,所述传输电路能够防止所述放大调制部件由于温度变化而导致特性恶化,并且允许所述幅度调制部件即使在输出很小时也能够在线性区域操作。结果是,所述传输电路能够在宽范围的输出功率上低失真且高效率地输出传输信号。
根据本发明的通信设备能够通过使用上述传输电路在宽范围的输出功率上低失真且高效率地工作。
附图说明
图1A是示出了根据本发明的第一实施例的传输电路1的示例性结构的方框图;
图1B是示出了根据本发明的第一实施例的传输电路1b的示例性结构的方框图;
图2A示出了查找表20的设置的实例;
图2B是示出了可变衰减部件16的示例性结构的方框图;
图3A示出了当功率信息P的值变化时可变衰减部件16中设置的衰减的实例;
图3B示出了当功率信息P的值变化时可变增益放大部件18中设置的增益的实例;
图3C示出了当功率信息P的值变化时幅度调制部件15的输出功率的变化;
图4是示出了串联调节器14a的示例性结构的方框图;
图5是示出了开关调节器14b的示例性结构的方框图;
图6是示出了电流驱动型调节器14c的示例性结构的方框图;
图7是示出了幅度调制部件15a的示例性结构的方框图;
图8是示出了幅度调制部件15b的示例性结构的方框图;
图9是示出了根据本发明的第二实施例的传输电路2的示例性结构的方框图;
图10是示出了可变衰减部件26的示例性结构的方框图;
图11是示出了可变增益放大部件28的示例性结构的方框图;
图12是示出了根据本发明的第三实施例的传输电路3的示例性结构的方框图;
图13是示出了能够利用三态值来切换衰减的可变衰减部件26b的示例性结构的方框图;
图14是示出了能够利用三态值来切换增益的可变增益幅度部件28b的示例性结构的方框图;
图15A示出了当功率信息P的值变化时可变衰减部件26b中设置的衰减的实例;
图15B示出了当功率信息P的值变化时可变增益放大部件28b中设置的衰减的实例;
图15C示出了当功率信息P的值变化时幅度调制部件15的输出功率的变化;
图16是示出了根据本发明的第四实施例的传输电路4的示例性结构的方框图;
图17是示出了根据本发明的第五实施例的传输电路5的示例性结构的方框图。
图18是示出了根据本发明的第五实施例的传输电路5b的示例性结构的方框图;
图19是示出了功率重用部件63的实例的方框图;
图20是示出了根据本发明的第六实施例的传输电路6的示例性结构的方框图;
图21A示出了用功率信息P表示的来自传输电路6的输出功率;
图21B示出了串联调节器14a的输出电压的实例;
图21C示出了开关调节器14b的输出电压的实例;
图22A是示出了包含预失真部件的传输电路1a的示例性实例的方框图;
图22B是示出了传输电路1b的示例性结构的方框图;
图23是示出了根据本发明的第七实施例的通信设备的示例性结构的方框图。
图24是示出了使用极化调制方法的常规传输电路500的结构的方框图;
图25示出了幅度调制部件505的输出功率相对于来自常规传输电路500的调节器504的输入电压的特性;
图26是示出了常规传输电路600的示例性结构的方框图;
图27是示出了常规传输电路700的示例性结构的方框图。
具体实施方式
(第一实施例)
图1A是示出了根据本发明的第一实施例的传输电路1的示例性结构的方框图。如图1A所示,传输电路1包括:信号产生部件11、角度调制部件12、电源端子13、调节器14、幅度调制部件15、可变衰减部件16、输出端子17、可变增益放大部件18、控制部件19以及查找表20。
信号产生部件11基于通过对输入数据执行信号处理而获取的幅度分量和相位分量,输出幅度信号和相位信号。信号产生部件11例如能够包括:极化坐标信号产生部件(未示出),用于产生极化坐标信号。极化坐标信号产生部件对输入数据进行调制并产生幅度信号和相位信号,该幅度信号和相位信号是极化坐标信号。
幅度信号经由可变增益放大部件18输入到调节器14。调节器14输出根据输入幅度信号的大小控制的信号。通常,调节器14输出与输入幅度信号的大小成正比的信号。从调节器14输出的信号被输入到幅度调制部件15。相位信号被输入到角度调制部件12。角度调制部件12对输入的相位信号执行角度调制并输出角度调制信号。角度调制信号被输入到幅度调制部件15。幅度调制部件15利用从调节器14输入的信号对角度调制信号执行幅度调制,并输出所得到的信号作为调制信号。
向控制部件19提供功率信息P,该功率信息P代表要输出的传输信号的功率水平。例如在W-CDMA系统的情况下,功率信息P由基站控制。即,要输出的功率从基站传递到传输电路1。基于从基站传递的功率,传输电路1确定功率信息P并将所确定的功率信息P输入到控制部件19。基于所输入的功率信息P和查找表20,控制部件19控制可变衰减部件16的衰减以及可变增益放大部件18的增益。
可变增益放大部件18利用由控制部件19控制的增益对幅度信号进行放大或衰减,并将所得到的信号输出到调节器14。从幅度调制部件15输出的调制信号被输入到可变衰减部件16。可变衰减部件16利用由控制部件19控制的衰减对调制信号进行衰减,并将所得到的信号从输出端子17输出作为传输信号。
在查找表20中,与功率信息P的值相对应地登记了在可变衰减部件16中设置的衰减和在可变增益放大部件18中设置的增益。图2A示出了查找表20的结构的实例。如图2A所示,在查找表20中登记了当功率信息P的值小于预定阈值pn时在可变衰减部件16中设置的衰减Xn以及当功率信息P的值小于预定阈值pn时在可变增益放大部件18中设置的增益Yn。这里,n是任意自然数,并且X1>X2>...>Xn,Y1>Y2>...Yn。换句话说,随着功率信息P的值减小,控制部件19增大可变衰减部件16的衰减和可变增益放大部件18的增益。可变衰减部件16的衰减Xn和可变增益放大部件18的增益Yn理想地互相成正比。
在传输电路1中,幅度调制部件15和可变衰减部件16的组合可以被简单地标记为幅度调制部件21a。幅度调制部件21a是用于利用从调节器14输出的信号对角度调制信号执行幅度调制并且将所得到的信号作为传输信号从输出端子17输出的元件。
传输电路1的结构可以不同于图1A中所示的结构。图1B是示出了根据本发明的第一实施例的传输电路1b的示例性结构的方框图。如图1B所示,传输电路1b包括:信号产生部件11b、电源端子13、调节器14、幅度调制部件15、可变衰减部件16、输出端子17、可变增益放大部件18、控制部件19以及查找表20。信号产生部件11b包括正交信号产生部件111、向量调制部件112、包络检测部件113以及限幅器114。正交信号产生部件111产生包括同相信号和正交相位信号的基带信号,该同相信号和正交相位信号是正交数据。
同相信号和正交相位信号被输入到向量调制部件112。向量调制部件112对同相信号和正交相位信号执行向量调制。例如使用正交调制器作为向量调制部件112。从向量调制部件112输出的信号被输入到包络检测部件113和限幅器114。包络检测部件113检测从向量调制部件112输出的信号的包络分量,并将所检测到的包络分量作为幅度信号输出。限幅器114将从向量调制部件112输出的信号的包络分量限制到特定大小,并将大小受限的信号作为角度调制信号输出。
图2B是示出了可变衰减部件16的示例性结构的方框图。如图2B所示,可变衰减部件16包括:输入端子161、多个晶体管、多个电阻器、多个端子162至164,以及输出端子165。输入端子161从幅度调制部件15接收调制信号。所输入的调制信号经由所述多个晶体管和多个电阻器从输出端子165输出。控制部件19通过控制多个端子162至164的电压来控制可变衰减部件16的衰减。
