CN101061632B - 控制线性功率放大器的方法及其系统 - Google Patents

控制线性功率放大器的方法及其系统 Download PDF

Info

Publication number
CN101061632B
CN101061632B CN200580028357XA CN200580028357A CN101061632B CN 101061632 B CN101061632 B CN 101061632B CN 200580028357X A CN200580028357X A CN 200580028357XA CN 200580028357 A CN200580028357 A CN 200580028357A CN 101061632 B CN101061632 B CN 101061632B
Authority
CN
China
Prior art keywords
profile
slicing
source signal
power amplifier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200580028357XA
Other languages
English (en)
Other versions
CN101061632A (zh
Inventor
A·阿尔萨姆
J·多莫科斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks GmbH and Co KG
Original Assignee
Nokia Siemens Networks GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Siemens Networks GmbH and Co KG filed Critical Nokia Siemens Networks GmbH and Co KG
Publication of CN101061632A publication Critical patent/CN101061632A/zh
Application granted granted Critical
Publication of CN101061632B publication Critical patent/CN101061632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/66Clipping circuitry being present in an amplifier, i.e. the shape of the signal being modified

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Holo Graphy (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明提供控制线性功率放大器的方法及其系统,线性功率放大系统包括:射频RF线性功率放大器;用于对输入Vds波形进行滤波的滤波器;削波和漏源极电压Vds轮廓发生电路,用于合成滤波包络波形和源信号延迟后的形式来生成削波轮廓和Vds轮廓;功能块,通过把源信号被分接的延迟形式与所述削波轮廓合成而产生修正的源信号;以及为RF线性功率放大器供电的开关电源,该开关电源用Vds轮廓调制;采用修正的源信号驱动RF线性功率放大器的输入端。

