CN101128621A - 由多孔基质和金属或金属氧化物纳米微粒组成的复合材料 - Google Patents

由多孔基质和金属或金属氧化物纳米微粒组成的复合材料 Download PDF

Info

Publication number
CN101128621A
CN101128621A CNA2006800060006A CN200680006000A CN101128621A CN 101128621 A CN101128621 A CN 101128621A CN A2006800060006 A CNA2006800060006 A CN A2006800060006A CN 200680006000 A CN200680006000 A CN 200680006000A CN 101128621 A CN101128621 A CN 101128621A
Authority
CN
China
Prior art keywords
matrix
nanoparticle
metal
precursor
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800060006A
Other languages
English (en)
Other versions
CN101128621B (zh
Inventor
罗兰·伯努瓦
莫娜·特雷盖-德勒皮埃尔
玛丽-路易斯·萨布吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite dOrleans
Original Assignee
Universite dOrleans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite dOrleans filed Critical Universite dOrleans
Publication of CN101128621A publication Critical patent/CN101128621A/zh
Application granted granted Critical
Publication of CN101128621B publication Critical patent/CN101128621B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Hall/Mr Elements (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及由微孔或中孔基质和金属或金属氧化物纳米微粒组成的复合材料。所述材料的特征在于,所述基质材料为无序的或有序并任意定向的,并且所述的纳米微粒i)当所述基质材料为有序并任意定向时,其大小为单分散的;ii)当所述基质材料为无序时,其大小为单分散的,或与所述基质材料的孔隙大小相同。制备所述材料的方法包括用纳米微粒前体的溶液浸渍微孔或中孔固体材料,然后在形成基质的材料中还原所述前体。浸渍在饱和蒸汽压及前体溶液的回流下进行,并且还原通过辐射分解法进行。

Description

由多孔基质和金属或金属氧化物纳米微粒组成的复合材料
本发明涉及由多孔基质和金属或金属氧化物纳米微粒组成的组合物材料。
由微孔或中孔无机材料和以高浓度并且均匀分布于其中的单分散金属纳米微粒组成的复合材料在许多领域引起了人们的兴趣,这些领域包括光学、磁致电阻、热电学及催化。当制备这种材料时,问题在于控制微粒的大小和分布,以及固体内部微粒之间的距离。
现有技术提出了不同的制备这种复合材料的物理化学方法。其通常包括用金属微粒的前体溶液浸渍多孔固体基质,然后用化学的、热的、辐射分解的、光化学的或电解的方法在固体基质中还原所述前体。例如,Kuei-Jung Chao等人[Preparation and characterization of highlydispersed gold nanoparticles within channels of mesoporous silica(中孔二氧化硅通道中高分散金纳米微粒的制备和表征),Catalysis Today(2004),Vol.97,Issue 1,pp.49-53]描述了一种包括用HAuCl4的酸性溶液或NaAuCl4的溶液浸渍多孔二氧化硅,然后在氢气气氛下加热还原的方法。
用溶液形式进行浸渍的方法具有许多缺点。前体溶液的浸渍程度很低,且在固体基质中不均匀。因此,首先是还原后基质内部的纳米微粒含量相对保持比较低,通常小于30%体积比,其次是纳米微粒基本上在接近多孔基质的表面富集,厚度超过约20纳米(nm)。另外,微粒大小分布很宽。