图3A示出了当功率信息P的值变化时在可变衰减部件16中设置的衰减的实例。参考图3A,当功率信息P的值小于预定阈值p1时,控制部件19设置可变衰减部件16中的衰减X1。图3B示出了当功率信息P的值变化时在可变增益放大部件18中设置的增益的实例。参考图3B,当功率信息P的值小于预定阈值p1时,控制部件19设置可变增益放大部件18中的增益Y1。
图3C示出了当功率信息P的值变化时幅度调制部件15的输出功率的变化。参考图3C,当功率信息P的值小于预定阈值p1时,幅度调制部件15将输出功率增大可变衰减部件16中设置的衰减X1。在图3A至图3C中,n=1。按照这种方式,即使当功率信息P的值很小时,传输电路1也能够通过利用可变增益放大部件18放大幅度信号以及利用可变衰减部件16衰减调制信号来增大幅度调制部件15的输出功率。因此,幅度调制部件15即使在输出很小时也能够在线性区域操作。
公知的是,当幅度调制部件15的输出功率很小时,幅度调制部件15的特性由于幅度调制部件15中的温度变化而急剧恶化。传输电路1能够通过增加幅度调制部件15的输出功率来防止幅度调制部件15由于温度变化而导致的特性恶化。
在输出很小时的幅度调制部件15的输出功率并不显著地大于最大输出时的输出功率。因此,可变衰减部件16衰减的绝对值很小。由此,可变衰减部件16的功率损耗很小。
调节器14例如可以由电压驱动型串联调节器构成。图4是示出了串联调节器14a的示例性结构的方框图。如图4所示,串联调节器14a包括输入端子141、比较部件142、电源端子143、晶体管144以及输出端子145。在该实例中,晶体管144是场效应晶体管。输入端子141经由可变增益放大部件18接收幅度信号。幅度信号经由比较部件142输入到晶体管144的栅极端。从电源端子143向晶体管144的漏极端提供DC电压。
晶体管144输出与来自其源极端的输入幅度信号的大小成正比的电压。从晶体管144的源极端输出的电压被反馈回比较部件142.基于该反馈电压,比较部件142调节要输入到晶体管144的栅极端的幅度信号的大小。按照这种方式,串联调节器14a能够经由输出端子145稳定地提供根据幅度信号的大小控制的电压。晶体管144可以是双极性晶体管,在这种情况下,可以提供基本相同的效果。传输电路1能够通过使用在宽范围内工作的串联调节器14a作为调节器14来输出宽范围的调制信号。
或者,调节器14例如可以由电压驱动型开关调节器构成。图5是示出了开关调节器14b的示例性结构的方框图。如图5所示,开关调节器14b包括:输入端子141、电源端子143、信号转换部件146、放大部件147、低通滤波器148以及输出端子145。输入端子141经由可变增益放大部件18接收幅度信号。该幅度信号被输入到信号转换部件146。信号转换部件146将输入的幅度信号转换为经过PWM调制或delta-sigma调制的信号。由信号转换部件146转换的信号被输入到放大部件147。放大部件147对输入信号进行放大并输出。从电源端子143向放大部件147提供DC电压。例如可以使用诸如D类放大器的高效开关放大器来作为放大部件147。
从放大部件147输出的信号被输入到低通滤波器148。低通滤波器148从放大部件147输出的信号中去除诸如量化噪声或开关噪声之类的杂散(spurious)分量。由低通滤波器148去除了杂散分量后的信号经由输出端子145输出,作为根据幅度信号的大小控制的电压。开关调节器14b可以将从低通滤波器148输出的信号反馈到信号转换部件146,以稳定输出电压。传输电路1可以通过使用高效开关调节器14b作为调节器14来降低整个传输电路的功耗。
又或者,调节器14例如可以由电流驱动型调节器构成。图6是示出了电流驱动型调节器14c的示例性结构的方框图。如图6所示,电流驱动型调节器14c包括输入端子141、电源端子143、可变电流源149、晶体管144x、晶体管144y以及输出端子145。输入端子141经由可变增益放大部件18接收幅度信号。电源端子143提供有DC电压。输入的幅度信号经由可变电流源149、晶体管144x和晶体管144y从输出端子145输出,作为根据幅度信号的大小控制的电流。当幅度调制部件15由双极性晶体管构成时这种电流驱动型晶体管14c也是有用的。晶体管144x和144y中的每个都可以是场效应晶体管或双极性晶体管。在任一种情况下,都可以提供基本相同的效果。
幅度调制部件15例如可以具有图7中所示的结构。图7是示出了幅度调制部件15a的示例性结构的方框图。如图7所示,幅度调制部件15a包括输入端子151、匹配电路152、偏置电路153、电源端子154、晶体管155、偏置电路156、输入端子157、匹配电路158以及输出端子159。在该实例中,晶体管155是双极性晶体管。输入端子151从角度调制部件12接收角度调制信号。角度调制信号经由匹配电路152输入到晶体管155的基极端。
电源端子154提供有DC电压。换句话说,经由电源端子154和偏置电路153向晶体管155的基极端提供偏置电压。输入端子157接收根据从调节器14输出的幅度信号的大小控制的信号。根据幅度信号的大小控制的信号经由偏置电路156输入到晶体管155的集电极端。晶体管155利用根据幅度信号的大小控制的信号对角度调制信号执行幅度调制,并输出所得到的信号作为调制信号。
从晶体管155输出的调制信号经由匹配电路158从输出端子159输出。晶体管155可以是场效应晶体管,在这种情况下,可以提供基本相同的效果。在幅度调制部件15a中,输入到电源端子154的信号和输入到输入端子157的信号可以互换。在这种情况下也能够提供基本相同的效果。
幅度调制部件15可以具有与上述幅度调制部件15a的结构不同的结构。图8是示出了幅度调制部件15b的示例性结构的方框图。如图8中所示,幅度调制部件15b基本具有将两个幅度调制部件15a(参加图7)串联而得到的结构。从电源端子154经由偏置电路153向晶体管155的基极端提供偏置电压。从电源端子160经由偏置电路165向晶体管161的基极端提供偏置电压。
晶体管155的集电极端经由端子164和偏置电路156从调节器14接收根据幅度信号的大小控制的信号。晶体管161的集电极端经由端子164和偏置电路162从调节器14接收根据幅度信号的大小控制的信号。由于这种结构,幅度调制部件15b能够输出比图7中所示的幅度调制部件15a具有更宽的动态范围的信号。在幅度调制部件15a和15b中,晶体管是双极性晶体管。晶体管也可以是场效应晶体管,在这种情况下,可以提供基本相同的效果。
如上所述,即使在功率信息P的值很小时,根据本发明的第一实施例的传输电路1也能够通过利用可变增益放大部件18放大幅度信号以及利用可变衰减部件16衰减调制信号来增大幅度调制部件15的输出功率。因此,传输电路1能够防止幅度调制部件15的特性由于温度改变而恶化,并且允许幅度调制部件15即使在小输出时也能够在线性区域操作。结果是,传输电路1能够在宽范围的输出功率上低失真且高效率地输出传输信号。
(第二实施例)