Description

控制线性功率放大器的方法及其系统
技术领域
本发明涉及一种控制线性功率放大器的方法,其具体用于移动通信系统。
背景技术
由于移动通信系统基站中的大部分能量都由功率放大器消耗,所以为了使基站效率更高,希望提供一种使用较小功率的功率放大器。功率放大器的电源电压被转换成RF信号,而所需的RF量随时间变化。由于功率放大器的冷却设备基于最大RF需求,所以如果能够降低也是有好处的。为了优化效率,电源电压应该跟随信号,但是电源电压常规地是固定的,并且因为电源电压随电流高速变化以跟随信号电压存在实际问题,所以电源电压和信号电压之间有功率损失。
发明内容
根据本发明的第一方面,一种控制射频RF线性功率放大器的方法,该方法包括:输入瞬态输入信号;对瞬态输入信号进行滤波以生成滤波输入信号;把源信号的滤波包络波形和所述源信号延迟后的形式经削波和漏源极电压Vds轮廓发生电路合成而生成削波轮廓和Vds轮廓;通过源信号被分接的延迟形式与所述削波轮廓合成而产生修正的源信号;根据Vds轮廓对RF线性功率放大器的开关电源进行调制;以及采用所述修正的源信号驱动RF线性功率放大器的输入端。
本发明生成修正的Vds波形用于以降低的转换速率(slew rate)驱动开关电源。
优选地,该方法还包括生成削波轮廓(clipping profile)。
优选地,该方法还包括通过利用削波轮廓修正瞬态输入信号来生成修正的输出信号。
优选地,所修正的Vds波形具有相对于瞬态输入信号降低的转换速率。
优选地,误差矢量幅值、相邻信道功率和效率被用来优化所修正的Vds波形。
优选地,所修正的Vds波形的带宽相对于瞬态输入信号的带宽是减小的。
优选地,该方法还包括修正瞬态输入信号以使它保持在修正的Vds波形的范围内。
根据本发明的第二方面,一种线性功率放大系统,该线性功率放大系统包括:射频RF线性功率放大器;用于对输入Vds波形进行滤波的滤波器;削波和漏源极电压Vds轮廓发生电路,用于合成滤波包络波形和源信号延迟后的形式来生成削波轮廓和Vds轮廓;功能块,通过把源信号被分接的延迟形式与所述削波轮廓合成而产生修正的源信号;以及为RF线性功率放大器供电的开关电源,该开关电源用Vds轮廓调制;采用修正的源信号驱动RF线性功率放大器的输入端。
优选地,所述滤波器是移动平均滤波器。
附图说明
现在将参考附图描述根据本发明的控制线性功率放大器的方法和线性功率放大系统的实例,在所述附图中:
图1是本发明系统的方框图;以及
图2是阐述本发明方法的针对大量波形的漏极电压随时间的曲线图。
具体实施方式
本发明的方法具体应用于将宽带码分多址(WCDMA)包络线动态削波,从而提高WCDMA基站中线性功率放大器的效率。
第三代基站中的单载波和多载波WCDMA信号典型地具有13到14dB的峰值与均值(p/m)比。由于功率放大器是针对最大功率设定的,而它大部分时间都工作在平均功率等级,所以这些信号的放大是非常低效的。
目前,WCDMA信号在基带中都被削波以降低峰值与均值比。典型地,信号被削波到8至9dB的p/m比。由于现在能够工作在较小补偿点,所以提高了放大器的效率。削波到较低的p/m比将进一步提高效率。然而,这将引起无法接受的误差矢量幅值(EVM)和无法接受的频谱扩展。因此当前基站的功率放大器典型地工作在9dB的p/m比并且获得10%至20%的效率。
给定信号电平的AB类线性放大器的功耗与漏极电压(Vds)成正比。已经提出了几种基于与信号包络线成比例的对Vds的调制的方法来提高效率。例如,包络线消除和恢复(EER)方法基于硬削波包络线并接着将它重新调制到功率放大器输出处的载波。在包络线追踪(ET)方法中,Vds跟随信号包络线,使得放大器在低信号电平处不消耗不必要高的功率。
然而,这些方法中没有一个是成功实施的。WCDMA信号的电压包络线变化很快;即使在单载波的情况下,也会定期出现200到300nS的瞬变时间。以这样的高速率对开关电源进行调制是不切实际的,除非采用非常高的时钟频率。然而,开关电源在高时钟频率下的效率很低。
漏极调制的第二个问题是频谱扩展。这是因功率放大器中幅值到幅值调制特性(AM/AM)和幅值到相位调制(AM/PM)失真而引起的,它将Vds频谱变换成载波频率附近的边带。由于漏极电压(Vds)随电源变化,所以输出信号的幅值和相位也有某种程度的变化。这是由于设备内部的寄生电容(Cdg-漏极到控制极)而引起的。如果Vds的变化率和它正常情况下一样快,而不是转换速率受限的漏极调制,那么边带将远离所述载波,这会引起相邻信道干扰。这可以通过基带中的预矫正得到改善;然而,很难降低到可接受的等级。本发明中,Vds变化很慢并且寄生边带因此接近于载波而不延伸到下一个信道。Vds/AM和Vds/PM特性得到改善。
图1是示出了生成信号以控制功率放大器的方框图,该功率放大器利用转换速率受限的包络线削波的基带实现。源信号S(t)2的包络波形1通过使源信号2经包络检测器3而得到。包络波形1通过有限冲击响应滤波器(FIR)4滤波而得到滤波包络信号5,该信号被输入到削波和漏源极电压(Vds)轮廓发生电路6。源信号2延迟后的形式7提供轮廓发生电路6的第二输入,该延迟信号经由延迟元件8而被延迟。延迟源信号7还被分接并且在功能块9中与来自轮廓发生电路6的削波轮廓合成,从而形成修正的源信号S’(t)11。削波轮廓10和Vds轮廓12的生成还受输入到轮廓发生电路6的模拟参数13的影响。
Vds轮廓信号12基于要传输的源信号s(t)2的包络线1的带宽限制形式。源信号S(t)2的幅值经FIR滤波器4滤波,该滤波器具有适于极平直的时域响应系数。FIR滤波器4将包络信号的带宽降低到适于驱动对功率放大器15的漏极电压进行调制的开关电源14的程度。源信号2与滤波波形同步,并且削波轮廓10和Vds轮廓12被生成。延迟元件8对通过FIR滤波器4的延迟进行补偿。削波和Vds轮廓发生电路6有两个目的。首先,调节滤波包络线使之适于驱动具有限制动态范围的开关电源14。这形成Vds轮廓输出12。其次,基于Vds轮廓信号12计算削波信号轮廓10,它能够用于消除源信号s(t)2中的任意峰值,该峰值会使得功率放大器15因不足的漏极电压而过激励。得到的两个输出是Vds轮廓信号12,其用于驱动对功率放大器15的漏极电压进行调制的开关电源14;以及修正的源信号s’(t)11,其驱动所述输入到发射器的功率放大器。
本发明通过对源信号2动态削波而克服了现有技术中的问题,使得修正的电压包络线具有降低的转换速率。参考图2,示出了单载波波形的电压包络线1。该波形的最大上升/下降时间大约为200nS。明显的是,采用开关电源追踪这种波形是不可能的。
0.5电平处的线16示出了典型用于传统基站的恒削波电平。削波线和包络波形1所包围的区域与不必要消耗的功率成比例。
对于这个例子来说,电压包络线1经20抽头的移动平均滤波器4滤波以生成轮廓、具有典型2到3μS上升/下降时间的滤波包络线5。基于瞬态包络波形1和滤波包络波形5,生成对功率放大器15的电源14进行调制的Vds轮廓12。Vds轮廓12针对最佳EVM、相邻信道功率(ACP)和效率折衷被优化,并且还考虑调制器的模拟特性。
本发明所采用的动态削波技术用几个电平对整个波形进行适当削波。相反,现有技术的固定削波方法,只作用于峰值而且在这些点进行削波更困难。不管什么时候对大功率的峰值进行削波,都会有更多引起干扰的的能量传播。本发明中,可以选择对大功率只进行适当削波,而大部分削波在低功率下进行。因此采用动态削波能量传播很少并且得到较好的峰值EVM。
由于转换速率受限的包络线削波是在基带中进行的,因此不需要重重地压缩RF设备。这意味着RF设备的AM/PM变换对RF载波的影响较小。
由于Vds的转换速率限制,所以开关电源现在能够以较低的速率工作,并且因此在功率放大器15的DC/DC变换中得到较高的效率。此外,由于Vds轮廓12的带宽降低,所以RF设备的AM/PM边带不太可能溢出到相邻信道。
本发明改变漏源极电压并且降低该变化的带宽,从而恢复一些效率。功率超出其允许值的地方有失真。存在规定了基站最大允许失真的标准,制造商通常用它来确定最大功率以满足失真限制的标准。然而,利用特定算法可以重新分配失真预算(budget)以得到期望形状。
由于输入信号规定了高峰值,所以由所述算法来控制这些峰值从而降低具有最小转换速率的波动。接着利用优化结果产生新信号。随着围绕信号峰值的折衷,通过变化方式的削波得到这个波形。第二过程是修正信号,使它不超出削波包络线。