已进行了多种试验以改善多孔基质浸渍容量和均匀性。因而,有人提出延长浸渍步骤的持续时间(高达几周),同时对介质施加超声波或适度加热。然而,这些处理只产生很小的改进,并且有降解多孔固体的危险。还有人提出通过进行多次浸渍和还原循环以重复浸渍多孔固体基质。这使得增加浸渍容量成为可能。然而,该方法时间长,并且有在固体中产生大小不均匀的微粒的危险,因为可能在一个给定的循环中将金属前体还原到在先前循环中形成的金属微粒上。
还有人设想可以制备金属纳米微粒然后分散到固体多孔基质内部。例如EP 1 187 230描述了制备热电材料的方法,该方法包括用激光束照射目标材料并在真空中回收微粒的步骤,以及将真空中回收的微粒沉积到底物上的第二步骤。该方法的主要缺点在于,不能在基质内部使要得到的纳米微粒均匀分散,而在其表面区域最富集。
美国专利第6 670 539号描述了制备了由多孔基质与铋或其合金的纳米丝组成的复合材料的方法,其中基质孔隙的平均大小为5nm至15nm。该方法包括使铋蒸汽流进基质的孔隙。然后冷却多孔基质以使铋蒸汽在蒸汽入口和出口之间的孔隙中逐渐冷凝,这样在孔隙中逐渐形成铋纳米丝。然而,基质中铋蒸汽的逐渐冷凝受中孔的大小的限制,并且冷凝不均匀。不均匀的冷凝使得成核反应和纳米丝生长很难控制。这导致纳米丝不连续以及促进声子出现并干扰电子传播的晶界。此外,该文件宣称品质因数的改善与三维的、而不仅仅是二维的限制有关。在美国专利第6 670 530号中也提出将多孔基质置于预期纳米微粒前体的溶液的蒸汽中以制备复合材料。然而,在该方法中,必需迫使蒸汽穿过固体多孔基质,这需要复杂的仪器。另外发现,基质由于其多孔性而很脆弱,因此迫使蒸汽穿过基质能够导致基质的破裂。另外,该方法的热约束(T>590℃)不适于使用熔点低于该温度的中孔材料。
本发明的目的是提供有效的方法以制备由微孔或中孔固体基质与以高浓度均匀分散在其孔隙中的金属或金属氧化物纳米微粒组成的复合材料。这是本发明提供制备复合材料的方法以及得到的复合材料的原因。
本发明制备复合材料的方法包括用金属纳米微粒或金属氧化物纳米微粒的一种或多种前体的溶液浸渍微孔或中孔固体材料,然后在所述形成基质的材料内还原所述前体。所述方法的特征在于,在饱和蒸汽压和前体溶液的回流下进行浸渍,在辐射分解条件下进行还原。
前体溶液还可以含有拦截氧化性自由基的拦截剂,该试剂拦截辐照时溶液中产生的氧化性自由基,从而防止生成的胶粒被氧化。氧化性自由基拦截剂优选选自伯醇、仲醇及甲酸盐。作为实例,例如异丙醇及甲酸碱金属盐。氧化性自由基拦截剂执行两种功能,不仅捕获辐照过程中产生的氧化性自由基,还通过其与氧化性自由基的反应提供新的还原性自由基。这有助于提高金属的还原产率。当前体溶液含有足够量的拦截剂时,得到的纳米微粒由金属构成。当反应介质处于氧化条件下时(即当氧化性自由基拦截剂含量为零或很小时,或者有痕量氧气存在时,或者当介质的pH为酸性时),还原后形成的纳米微粒为前体化合物的金属氧化物颗粒。自由基拦截剂的浓度被确定为被还原的金属的量和性质以及期望颗粒的性质的函数。因此“拦截剂”/“前体金属盐”浓度比小于或等于约10-2至10-1时,纳米微粒通常为氧化物纳米微粒。“拦截剂”/“前体金属盐”浓度比不小于约103至104时,纳米微粒通常为金属纳米微粒。确定适用于形成金属纳米微粒或金属氧化物纳米微粒的每种金属的非常精确的浓度范围,这属于本领域技术人员的能力范围。
用于形成复合材料基质的微孔或中孔材料可以选自二氧化硅、氧化铝、沸石、诸如氧化锆、氧化钛的金属氧化物及呈现中孔性的聚合物[例如聚苯乙烯及二乙烯苯(DVB)与乙二醇二甲基丙烯酸酯(EDMA)的共聚物]。
术语“微孔”用于指定平均尺寸小于1nm的孔。术语“中孔”用于指定平均尺寸为1nm至100nm的孔。
在用于形成本发明复合材料的基质的微孔或中孔材料中,孔在纳米尺度的分布可以是无序的或有序的。无序的分布通常由以无序方式分布的开孔构成。有序的孔分布可以是定向的或非定向的。非定向的有序孔分布可以由以通道互相连接的孔构成。既有序又定向的分布可以例如由以规则的、有少许缺陷的六边形形式分布的通道构成。在下文中,术语“无序材料”用于表示孔无序分布的材料,术语“任意定向的有序材料”用于表示孔分布有序且任意定向的材料。
前体选自下列金属的化合物:Bi、Au、Ag、Ti、Mg、Al、Be、Mn、Zn、Cr、Cd、Co、Ni、Mo、Sn、Pb。所述化合物可以是无机盐(如硫酸盐或高氯酸盐),或者有机盐,如甲酸盐或新癸酸盐。作为新癸酸盐的实例,例如新癸酸铋。新癸酸盐使还原可以在非水介质中进行。前体还可以选自有机金属化合物。作为实例,例如二苯基镁、二苯基铍、三异丁基铝、二环戊二烯基铬、二环戊二烯基钛、二环戊二烯基镁、四羰基钴、四羰基镍、六羰基钼、二丙基镉、四烯丙基锌及四丙基铅。根据所讨论的前体盐来选择前体溶液的溶剂。作为实例,例如水、有机醇类、氨水及乙腈。
辐射分解还原可以用伽玛射线源、X-射线源或加速器源进行。