图9是示出了根据本发明的第二实施例的传输电路2的示例性结构的方框图。如图9所示,传输电路2包括:信号产生部件11、角度调制部件12、电源端子13、调节器14、幅度调制部件15、可变衰减部件26、输出端子17、可变增益放大部件28以及控制部件29。在根据第二实施例的传输电路2中,可变衰减部件26、可变增益放大部件28和控制部件29以与根据第一实施例的传输电路1的那些部件不同的方式进行操作。
在传输电路2中,与传输电路1中的情况类似,幅度调制部件15和可变衰减部件26的组合可以被简单地标记为幅度调制部件21b。
图10是示出了可变衰减部件26的示例性结构的方框图。如图26所示,可变衰减部件26包括:输入端子261、衰减器262、第一开关263、第二开关264以及输出端子265。输入端子261从幅度调制部件15接收调制信号。第一开关263和第二开关264的端子之间的连接根据控制部件29的控制而切换。衰减器262将所输入的调制信号衰减预定的衰减X1,并输出所得到的信号。
图11是示出了可变增益放大部件28的示例性结构的方框图。如图11所示,可变增益放大部件28包括:输入端子281、放大器282、第一开关283、第二开关284以及输出端子285。输入端子281从信号产生部件11接收幅度信号。第一开关283和第二开关284的端子之间的连接根据控制部件29的控制而切换。放大器282将输入的幅度信号放大预定增益Y1,并输出所得到的信号。
控制部件29根据功率信息P的值控制可变衰减部件26和可变增益放大部件28。具体地,当功率信息P的值等于或大于预定阈值p1时,控制部件29控制可变衰减部件26,使得第一开关263的端子a和端子b互相连接,第二开关264的端子d和端子f互相连接。同时,控制部件29控制可变增益放大部件28,使得第一开关283的端子a和端子b互相连接,第二开关284的端子d和端子f互相连接。
即,当功率信息P的值等于或大于预定阈值p1时,在可变衰减部件26中,输入到输入端子261的调制信号经由端子a、b、d和f从输出端子265输出。在可变增益放大部件28中,输入到输入端子28 1的幅度信号经由端子a、b、d和f从输出端子285输出。
当功率信息P的值小于预定阈值p1时,控制部件29控制可变衰减部件26,使得第一开关263的端子a和端子c互相连接,第二开关264的端子e和端子f互相连接。同时,控制部件29控制可变增益放大部件28,使得第一开关283的端子a和端子c互相连接,第二开关284的端子e和端子f互相连接。
即,当功率信息P的值小于预定阈值p1时,在可变衰减部件26中,输入到输入端子261的调制信号经由端子a和c、衰减器262以及端子e和f从输出端子265输出。在可变增益放大部件28中,输入到输入端子281的幅度信号经由端子a和c、放大器282以及端子e和f从输出端子285输出。
当功率信息P的值变化时在可变衰减部件26中设置的衰减与上述参考图3A进行的描述基本相同。当功率信息P的值变化时在可变增益放大部件28中设置的增益与上述参考图3B进行的描述基本相同。当功率信息P的值变化时幅度调制部件15的输出功率与上述参考图3C进行的描述基本相同。
如上所述,与第一实施例中类似,即使在功率信息P的值很小时,根据本发明的第二实施例的传输电路2也能够通过利用可变增益放大部件28放大幅度信号以及利用可变衰减部件26衰减调制信号来增大幅度调制部件15的输出功率。因此,传输电路2能够防止幅度调制部件15的特性由于温度改变而恶化,并且允许幅度调制部件15即使在小输出时也能够在线性区域操作。结果是,传输电路2能够在宽范围的输出功率上低失真且高效率地输出传输信号。
(第三实施例)
图12是示出了根据本发明的第三实施例的传输电路3的示例性结构的方框图。参考图12,在传输电路3中,可变衰减部件26b、可变增益放大部件28b和控制部件29b以与根据第二实施例的传输电路2不同的方式操作。在第三实施例中,可变衰减部件26b能够利用比二态值多的值来切换衰减。可变增益放大部件28b能够利用比二态值多的值来切换增益。
在传输电路3中,与传输电路1中类似,幅度调制部件15和可变衰减部件26b的组合可以简单标记为幅度调制部件21c。
图13是示出了能够利用三态值来切换衰减的可变衰减部件26b的示例性结构的方框图。如图13所示,可变衰减部件26b包括:输入端子261、第一衰减器2621、第二衰减器2622、第一开关263、第二开关264以及输出端子265。第一衰减器2621将输入的调制信号衰减预定衰减X1,并输出所得到的信号。第二衰减器2622将输入的调制信号衰减预定衰减X2,并输出所得到的信号。应该注意的是,X1>X2。
图14是示出了能够利用三态值来切换增益的可变增益放大部件28b的示例性结构的方框图。如图14所示,可变增益放大部件28b包括:输入端子281、第一放大器2821、第二放大器2822、第一开关283、第二开关284以及输出端子285。第一放大器2821将输入的幅度信号放大预定增益Y1,并输出所得到的信号。第二放大器2822将输入的幅度信号放大预定增益Y2,并输出所得到的信号。应该注意的是,Y1>Y2。
控制部件29b将输入的功率信息P的值与两个预定阈值p1和p2中的每一个进行比较,并基于比较结果控制可变衰减部件26b和可变增益放大部件28b。应该注意的是,p1<p2。具体地,当功率信息P的值等于或大于预定阈值p2时,控制部件29控制可变衰减部件26b,使得第一开关263的端子a和端子b互相连接,第二开关264的端子d和端子f互相连接。同时,控制部件29b控制可变增益放大部件28b,使得第一开关283的端子a和端子b互相连接,第二开关284的端子d和端子f互相连接。
即,当功率信息P的值等于或大于预定阈值p2时,在可变衰减部件26b中,输入到输入端子261的调制信号经由端子a、b、d和f从输出端子265输出。在可变增益放大部件28b中,输入到输入端子28 1的幅度信号经由端子a、b、d和f从输出端子285输出。
当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,控制部件29b控制可变衰减部件26,使得第一开关263的端子a和端子g互相连接,第二开关264的端子h和端子f互相连接。同时,控制部件29b控制可变增益放大部件28b,使得第一开关283的端子a和端子g互相连接,第二开关284的端子h和端子f互相连接。
即,当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,在可变衰减部件26b中,输入到输入端子261的调制信号经由端子a和g从输出端子265输出。在可变增益放大部件28b中,输入到输入端子281的幅度信号经由端子a和g、第二放大器2822以及端子h和f从输出端子285输出。
当功率信息P的值小于预定阈值p1时,控制部件29b控制可变衰减部件26b,使得第一开关263的端子a和端子c互相连接,第二开关264的端子e和端子f互相连接。同时,控制部件29b控制可变增益放大部件28b,使得第一开关283的端子a和端子c互相连接,第二开关284的端子e和端子f互相连接。
即,当功率信息P的值小于预定阈值p1时,在可变衰减部件26b中,输入到输入端子261的调制信号经由端子a和c、第一衰减器2621以及端子e和f从输出端子265输出。在可变增益放大部件28b中,输入到输入端子281的幅度信号经由端子a和c、第一放大器2821以及端子e和f从输出端子285输出。