Claims (9)

1.一种控制射频RF线性功率放大器的方法,该方法包括:输入瞬态输入信号;对瞬态输入信号进行滤波以生成滤波输入信号;把源信号的滤波包络波形和所述源信号延迟后的形式经削波和漏源极电压Vds轮廓发生电路合成而生成削波轮廓和Vds轮廓;通过源信号被分接的延迟形式与所述削波轮廓合成而产生修正的源信号;根据Vds轮廓对RF线性功率放大器的开关电源进行调制;以及采用所述修正的源信号驱动RF线性功率放大器的输入端。
2.根据权利要求1的方法,还包括生成削波轮廓。
3.根据权利要求2的方法,还包括:通过把延迟的源信号与来自轮廓发生电路的削波轮廓合成而形成修正的源信号。
4.根据前述任一项权利要求的方法,其中所述Vds轮廓具有相对于瞬态输入信号降低的转换速率。
5.根据权利要求1-3中任一项的方法,其中误差矢量值、相邻信道功率和效率被用来优化所述Vds轮廓。
6.根据权利要求1-3中任一项的方法,其中所述Vds轮廓的带宽相对于瞬态输入信号的带宽是减小的。
7.根据权利要求1-3中任一项的方法,还包括修正瞬态输入信号以将它保持在所述Vds轮廓内。
8.一种线性功率放大系统,该线性功率放大系统包括:射频RF线性功率放大器;用于对输入Vds波形进行滤波的滤波器;削波和漏源极电压Vds轮廓发生电路,用于合成滤波包络波形和源信号延迟后的形式来生成削波轮廓和Vds轮廓;功能块,通过把源信号被分接的延迟形式与所述削波轮廓合成而产生修正的源信号;以及为RF线性功率放大器供电的开关电源,该开关电源用Vds轮廓调制;采用修正的源信号驱动RF线性功率放大器的输入端。
9.根据权利要求8的系统,其中所述滤波器是移动平均滤波器。
CN200580028357XA 2004-08-25 2005-08-23 控制线性功率放大器的方法及其系统 Active CN101061632B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0418944.5A GB0418944D0 (en) 2004-08-25 2004-08-25 Method for envelope clipping
GB0418944.5 2004-08-25
PCT/GB2005/003278 WO2006021774A1 (en) 2004-08-25 2005-08-23 A method of controlling a linear power amplifier