通过本发明的方法得到的复合材料包括基质和金属或金属氧化物的纳米微粒,所述基质由平均孔隙尺寸小于1nm的微孔固体材料或平均孔隙尺寸为1nm至100nm的中孔固体材料构成。所述复合材料的特征在于,基质材料为无序的或有序且任意定向的,并且:
·当所述基质材料为有序且任意定向的时,纳米微粒的大小是单分散的,且占有基质材料所有孔隙体积的50%至67%;以及
·当所述基质材料为无序的时,纳米微粒的大小为单分散的,或与所述基质材料的孔隙大小相同,且占有基质材料孔隙初始体积的至少50%。
将构成本发明主题的材料的单分散特性表征为<d>/dmax之比小于10%,其中d为纳米微粒的直径。
在基质材料无序的复合材料中,纳米微粒的尺寸尤其取决于给予辐射剂量的速率、前体的初始浓度以及孔隙尺寸。高辐射速率促进大量成核中心的产生。随着不受诸如剂量效应或前体浓度效应限制的生长,纳米微粒的尺寸只要小于孔隙的尺寸就能保持单分散。图1a和1b是复合材料的简图,其中基质材料中的孔分布分别在浸渍之前和之后是无序的。
图2a和2b是复合材料的简图,其中孔分布分别在浸渍之前和之后是有序且定向的。微孔是圆柱状通道的形式。当纳米微粒互相接触时,与纳米微粒之间空区相对应的残余多孔性为33%。该实施方案图示于图3。
固体基质由选自二氧化硅、氧化铝、沸石、诸如氧化锆、氧化钛的金属氧化物及诸如聚苯乙烯等聚合物和具有中孔性的共聚物材料构成。当基质材料的多孔性是有序的且以通道的形式任意定向的时,纳米微粒在整个基质体积中是均匀分布的。
纳米微粒由选自Bi、Au、Ag、Ti、Mg、Al、Be、Mn、Zn、Cr、Cd、Co、Ni、Mo、Sn及Pb的金属或这些金属之一的氧化物制成。
作为本发明的材料的例子,例如:
·包含含有铋、金或银纳米微粒的开孔的、无序中孔二氧化硅基质的材料;
·包含含有铋纳米微粒的、具有规则通道形式孔的任意定向的、有序中孔二氧化硅基质的材料;以及
·包含含有铋、金或银纳米微粒的开孔的、中孔氧化铝基质的材料。
本发明的方法可以在如图4所示的仪器中进行。所述仪器包括浸渍室和泵系统。所述浸渍室包括辐射室1、液氮阱2、前体溶液罐3、加热器装置4及辐射装置(未示出)。包括阀5的管将辐射室1与罐3连接。包括阀6的管将辐射室1与液氮阱2连接。泵系统包括一级泵7;二级泵8;具有阀9、10和11的管;真空测量装置12。泵系统所能达到的真空度受二级泵的限制,其值为10-7mbar。
本发明的材料可用于多种技术领域。尤其是具有中孔基质和铋纳米微粒的材料在热电学和磁致电阻方面特别有用。
在热电材料领域,铋因其优良的热电性能,特别是其2D和1D量子约束而广为人知。在这类约束中,其性能参数保持低于2。在本发明的具有中孔基质和铋纳米微粒的材料中,降低了声子的传播。
这是本发明还提供了本发明含有中孔基质和铋纳米微粒的材料作为热电材料,尤其是低温发生器或者相反地作为电压发生器的用途的原因。作为低温发生器,所述含有铋纳米微粒的复合材料可被用于设计诸如冰箱、汽车空调座椅、汽车空调、冰盒、恒温外壳或电路散热器。作为电压发生器,所述含有铋纳米微粒的复合材料可被用作诸如直接能源或蓄电池的组件。
当本发明的含有铋纳米微粒的复合材料用于磁致电阻领域时,尺寸效应显著增加磁致电阻的性质,此时磁致电阻被称作“大”。当磁致电阻值与常规的磁致电阻材料相比表现出50%的相对增加时,该值被称作“大”。该增加由下式定义:
(R-R(H))/R>50%
其中R代表没有磁场作用的材料的电阻,R(H)代表施加磁场时材料的电阻。作为实例,在300K的温度和32特斯拉(T)的磁场下,对于铋该增加达到50%。当期待这种性质时,本发明的复合材料可以被用作磁性传感器,例如用于制造磁场探测器或读取器的头部。
下面用制备复合材料的实例来说明本发明,但本发明并不限于此。
实施例1
制备包含定向且有序的二氧化硅基质以及铋纳米微粒的复合材料
在与上面所述类似的仪器中进行制备。辐射室首先用水浴在80℃加热以除去其表面上的气体和污染物,防止在壁上形成微粒。
制备前体溶液(浓度为0.6mol/L的高氯酸铋水溶液)及氧化性自由基拦截剂溶液(7mol/L的异丙醇水溶液)。
用Dongyuan Zhao,Qisheng Huo,Jianglin Feng,Bradley F.Chmelka,and Galen D.Stucky[J.Am.Chem.Soc.1998,120,6024-6036]所述的方法制备中孔二氧化硅样品。将4.0g Brij 96表面活性剂在搅拌下溶于20g水和80g 2M盐酸中。然后在室温下向得到的均一溶液中加入8.80g四乙氧基硅烷,继续搅拌20h。回收固体产物,洗涤并在室温下干燥。这样得到的材料在超过8h的时间内从室温加热至500℃。然后在允许材料冷却至室温之前暂停6h。
样品的尺寸为数毫米。孔隙的大小为6nm,样品的总孔隙率为总体积的80%。其BET表面积为342g/m2
关闭阀5和6,将前体溶液引入罐3,并将二氧化硅样品引入辐射室1。