图15A示出了当功率信息P的值变化时在可变衰减部件26b中设置的衰减的实例。参考图15A,当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,控制部件29b在可变衰减部件26b中设置衰减X2。当功率信息P的值小于预定阈值p1时,控制部件29b在可变衰减部件26b中设置衰减X1。
图15B示出了当功率信息P的值变化时在可变增益放大部件28b中设置的增益的实例。参考图15B,当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,控制部件29b在可变增益放大部件28b中设置增益Y2。当功率信息P的值小于预定阈值p1时,控制部件29b在可变增益放大部件28b中设置增益Y1。
图15C示出了当功率信息P的值变化时幅度调制部件15的输出功率的变化。参考图15C,当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,幅度调制部件15将输出功率增大可变衰减部件26b中设置的衰减X2。当功率信息P的值小于预定阈值p1时,幅度调制部件15将输出功率增大可变衰减部件26b中设置的衰减X1。从图15C可以看出,当功率信息P的值等于或大于预定阈值p1而小于预定阈值p2时,幅度调制部件15的输出功率小于图3C中所示的输出功率。
如上所述,根据本发明的第三实施例的传输电路根据功率信息P的值,利用比二态值更多的值来切换可变衰减部件26b的衰减和可变增益放大部件28b的增益,从而与根据第二实施例的传输电路2相比能够降低功耗。结果是,传输电路3能够在宽范围的输出功率上低失真且高效率地输出传输信号。
(第四实施例)
图16是示出了根据本发明的第四实施例的传输电路4的示例性结构的方框图。如图16所示,传输电路4包括:信号产生部件11、角度调制部件12、电源端子13、调节器14、第一幅度调制部件451、第二幅度调制部件452、输出端子17、可变增益放大部件28、控制部件29、第一开关41、第二开关42以及第三开关43。
在传输电路4中,第一幅度调制部件451、第二幅度调制部件452、第一开关41、第二开关42以及第三开关43的组合可以简单标记为幅度调制部件21d。幅度调制部件21d是用于利用从调节器14输出的信号对角度调制信号执行角度调制,并且将所得到的信号作为传输信号从输出端子17输出的元件。
第一幅度调制部件451和第二幅度调制部件452中的每一个利用从调节器14提供的信号对从角度调制部件12输入的角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出。在该实例中,第二幅度调制部件452的晶体管尺寸比第一幅度调制部件451更大。即,第二幅度调制部件452的最大输出功率比第一幅度调制部件451更大。第一幅度调制部件451和第二幅度调制部件452的结构与图7或图8中所示的结构基本相同。
控制部件49根据功率信息P的值控制可变增益放大部件28,以及切换第一开关41、第二开关42和第三开关43的连接。具体地,当功率信息P的值小于预定阈值时,控制部件49增大可变增益放大部件28的增益并切换第一至第三开关41至43的连接,使得使用第一幅度调制部件451。
当功率信息P的值等于或大于预定阈值时,控制部件49降低可变增益放大部件28的增益并切换第一至第三开关41至43的连接,使得使用第二幅度调制部件452。按照这种方式,传输电路4能够根据功率信息P的值选择更有效的幅度调制部件,从而能够降低整个传输电路的功耗。
当功率信息P的值等于或大于预定阈值时,控制部件49可以将可变增益放大部件28的增益降低到零。控制部件49可以关断未使用的第一幅度调制部件451或第二幅度调制部件452。按照这种方式,传输电路4能够停止不必要的晶体管操作,从而进一步降低功耗。
控制部件49可以根据传输电路4的调制模式而不是功率信息P的值来控制可变增益放大部件28并切换第一、第二和第三开关41、42和43的连接。例如,假设传输电路4使用用于控制-50dBm至24dBm的UMTS和用于控制5dBm至33dBm的GSM/EDGE作为调制模式。在这种情况下,当调制模式是UMTS时,控制部件49增大可变增益放大部件28的增益并切换第一至第三开关41至43的连接,使得使用第一幅度调制部件451。当调制模式是GSM/EDGE时,控制部件49降低可变增益放大部件28的增益并切换第一至第三开关41至43的连接,使得使用第二幅度调制部件452。
传输电路4可以不包括第一至第三开关41至43。在这种情况下,传输电路4能够通过切换未使用的晶体管的偏置条件来切换第一幅度调制部件451和第二幅度调制部件452的连接。
如上所述,利用根据本发明的第四实施例的传输电路4,即使在输出很小时幅度调制部件的输出也不会变得太小。因此,与第一实施例中类似,传输电路4能够在宽范围的输出功率上低失真且高效率地输出传输信号。
(第五实施例)
图17是示出了根据本发明的第五实施例的传输电路5的示例性结构的方框图。如图17所示,传输电路5包括:信号产生部件11、角度调制部件12、电源端子13、调节器14、第一幅度调制部件551、第二幅度调制部件552、输出端子17、可变增益放大部件28、控制部件29、分离部件51、组合部件52以及开关53。
在传输电路5中,与传输电路4中类似,第一幅度调制部件551、第二幅度调制部件552、分离部件51、组合部件52以及开关53的组合可以被简单标记为幅度调制部件21e。
从角度调制部件12输出的角度调制信号被分离部件51分离并输入到第一幅度调制部件551和第二幅度调制部件552。分离部件51所分离的角度调制信号的分量的能量互相相等。
第一幅度调制部件551和第二幅度调制部件552中的每一个利用从调节器14提供的信号对角度调制信号执行幅度调制,并输出所得到的信号作为调制信号。在该实例中,第一幅度调制部件551和第二幅度调制部件552具有相同的晶体管尺寸。即,第一幅度调制部件551和第二幅度调制部件552具有相等的最大输出功率。第一幅度调制部件551和第二幅度调制部件552的结构与图7或图8中所示的结构基本相同。从第一幅度调制部件551和第二幅度调制部件552输出的调制信号被组合部件52组合,并从输出端子17作为传输信号输出。
控制部件59根据功率信息P的值控制可变增益放大部件28,以及切换开关53的连接。具体地,当功率信息P的值等于或大于预定阈值时,控制部件59降低可变增益放大部件28的增益并切换开关53的连接,使得调节器14和第一幅度调制部件551互相连接。从而使用第一幅度调制部件551。即,当功率信息P的值等于或大于预定阈值时,传输电路5输出第一幅度调制部件551的输出功率和第二幅度调制部件552的输出功率之和作为传输信号的输出功率。
控制部件59可以通过改变开关53中使用的晶体管的电阻来控制从调节器14提供给第一幅度调制部件551的信号的大小。
当功率信息P的值小于预定阈值时,控制部件59切换开关53的连接,使得调节器14和第一幅度调制部件551互相断开。从而,关断第一幅度调制部件551的操作。即,当功率信息P的值小于预定阈值时,传输电路5输出第二幅度调制部件552的输出功率作为传输信号的输出功率。