Publications (2)

Publication Number Publication Date
CN101061632A CN101061632A (zh) 2007-10-24
CN101061632B true CN101061632B (zh) 2010-12-01

Family

ID=33104610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580028357XA Active CN101061632B (zh) 2004-08-25 2005-08-23 控制线性功率放大器的方法及其系统

Country Status (8)

Country Link
US (1) US7525377B2 (zh)
EP (1) EP1782532B1 (zh)
KR (1) KR100876125B1 (zh)
CN (1) CN101061632B (zh)
AT (1) ATE400080T1 (zh)
DE (1) DE602005007915D1 (zh)
GB (1) GB0418944D0 (zh)
WO (1) WO2006021774A1 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8165475B2 (en) * 2007-05-24 2012-04-24 Applied Optoelectronics Systems and methods for reducing clipping in multichannel modulated optical systems
JP4992741B2 (ja) * 2008-01-25 2012-08-08 富士通株式会社 電力増幅器
EP2226932B1 (en) * 2009-03-02 2013-10-16 Alcatel Lucent Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof
JP5365369B2 (ja) * 2009-06-26 2013-12-11 富士通株式会社 送信装置、歪み補償装置及び歪み補償方法
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
WO2011133542A1 (en) 2010-04-19 2011-10-27 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US9075673B2 (en) 2010-11-16 2015-07-07 Rf Micro Devices, Inc. Digital fast dB to gain multiplier for envelope tracking systems
EP2673880B1 (en) 2011-02-07 2017-09-06 Qorvo US, Inc. Group delay calibration method for power amplifier envelope tracking
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
EP2715945B1 (en) 2011-05-31 2017-02-01 Qorvo US, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
WO2013033700A1 (en) 2011-09-02 2013-03-07 Rf Micro Devices, Inc. Split vcc and common vcc power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
CN103959189B (zh) 2011-10-26 2015-12-23 射频小型装置公司 基于电感的并行放大器相位补偿
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
WO2014018861A1 (en) 2012-07-26 2014-01-30 Rf Micro Devices, Inc. Programmable rf notch filter for envelope tracking
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9300252B2 (en) 2013-01-24 2016-03-29 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
WO2014152903A2 (en) * 2013-03-14 2014-09-25 Rf Micro Devices, Inc Envelope tracking power supply voltage dynamic range reduction
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9762189B2 (en) * 2014-01-23 2017-09-12 Maxlinear, Inc. Dynamic biasing of power amplifiers
CN103929134B (zh) * 2014-05-08 2017-05-31 合肥东芯通信股份有限公司 一种电源调制方法及装置
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193085A1 (en) * 2001-06-15 2002-12-19 Telefonaktiebolaget Lm Ericsson Systems and methods for amplification of a communication signal
US20030025625A1 (en) * 2001-07-31 2003-02-06 Tamotsu Mizuno Filtering method and A/D conversion apparatus having filtering function
US6624712B1 (en) * 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
CN1476163A (zh) * 2002-07-17 2004-02-18 运行发射放大器的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043707A (en) * 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6735419B2 (en) * 2001-01-18 2004-05-11 Motorola, Inc. High efficiency wideband linear wireless power amplifier
DE10140285A1 (de) * 2001-08-16 2003-02-27 Klein & Hummel Gmbh Schaltungsanordnung zur Verstärkung eines Audiosignals
US6822523B2 (en) * 2002-08-28 2004-11-23 Motorola, Inc. Power modulator and method of operating a power modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193085A1 (en) * 2001-06-15 2002-12-19 Telefonaktiebolaget Lm Ericsson Systems and methods for amplification of a communication signal
US20030025625A1 (en) * 2001-07-31 2003-02-06 Tamotsu Mizuno Filtering method and A/D conversion apparatus having filtering function
US6624712B1 (en) * 2002-06-11 2003-09-23 Motorola, Inc. Method and apparatus for power modulating to prevent instances of clipping
CN1476163A (zh) * 2002-07-17 2004-02-18 运行发射放大器的方法和装置