在第一步中,开启阀6,二氧化硅样品在10-6mbar的真空下用加热器装置4加热至80℃以解吸其表面上的杂质和水分。在该操作结束时,关闭阀6,这样在辐射室中保持恒定真空度。然后,开启阀5以将前体溶液引入辐射室。前体溶液与二氧化硅接触后立即蒸发。引入前体溶液后,再次关闭阀5,部分开启阀6,用一级泵系统抽空辐射室直至所有溶解的气体被抽空,抽空通过辐射室1的冷却来表征。此时,阀5保持关闭以隔离辐射室1,其在部分真空下被加热至前体溶液的饱和蒸汽压。在室1中观察到回流现象。保持加热2h。该持续时间是形成样品的单块的大小和孔隙率的函数。
然后,开启阀5,通过罐3将异丙醇溶液引入室1。引入异丙醇溶液后再次关闭阀5。开启阀6,再次抽空辐射室1直至其冷却。异丙醇溶液迅速在前体溶液中扩散。混合物再次回流1h,然后在真空下密封。混合物回流步骤最后的真空下密封可代以在常压下将室1中的样品隔离,并用氩气吹扫辐射室30分钟(min)。
然后,浸渍过的二氧化硅块用功率为1.8kGy/h的铯137伽马射线源进行辐照1h。样品块在室1中在一级真空然后在二级真空下直接干燥。得到的样品用TEM、BET及X射线表征。
样品在处理结束后的BET表面积为60m2/g,与其初始值相比下降了87%。
图5是基于二氧化硅并于其中形成铋纳米微粒的中孔基质的暗场TEM显微图。该显微图清晰地显示了遍布中孔基质存在结晶纳米微粒。纳米微粒显示为白色,尺寸为6.0nm±0.5nm。透射电镜的电子束使得纳米微粒改变方向。因此,作为其方向的函数,纳米微粒或衍射或不衍射。这解释了为什么这类显微图只显示存在于二氧化硅晶格中所有纳米微粒的一部分。图5显示可以在有组织的中孔二氧化硅内部制备稳定的高浓度、小间隔的结晶纳米微粒。
上述图3中还显示了二氧化硅/铋样品的结构,其中基质的微孔为有序且定向的类型,并具有圆柱体通道的形式。在图3中,上部为显示其通道中铋纳米微粒排列的材料样品的透射电镜(TEM)显微图。其构成如图5所示的样品的放大视图。下部为通道一部分的示意图。其显示浸渍如何变化,以及对作为球形铋纳米微粒之间的周期距离a的函数的浸渍百分比的限制。当铋纳米微粒彼此接触时,与纳米微粒间的真正空间相应的残余孔隙率为33%。
图6显示了X射线衍射显微图,其中还显示了与JCPDS 05-0519卡一致的线强度。强度I为纵坐标,角度θ为横坐标。曲线对应于本发明当前实施例的材料。标有I=100、I=40等的线对应于JCPDS05-0519卡的线。在由中孔二氧化硅得到的连续背景上可以看到金属铋的4个衍射峰。这些射线相对于连续背景的强度很小,这与铋的高吸附能有关,在1.6KW及40KeV,对于Cu-K-αX射线源其质量吸收系数为15cm2/g。将谱图与JCPDF数据库的05-0519卡数据相比较,证实形成的纳米微粒为铋金属而不是铋氧化物。
实施例2
制备含有无序的、具有开孔并含有铋纳米微粒的二氧化硅基质的材料
进行与实施例1中相同的操作,但对下列步骤进行修改。
通过Polartz等人[Chemical communication(2002),pp 2593-2604]及Gltner等人[Advanced materials(1991),Vol.9,Issue 5]描述的方法得到无序的二氧化硅基质。将3g嵌段共聚物(聚苯乙烯-b-聚环氧乙烷)溶于6g三甲氧基硅烷(TMOS)中,然后加入3g盐酸HCl。通过真空蒸发除去作为TMOS的溶剂存在的甲醇,得到的凝胶在60℃加热24h。在氧气流和750℃下加热12h除去共聚物。样品的尺寸为数毫米。孔隙大小为2nm至4nm,样品的总孔隙率为总体积的70%。BET表面积为580g/m2
用功率为1.8kGy/h的铯137伽马射线源进行辐照2h。图7显示所得材料的TEM显微图。图象分析证实浸渍率超过70%,而材料的初始孔隙率用BET测定为80%。由于辐照率高,微粒的大小和形状与孔隙相配。
实施例3
制备包含含有银纳米微粒的无序二氧化硅基质的复合材料
避光制备了10mM的硫酸银Ag2SO4前体溶液以防止光化学分解和氧化性自由基拦截剂溶液(7mol/L的异丙醇水溶液)。
用实施例2中提到的方法制备一块无序二氧化硅。浸渍银盐的方法与实施例1中的相同。室1和3用铝箔覆盖以保护前体不受光照。然后浸渍的二氧化硅块用功率为1.8kGy/h的铯137伽马射线源进行辐照1h。然后该块在室1中在一级真空然后在二级真空下直接干燥。

Claims (25)

1.制备复合材料的方法,所述方法包括用金属纳米微粒或金属氧化物纳米微粒的一种或多种前体溶液浸渍微孔或中孔固体材料,然后在所述形成基质的材料中还原所述前体,所述方法的特征在于,在饱和蒸汽压及所述前体溶液的回流下进行浸渍,并且通过辐射分解进行所述还原。
2.根据权利要求1所述的方法,其特征在于,所述前体溶液还含有氧化性自由基拦截剂。
3.根据权利要求2所述的方法,其特征在于,“拦截剂”/“前体金属盐”浓度之比不小于约103至104