对于分离部件51和组合部件52,可以使用Wilkinson型设备或3dB定向耦合器。在这种情况下,当第一幅度调制部件551的操作关断时,从输出端子17输出比第二幅度调制部件552的输出功率小6dB的功率。功率信息P的值和第二幅度调制部件552的输出功率之间的关系与图3C中所示的基本相同。分离部件51不需要相等地对信号进行分离,并且组合部件52不需要相等地组合信号。当分离或组合非相等地执行时,第一幅度调制部件551和第二幅度调制部件552的晶体管尺寸可以与分离部件51的分离比或者组合部件52的组合比相对应。
控制部件59可以根据传输电路5的调制模式而不是功率信息P的值来控制可变增益放大部件28并切换开关53的连接。例如,假设传输电路5使用用于控制-50dBm至24dBm的UMTS和用于控制5dBm至33dBm的GSM/EDGE作为调制模式。在这种情况下,当调制模式是UMTS时,控制部件59增大可变增益放大部件28的增益并切换开关53的连接,使得调节器14和第一幅度调制部件551互相连接。当调制模式是GSM/EDGE时,控制部件59降低可变增益放大部件28的增益并切换开关53的连接,使得调节器14和第一幅度调制部件551互相断开。
如上所述,利用根据本发明的第五实施例的传输电路5,即使在输出很小时幅度调制部件的输出也不会变得太小。因此,与第一实施例中类似,传输电路5能够在宽范围的输出功率上低失真且高效率地输出传输信号。
为了在输出很小时改进功耗,根据本发明的第五实施例的传输电路可以具有如图18所示的结构。图18是示出了根据本发明的第五实施例的传输电路5b的示例性结构的方框图。与参考图17所述的传输电路5相比,图18中所示的传输电路5使用第一定向耦合器61作为分离部件51,使用第二定向耦合器62作为组合部件52。传输电路5b还包括功率重用部件63。功率重用部件63将输入信号转换为功率并将该功率提供给调节器14作为要重用的功率。
在传输电路5b中,与第四实施例中类似,第一幅度调制部件551、第二幅度调制部件552、第一定向耦合器61、第二定向耦合器62和开关53可以被简单标记为幅度调制部件21f。
第一定向耦合器61为第一幅度调制部件551和第二幅度调制部件552相等地分离从角度调制部件12输出的角度调制信号。第二定向耦合器62的两个输出中的一个连接到输出端子17,另一个输出连接到功率重用部件63。第二定向耦合器62具有通道相位(passagephase),调节该通道相位以允许当第一幅度调制部件551和第二幅度调制部件552都操作时这两个幅度调制部件551和552的输出功率的大部分能够从输出端子17输出。因此,当功率信息P的值等于或大于预定阈值时,几乎没有功率输入到功率重用部件63。
当只有第二幅度调制部件552操作时,第二定向耦合器62为输出端子17和功率重用部件63相等地分离从第二幅度调制部件552输出的调制信号。功率重用部件63的输出连接到电源端子13以用于调节器14。功率重用部件63将经由第二定向耦合器62输入的调制信号转换为DC电压(或DC电流),并将所述DC电压(或DC电流)提供到调节器14。因此,当功率信息P的值小于预定阈值时,第二定向耦合器62相等分离的调制信号中的一个可以重用为用于调节器14的功率。
图19是示出了功率重用部件63的实例的方框图。如图19所示,功率重用部件63包括:输入端子631、输出子端632、偏置电路633、二极管634以及电容器635。从输入端子631输入的信号经由二极管634从输出端子632输出。经由偏置电路633向二极管634提供偏置电压。从二极管634输出的信号被电容器635平滑。由于这种结构,传输电路5b可以重用从第二幅度调制部件552输出的信号的能量的一部分,否则这部分能量也要被损耗。因此,可以降低传输电路5b的功耗。
(第六实施例)
图20是示出了根据本发明的第六实施例的传输电路6的示例性结构的方框图。参考图20,传输电路6与根据第一实施例的传输电路1的不同之处在于控制部件19b和调节器14d。控制部件19b除了具有根据第一实施例的控制部件19的功能之外,还输出功率信息P。调节器14d包括串联调节器14a和开关调节器14b。串联调节器14a例如具有如图4所示的结构。开关调节器14b例如具有如图5所示的结构。
参考图21A至图21C,将描述传输电路6的操作。图21A示出了用功率信息P表示的、传输电路6的输出功率的实例。图21B示出了串联调节器14a的输出电压的实例。图21C示出了开关调节器14b的输出电压的实例。从控制部件19b输出的功率信息P被输入到开关调节器14b(参见图21A)。开关调节器14b可以直接接收而不是从控制部件19b接收输入到传输电路6的功率信息P。
从电源端子13向开关调节器14b提供DC电压。开关调节器14b向串联调节器14a提供根据功率信息P控制的电压(参见图21B)。由于功率信息P具有比幅度信号低的频率,所以开关调节器14b能够高效操作。从开关调节器14b输出的电压被设置为等于或稍微高于从串联调节器14a输出的最小电压。
串联调节器14a利用从开关调节器14b提供的电压对经由可变增益放大部件18输入的幅度信号进行放大,从而向幅度调制部件15提供根据幅度信号的大小控制的电压(参见图21C)。由于从开关调节器14b提供的电压被最优地控制,所以串联调节器14a能够高效操作。
上述的控制部件19和调节器14d可以应用于第二至第五实施例以及第一实施例。
如上所述,根据本发明的第六实施例的传输电路6使用包括串联调节器14a和开关调节器14b的调节器14d。因此,传输电路6能够在宽范围的输出功率上降低整个传输电路的功耗。
上述根据第一至第六实施例的传输电路还包括预失真部件,用于补偿信号产生部件11所产生的幅度信号和/或相位信号的失真,以补偿角度调制部件12、调节器14、幅度调制部件15、可变衰减部件16以及可变增益放大部件18中的至少一个的非线性。图22A是示出了包括预失真部件的传输电路1a的示例性结构的方框图。参考图22A,预失真部件22对信号产生部件11所产生的幅度信号和/或相位信号进行补偿以抑制角度调制部件12、调节器14、幅度调制部件15、可变衰减部件16以及可变增益放大部件18中的至少一个中产生的失真。按照这种方式,与根据第一至第六实施例的传输电路相比,传输电路1a还能够改进传输信号的非线性。
上述根据第一至第六实施例的传输电路能够基于幅度调制部件的输出功率而不是基于输入的功率信息P的值,来调节可变衰减部件的衰减和可变增益放大部件的增益。图22B是示出了用于基于幅度调制部件的输出功率调节可变衰减部件的衰减和可变增益放大部件的增益的传输电路1b的示例性结构的方框图。参考图22B,控制部件19c基于幅度调制部件15的输出功率来调节可变衰减部件16的衰减和可变增益放大部件18的增益。
(第七实施例)
图23是示出了根据本发明的第七实施例的通信设备的示例性结构的方框图。如图23所示,根据本发明的第七实施例的通信设备200包括:传输电路210、接收电路220、天线双工器230以及天线240。传输电路210是在第一至第六实施例中所述的传输电路。天线双工器230将从传输电路210输出的传输信号发送到天线240,并防止该传输信号泄漏到接收电路220。天线双工器230还将从天线240输入的接收信号发送到接收电路220,并防止该接收信号泄漏到传输电路210。