Also Published As

Publication number Publication date
KR100876125B1 (ko) 2008-12-29
GB0418944D0 (en) 2004-09-29
US20070290742A1 (en) 2007-12-20
ATE400080T1 (de) 2008-07-15
EP1782532B1 (en) 2008-07-02
EP1782532A1 (en) 2007-05-09
KR20070020152A (ko) 2007-02-16
CN101061632A (zh) 2007-10-24
WO2006021774A1 (en) 2006-03-02
DE602005007915D1 (de) 2008-08-14
US7525377B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
CN101061632B (zh) 控制线性功率放大器的方法及其系统
US10038461B2 (en) RF amplifier having a transition shaping filter
KR101105926B1 (ko) 무선 통신 디바이스에서 신호 구성 기반 송신기 조정
US9107167B2 (en) Envelope tracking signal bandwidth control
US7116946B2 (en) Transmitter
US7394233B1 (en) High efficiency modulated power supply
KR101755202B1 (ko) 엔벨로프 추적 증폭기의 전력 증폭기 효율을 증가시키기 위해 형상 테이블에 적용된 파고율 감소
CN102265505B (zh) 功率放大装置
CN101167326B (zh) 极化调制传输电路和通信设备
JP4992741B2 (ja) 電力増幅器
EP2016674B1 (en) Pulse area modulation and high-efficiency linear power amplifier system using the same
US20050088226A1 (en) Switching amplifier architecture
EP2582041B1 (en) Apparatus and Method for Interleaving Switching in Power Amplifier
EP1346466A2 (en) Modulator using class-e stage
EP2332251B1 (en) Pulse-width modulation with selective pulse-elimination
US8970295B2 (en) System and method for a power amplifier
US8145148B2 (en) Transmitter and communication apparatus
Hoversten et al. System considerations for efficient and linear supply modulated RF transmitters
Briffa et al. Dynamically biased Cartesian feedback linearization
Bassoo et al. A potential transmitter architecture for future generation green wireless base station
JP2013192135A (ja) ドハティ増幅器
US20200412391A1 (en) Transmitters And Methods For Operating The Same
JP2004517541A (ja) 高効率線形電力増幅用多重化入力エンベロープ復元方式
Kumagai et al. High-efficiency power amplifier for LTE/W-CDMA system
Kim et al. Extraction of Optimal Operation Condition of QAM Envelope Tracking System using Combined Cost Function of Bandwidth and Efficiency

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NOKIA SIEMENS COMMUNICATION CO., LTD.

Free format text: FORMER OWNER: SIEMENS AG

Effective date: 20080425

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080425

Address after: Munich, Germany

Applicant after: Nokia Siemens Networks GmbH

Address before: Munich, Germany

Applicant before: Siemens AG

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: NOKIA COMMUNICATION GMBH + CO. KG

Free format text: FORMER NAME: NOKIA SIEMENS NETWORKS GMBH

CP01 Change in the name or title of a patent holder

Address after: Munich, Germany

Patentee after: NOKIA SIEMENS NETWORKS GMBH & CO. KG

Address before: Munich, Germany

Patentee before: Nokia Siemens Networks GmbH