4.根据权利要求2所述的方法,其特征在于,“拦截剂”/“前体金属盐”浓度之比小于或等于约10-2至10-1
5.根据权利要求1所述的方法,其特征在于,所述微孔或中孔材料选自二氧化硅、氧化铝、沸石、诸如氧化锆、氧化钛的金属氧化物及呈现中孔性的聚合物。
6.根据权利要求1所述的方法,其特征在于,所述微孔或中孔材料中孔在纳米尺度的分布是无序的。
7.根据权利要求1所述的方法,其特征在于,所述微孔或中孔材料中孔在纳米尺度的分布是有序且任意定向的。
8.根据权利要求1所述的方法,其特征在于,所述纳米微粒前体选自下列金属的化合物:Bi、Au、Ag、Ti、Mg、Al、Be、Mn、Zn、Cr、Cd、Co、Ni、Mo、Sn和Pb。
9.根据权利要求8所述的方法,其特征在于,所述纳米微粒前体化合物为无机盐、有机盐或有机金属化合物。
10.根据权利要求9所述的方法,其特征在于,所述无机盐为硫酸盐或高氯酸盐。
11.根据权利要求9所述的方法,其特征在于,所述有机盐为甲酸盐或新癸酸盐。
12.根据权利要求11所述的方法,其特征在于,所述前体为新癸酸铋。
13.根据权利要求9所述的方法,其特征在于,所述前体化合物为选自二苯基镁、二苯基铍、三异丁基铝、二环戊二烯基铬、二环戊二烯基钛、二环戊二烯基镁、四羰基钴、四羰基镍、六羰基钼、二丙基镉、四烯丙基锌及四丙基铅的有机金属化合物。
14.根据权利要求2所述的方法,其特征在于,所述氧化性自由基拦截剂为伯醇、仲醇及甲酸碱金属盐。
15.根据权利要求1所述的方法,其特征在于,使用伽玛射线源、X-射线源或加速器源进行所述辐射分解还原。
16.由基质和金属或金属氧化物的纳米微粒组成的复合材料,所述基质由平均孔隙尺寸小于1nm的微孔固体材料或平均孔隙尺寸为1nm至100nm的中孔固体材料构成,所述材料的特征在于,所述基质材料为无序的或有序且任意定向的,并且:
·当所述基质材料为有序且任意定向的时,所述纳米微粒的大小是单分散的,且占所述基质材料所有孔隙体积的50%至67%;以及
·当所述基质材料为无序的时,所述纳米微粒的大小为单分散的,或与所述基质材料的孔隙大小相同,且占所述基质材料孔隙初始体积的至少50%。
17.根据权利要求16所述的复合材料,其特征在于,所述固体基质由选自二氧化硅、氧化铝、沸石、诸如氧化锆、氧化钛的金属氧化物及呈现中孔性的聚合物的材料构成。
18.根据权利要求16所述的复合材料,其特征在于,所述纳米微粒由下列金属:Bi、Au、Ag、Ti、Mg、Al、Be、Mn、Zn、Cr、Cd、Co、Ni、Mo、Sn、Pb或所述金属之一的氧化物构成。
19.根据权利要求16所述的复合材料,其特征在于,所述基质材料为中孔的并且所述纳米微粒由铋构成。
20.根据权利要求16所述的复合材料,其特征在于,所述基质的微孔性为有序且定向的,为圆柱体通道的形式,并且所述纳米微粒彼此接触,与所述纳米微粒间的真正空间相应的残余孔隙率为33%。
21.权利要求19所述的复合材料作为热电材料的用途。
22.包含权利要求19所述的复合材料作为活性材料的低温发生器。
23.包含权利要求19所述的复合材料作为活性材料的电压发生器。
24.权利要求19所述的复合材料作为具有大磁致电阻的磁致电阻材料的用途。
25.磁性传感器,其特征在于,其含有权利要求19所述的材料作为活性材料。
CN2006800060006A 2005-02-24 2006-02-16 由多孔基质和金属或金属氧化物纳米微粒组成的复合材料 Expired - Fee Related CN101128621B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0501879A FR2882371B1 (fr) 2005-02-24 2005-02-24 Materiau composite constitue par une matrice poreuse et des nanoparticules de metal ou d'oxyde de metal
FR0501879 2005-02-24
PCT/FR2006/000357 WO2006090046A2 (fr) 2005-02-24 2006-02-16 Materiau composite constitue par une matrice poreuse et des nanoparticules de metal ou d'oxyde de metal

Publications (2)

Publication Number Publication Date
CN101128621A true CN101128621A (zh) 2008-02-20
CN101128621B CN101128621B (zh) 2011-12-28

Family