由于这种结构,传输信号从传输电路210输出并经由天线双工器230从天线240释放到空间中。接收信号经由天线双工器230由天线240以及接收电路220接收。根据第七实施例的传输设备200能够通过使用根据第一至第六实施例中的任何一个的传输电路来确定地获得传输信号的线性度并实现无线设备的低失真。由于传输电路210外部没有提供诸如定向耦合器等的平衡元件,所以可以降低从传输电路210到天线240的损耗。因此,能够降低传输时的功耗,这允许通信设备200能够作为无线通信设备使用更长的时间段。通信设备200可以仅包括传输电路210和天线240。
工业实用性
根据本发明的传输电路例如可以应用于诸如移动电话、无线LAN设备等的通信设备。

Claims (13)

1.一种用于基于输入的数据产生传输信号并输出所述传输信号的传输电路,所述传输电路包括信号产生部件、可变增益放大部件、调节器、角度调制部件、幅度调制部件以及控制部件,其中,
所述信号产生部件用于基于通过对所述数据执行信号处理所获得的幅度分量和相位分量,产生幅度信号和相位信号;
所述可变增益放大部件用于利用受所述控制部件所控制的增益对所述幅度信号进行放大或者衰减;
所述调节器用于输出与从所述可变增益放大部件输出的所述幅度信号的大小相一致的信号;
所述角度调制部件用于对所述相位信号执行角度调制并将所得到的信号作为角度调制信号输出;
所述幅度调制部件用于利用从所述调节器输出的信号将所述角度调制信号幅度调制为调制信号,利用受所述控制部件所控制的衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出;
所述控制部件用于接收要输出的传输信号的功率水平的功率信息,并基于所述功率信息控制要在所述可变增益放大部件中设置的所述增益以及要在所述幅度调制部件中设置的所述衰减;
其中所述控制部件将所述功率信息的值与至少一个预定阈值进行比较,并基于该比较结果确定要在所述可变增益放大部件中设置的所述增益以及要在所述幅度调制部件中设置的所述衰减。
2.根据权利要求1所述的传输电路,其中:
所述幅度调制部件包括:
第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;以及
可变衰减部件,用于利用所述受控衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出;并且
当所述功率信息的值小于所述至少一个预定阈值时,所述控制部件在所述可变增益放大部件中设置预定增益并在所述可变衰减部件中设置预定衰减。
3.根据权利要求2所述的传输电路,还包括查找表,在所述查找表中,与所述功率信息的值相对应地登记了能够在所述可变衰减部件中设置的衰减以及能够在所述可变增益放大部件中设置的增益;
其中:
所述能够在所述可变衰减部件中设置的衰减和所述能够在所述可变增益放大部件中设置的增益互相成正比;并且
所述控制部件基于所述查找表确定要在所述可变衰减部件中设置的所述衰减以及要在所述可变增益放大部件中设置的所述增益。
4.根据权利要求2所述的传输电路,其中:
所述可变增益放大部件包括:
至少一个放大器,用于利用特定增益对输入的信号进行放大,并输出所得到的信号;以及
多个开关,用于切换所述至少一个放大器的连接;
所述可变衰减部件包括:
至少一个衰减器,用于利用特定衰减对输入的信号进行衰减,并输出所得到的信号;以及
多个开关,用于切换所述至少一个衰减器的连接;并且
所述控制部件将所述功率信息的值与所述至少一个阈值进行比较,并基于比较结果切换所述可变增益放大部件中的所述多个开关的连接以及所述可变衰减部件中的所述多个开关的连接。
5.根据权利要求1所述的传输电路,其中:
所述幅度调制部件包括:
第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;
第二幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;以及
多个开关,用于切换所述调节器和所述第一幅度调制部件或所述第二幅度调制部件之间的连接;
所述第二幅度调制部件的最大输出功率比所述第一幅度调制部件更大;并且
当所述功率信息的值小于预定阈值时,所述控制部件增大所述可变增益放大部件的增益并切换所述多个开关的连接,使得所述第一幅度调制部件得以使用;并且
当所述功率信息的值等于或大于所述预定阈值时,所述控制部件减小所述可变增益放大部件的增益并切换所述多个开关的连接,使得所述第二幅度调制部件得以使用。
6.根据权利要求1所述的传输电路,其中:
所述幅度调制部件包括:
第一幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;
第二幅度调制部件,用于利用从所述调节器输出的信号对所述角度调制信号执行幅度调制,并将所得到的信号作为调制信号输出;
开关,用于切换所述调节器和所述第一幅度调制部件之间的连接;
分离部件,用于为所述第一幅度调制部件和所述第二幅度调制部件分离所述角度调制信号;以及
组合部件,用于对从所述第一幅度调制部件输出的调制信号和从所述第二幅度调制部件输出的调制信号进行组合,并将所得到的信号作为传输信号输出;
所述第一幅度调制部件和所述幅度调制部件具有相等的最大输出功率;
当所述功率信息的值小于预定阈值时,所述控制部件增大所述可变增益放大部件的增益并切换所述开关的连接,使得所述调节器和所述第一幅度调制部件互相断开;并且
当所述功率信息的值等于或大于所述预定阈值时,所述控制部件减小所述可变增益放大部件的增益并切换所述开关的连接,使得所述调节器和所述第一幅度调制部件互相连接。
7.根据权利要求6所述的传输电路,还包括功率重用部件,用于将输入的信号转换为功率并将所述功率提供给所述调节器;
其中:
所述分离部件是第一定向耦合器,用于为所述第一幅度调制部件和所述第二幅度调制部件相等地分离所述角度调制信号;
所述组合部件是第二定向耦合器,用于以组合形式或以分离形式输出从所述第一幅度调制部件和所述第二幅度调制部件输出的所述调制信号;
当所述第一幅度调制部件和所述第二幅度调制部件都操作时,所述第二定向耦合器对从所述第一幅度调制部件和所述第二幅度调制部件输出的所述调制信号进行组合,并将所得到的信号作为传输信号输出;并且
当只有所述第二幅度调制部件操作时,所述第二定向耦合器相等地分离从所述第二幅度调制部件输出的所述调制信号,并将所得到的一个信号分量作为传输信号输出,将所得到的另一个信号分量输出到所述功率重用部件。
8.根据权利要求1所述的传输电路,其中,所述调节器是串联调节器。
9.根据权利要求1所述的传输电路,其中,所述调节器是开关调节器。
10.根据权利要求1所述的传输电路,其中:
所述调节器包括开关调节器和串联调节器;
所述开关调节器接收所述功率信息并将根据所述功率信息控制的电压提供到所述串联调节器;并且
所述串联调节器使用从所述开关调节器提供的电压向所述幅度调制部件提供根据所述幅度信号的大小控制的电压,其中所述幅度信号是从所述可变增益放大部件输出的。
11.一种用于基于输入的数据产生传输信号并输出所述传输信号的传输电路,所述传输电路包括信号产生部件、可变增益放大部件、调节器、角度调制部件、幅度调制部件以及控制部件,其中,
所述信号产生部件用于基于通过对所述数据执行信号处理所获取的幅度分量和相位分量产生幅度信号和角度调制信号;
所述可变增益放大部件用于利用受所述控制部件所控制的增益放大或衰减所述幅度信号;
所述调节器用于输出与从所述可变增益放大部件输出的所述幅度信号的大小相一致的信号;