ID=35044988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800060006A Expired - Fee Related CN101128621B (zh) 2005-02-24 2006-02-16 由多孔基质和金属或金属氧化物纳米微粒组成的复合材料

Country Status (7)

Country Link
US (1) US20080176059A1 (zh)
EP (1) EP1851359A2 (zh)
JP (1) JP5230206B2 (zh)
CN (1) CN101128621B (zh)
CA (1) CA2597785C (zh)
FR (1) FR2882371B1 (zh)
WO (1) WO2006090046A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759141A (zh) * 2008-12-23 2010-06-30 三星电机株式会社 复合氧化物纳米颗粒及其制造方法和多层陶瓷电容器
CN101638218B (zh) * 2009-08-19 2011-11-23 中国科学院化学研究所 一种纳米复合材料及其制备方法与应用
CN103140971A (zh) * 2010-06-25 2013-06-05 日本硅电子技术株式会社 电极用集流体材料及其制造方法
CN104681045A (zh) * 2013-12-03 2015-06-03 株式会社东芝 垂直磁记录介质
CN113224279A (zh) * 2021-07-07 2021-08-06 北京壹金新能源科技有限公司 一种提高首次库伦效率的氧化亚硅基复合负极材料及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426139B2 (ja) * 2008-10-17 2014-02-26 花王株式会社 複合膜
KR101660414B1 (ko) * 2008-11-10 2016-09-29 삼성전자주식회사 음극활물질, 이를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조방법
US9105925B2 (en) 2008-11-10 2015-08-11 Samsung Electronics Co., Ltd. Anode active material comprising a porous transition metal oxide, anode comprising the anode active material, lithium battery comprising the anode, and method of preparing the anode active material
RU2011144115A (ru) * 2009-04-02 2013-05-10 Басф Се Термоэлектрический модуль с изолированным субстратом
US8652685B2 (en) * 2010-01-29 2014-02-18 Eveready Battery Co., Inc. Method of making an electrochemical cell with a catalytic electrode including manganese dioxide
KR101133007B1 (ko) * 2010-04-12 2012-04-03 (주) 더몰론코리아 은 나노입자가 분산 함유된 구상형 메조세공 실리카의 제조방법
WO2012095786A2 (en) 2011-01-11 2012-07-19 L'oreal Anti-uv cosmetic composition
FR2971151B1 (fr) 2011-02-04 2013-07-12 Oreal Composition cosmetique contenant des particules filtrantes de materiau composite, des particules non filtrantes non-spheriques et au moins une huile polaire
FR2971149B1 (fr) 2011-02-04 2013-07-12 Oreal Composition cosmetique contenant un melange de particules filtrantes de materiau composite spheriques et non spheriques
FR2971148B1 (fr) 2011-02-04 2018-04-20 L'oreal Composition cosmetique sous forme d'emulsion eau-dans-huile sans emulsionnant silicone contenant des particules non-spheriques de materiau composite
KR20140043323A (ko) 2011-02-09 2014-04-09 신닛테츠 수미킨 가가쿠 가부시키가이샤 금속 미립자 분산 복합체 및 그 제조 방법, 그리고 국재형 표면 플라즈몬 공명 발생 기판
FR2971706B1 (fr) 2011-02-18 2013-02-15 Oreal Composition contenant des particules composites filtrantes et des particules de filtres inorganiques modifiees hydrophobes par une huile ou cire d'origine naturelle
FR2971707B1 (fr) 2011-02-18 2013-02-15 Oreal Composition cosmetique aqueuse contenant des particules de materiau composite et du gamma-oryzanol
JP5768612B2 (ja) * 2011-09-16 2015-08-26 株式会社豊田中央研究所 ナノヘテロ構造熱電材料の製造方法
JP5826688B2 (ja) * 2012-03-19 2015-12-02 新日鉄住金化学株式会社 金属微粒子分散複合体及びその製造方法
FR2993176B1 (fr) 2012-07-13 2014-06-27 Oreal Composition cosmetique contenant des particules composites filtrantes de taille moyenne superieure a 0,1 micron et des particules de filtre inorganique et une phase aqueuse
FR3006176B1 (fr) 2013-05-29 2015-06-19 Oreal Particules composites a base de filtre uv inorganique et de perlite ; compositions cosmetiques ou dermatologiques les contenant
KR101774649B1 (ko) * 2015-10-14 2017-09-04 현대자동차주식회사 나노복합체형 열전소재 및 이의 제조방법
FR3066107B1 (fr) 2017-05-12 2019-07-12 L'oreal Composition photostable a base de particules composites de perlite/titanium/silice
CN112691689B (zh) * 2020-12-28 2022-07-15 中国工程物理研究院核物理与化学研究所 一种单原子催化剂的蒸气辐照还原合成方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140981A (en) * 1935-04-11 1938-12-20 Philip C P Booty Process of impregnating wood and the like
US2120816A (en) * 1935-11-01 1938-06-14 Solar Mfg Corp Impregnating process for electrolytic condensers
US4248741A (en) * 1979-05-29 1981-02-03 The Dow Chemical Company Method of making catalysts for the production of ethylene oxide
US4333523A (en) * 1979-11-01 1982-06-08 Miles Laboratories, Inc. Reflux condenser
US4343687A (en) * 1980-05-27 1982-08-10 Research Foundation Of City University Of New York Production of chain reactions by laser chemistry
US4538016A (en) * 1982-03-08 1985-08-27 Mobil Oil Corporation Catalysis over activated zeolites