所述幅度调制部件用于利用从所述调节器输出的信号将所述角度调制信号幅度调制为调制信号,利用受所述控制部件所控制的衰减对所述调制信号进行衰减,并将所得到的信号作为传输信号输出;
所述控制部件用于输入表示要输出的传输信号的功率水平的功率信息,并且基于所述功率信息控制要在所述可变增益放大部件中设置的所述增益以及要在所述幅度调制部件中设置的所述衰减;
其中:
所述信号产生部件包括正交信号产生部件、向量调制部件、包络检测部件以及限幅器,其中
所述正交信号产生部件用于通过对所述数据执行信号处理来产生包括同相信号和正交相位信号的基带信号,所述同相信号和所述正交相位信号是正交数据;
所述向量调制部件用于对所述同相信号和所述正交相位信号执行向量调制;
所述包络检测部件用于检测从所述向量调制部件输出的信号的包络分量,并将所检测到的包络分量作为所述幅度信号输出;
所述限幅器用于将从所述向量调制部件输出的信号的包络分量限制到预定大小,并将所述大小受限的信号作为所述角度调制信号输出;并且
所述控制部件将所述功率信息的值与至少一个预定阈值进行比较,并基于比较结果确定要在所述可变增益放大部件中设置的所述增益和要在所述幅度调制部件中设置的所述衰减。
12.一种通信设备,包括:
传输电路,用于产生传输信号;以及
天线,用于输出所述传输电路所产生的传输信号;
其中所述传输电路是根据权利要求1所述的传输电路。
13.根据权利要求12所述的通信设备,还包括:
接收电路,用于处理经由所述天线接收的接收信号;以及
天线双工器,用于将所述传输电路产生的所述传输信号输出到所述天线,并将经由所述天线接收到的所述接收信号输出到所述接收电路。
CN2006800141412A 2005-04-27 2006-04-26 极化调制传输电路和通信设备 Expired - Fee Related CN101167326B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005129270 2005-04-27
JP129270/2005 2005-04-27
PCT/JP2006/309197 WO2006118318A1 (en) 2005-04-27 2006-04-26 Polar modulation transmission circuit and communication device

Publications (2)

Publication Number Publication Date
CN101167326A CN101167326A (zh) 2008-04-23
CN101167326B true CN101167326B (zh) 2010-09-29

Family

ID=36642450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800141412A Expired - Fee Related CN101167326B (zh) 2005-04-27 2006-04-26 极化调制传输电路和通信设备

Country Status (6)

Country Link
US (1) US7688156B2 (zh)
EP (1) EP1875702B1 (zh)
JP (1) JP2008539601A (zh)
CN (1) CN101167326B (zh)
DE (1) DE602006005076D1 (zh)
WO (1) WO2006118318A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777020B2 (ja) * 2005-08-29 2011-09-21 京セラ株式会社 無線通信システム、無線通信装置、増幅率決定方法、及びプログラム
US8760994B2 (en) * 2005-10-28 2014-06-24 Qualcomm Incorporated Unitary precoding based on randomized FFT matrices
US20080171523A1 (en) * 2006-12-20 2008-07-17 Sony Ericsson Mobile Communications Ab Power Amplifier Bias Control
WO2008099724A1 (en) * 2007-02-14 2008-08-21 Panasonic Corporation Linc transmission circuit and communication device using the same
JP2009273110A (ja) * 2008-04-10 2009-11-19 Panasonic Corp ポーラ変調送信装置及びポーラ変調送信方法
KR101104143B1 (ko) * 2008-11-24 2012-01-13 한국전자통신연구원 무선 통신 시스템에서 신호의 송신 장치 및 방법
KR101201205B1 (ko) 2008-12-02 2012-11-15 한국전자통신연구원 폴라 송신기의 이득 제어 장치 및 방법
JP5157959B2 (ja) * 2009-02-27 2013-03-06 ヤマハ株式会社 D級増幅器
US8565344B2 (en) 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device
JP2011188123A (ja) * 2010-03-05 2011-09-22 Panasonic Corp ポーラ変調方式を用いた送信回路及び通信機器
KR20130045178A (ko) * 2011-10-25 2013-05-03 한국전자통신연구원 신호 송수신 방법 및 그 장치
CN102570999A (zh) * 2011-12-26 2012-07-11 苏州云芯微电子科技有限公司 基于共模反馈的可变增益自适应偏置功率放大器
US9240757B2 (en) 2012-10-05 2016-01-19 Nec Corporation Transmission apparatus and transmission method
KR102257344B1 (ko) * 2014-09-29 2021-05-27 삼성전자주식회사 무선 통신 시스템에서 전력 증폭기의 비선형적 특성을 개선하기 위한 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805191A (en) * 1971-02-10 1974-04-16 Kokusai Denshin Denwa Co Ltd Phase-amplitude multiple digital modulation system
CN1553588A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 一种用于sdh传输系统线路衰减补偿的自适应均衡装置
CN1596508A (zh) * 2001-06-27 2005-03-16 德国电信股份有限公司 避免用于数字传输中的am发射机的干扰辐射的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972440A (en) * 1988-09-23 1990-11-20 Hughes Aircraft Company Transmitter circuit for efficiently transmitting communication traffic via phase modulated carrier signals
JPH10126164A (ja) 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 高効率電力増幅器
US5973557A (en) 1996-10-18 1999-10-26 Matsushita Electric Industrial Co., Ltd. High efficiency linear power amplifier of plural frequency bands and high efficiency power amplifier
US6101224A (en) * 1998-10-07 2000-08-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for generating a linearly modulated signal using polar modulation
US6366177B1 (en) 2000-02-02 2002-04-02 Tropian Inc. High-efficiency power modulators
US7171170B2 (en) * 2001-07-23 2007-01-30 Sequoia Communications Envelope limiting for polar modulators
US7502422B2 (en) 2003-06-04 2009-03-10 M/A—COM, Inc. Electromagnetic wave transmitter systems, methods and articles of manufacture
US7072626B2 (en) 2003-04-30 2006-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Polar modulation transmitter
JP2005045782A (ja) 2003-07-08 2005-02-17 Matsushita Electric Ind Co Ltd 変調回路装置、変調方法、及び無線通信装置
US7023292B2 (en) * 2003-12-17 2006-04-04 Telefonaktiebolaget L.M. Dericsson Polar modulation using amplitude modulated quadrature signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805191A (en) * 1971-02-10 1974-04-16 Kokusai Denshin Denwa Co Ltd Phase-amplitude multiple digital modulation system
CN1596508A (zh) * 2001-06-27 2005-03-16 德国电信股份有限公司 避免用于数字传输中的am发射机的干扰辐射的方法
CN1553588A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 一种用于sdh传输系统线路衰减补偿的自适应均衡装置

Also Published As

Publication number Publication date
JP2008539601A (ja) 2008-11-13
CN101167326A (zh) 2008-04-23
US20090079511A1 (en) 2009-03-26
US7688156B2 (en) 2010-03-30
EP1875702A1 (en) 2008-01-09
EP1875702B1 (en) 2009-02-04
WO2006118318A1 (en) 2006-11-09
DE602006005076D1 (de) 2009-03-19

Similar Documents

Publication Publication Date Title
CN101167326B (zh) 极化调制传输电路和通信设备
CN1864325B (zh) 发送装置、发送输出控制方法和无线通信装置
CN108432129B (zh) 一种功放控制方法、装置及功放控制系统
CN100362746C (zh) 发送机
US5892395A (en) Method and apparatus for efficient signal power amplification
CN102265505B (zh) 功率放大装置
CN101061632B (zh) 控制线性功率放大器的方法及其系统
CN100492888C (zh) 用于具有低峰均比的相位调制信号的前置补偿器
US20070147541A1 (en) Transmitter apparatus and wireless communication apparatus
JP4642068B2 (ja) 送信装置及び無線通信装置
US9813088B2 (en) Supply modulators with voltage and frequency partitioning
US20110111711A1 (en) High Efficiency Linear Transmitter
WO2005088842A1 (ja) 送信装置及び無線通信装置
US8054878B2 (en) Apparatus and method for amplifying signal power in a communication system
US8145148B2 (en) Transmitter and communication apparatus
CN100452663C (zh) 发送装置、发送功率控制方法、以及无线电通信装置
KR100875201B1 (ko) 진폭 변조를 위한 캐스코드 구조의 전력 증폭기
EP1649594A1 (en) Amplifying circuit comprising an envelope modulated limit cycles modulator circuit
KR20070109416A (ko) 진폭 변조를 위한 캐스코드 구조의 전력 증폭기
CN100586031C (zh) 发送装置及无线通信装置
US7689179B2 (en) Multistage amplifier apparatus with distortion compensation function

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20130426