FR2565844B1 (fr) * 1984-06-13 1988-10-28 Centre Nat Rech Scient Nouveaux microagregats de metaux non nobles, procede pour leur preparation et application a la catalyse de la photoreduction de l'eau
US5192731A (en) * 1988-05-13 1993-03-09 Mitsui Petrochemical Industries, Ltd. Titanium catalyst components, process for preparing same, catalysts containing same for preparing ethylene polymers and process for preparing said ethylene polymers
US5254374A (en) * 1992-04-08 1993-10-19 The United States Of America As Represented By The United States Department Of Energy Chemical vapor infiltration using microwave energy
EP0799090B1 (de) * 1994-12-21 1999-05-19 Rwe-Dea Aktiengesellschaft Für Mineraloel Und Chemie Alumosilikat-träger für metathese katalysatoren
US5624718A (en) * 1995-03-03 1997-04-29 Southwest Research Institue Diamond-like carbon based electrocatalytic coating for fuel cell electrodes
WO1997029165A1 (en) * 1996-02-08 1997-08-14 Philips Electronics N.V. Luminescent screen
JPH10130013A (ja) * 1996-09-09 1998-05-19 Toyota Central Res & Dev Lab Inc クラスター包接材料
US6812180B2 (en) * 1997-12-10 2004-11-02 Idemitsu Kosan Co., Ltd. Method for preparing catalyst
US6680013B1 (en) * 1999-04-15 2004-01-20 Regents Of The University Of Minnesota Synthesis of macroporous structures
US6670539B2 (en) * 2001-05-16 2003-12-30 Delphi Technologies, Inc. Enhanced thermoelectric power in bismuth nanocomposites
FR2840547B1 (fr) * 2002-06-11 2005-03-04 Commissariat Energie Atomique Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations
US20040235657A1 (en) * 2003-05-21 2004-11-25 Fina Technology, Inc. Freeze dry process for the preparation of a high surface area and high pore volume catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759141A (zh) * 2008-12-23 2010-06-30 三星电机株式会社 复合氧化物纳米颗粒及其制造方法和多层陶瓷电容器
CN101638218B (zh) * 2009-08-19 2011-11-23 中国科学院化学研究所 一种纳米复合材料及其制备方法与应用
CN103140971A (zh) * 2010-06-25 2013-06-05 日本硅电子技术株式会社 电极用集流体材料及其制造方法
CN104681045A (zh) * 2013-12-03 2015-06-03 株式会社东芝 垂直磁记录介质
CN113224279A (zh) * 2021-07-07 2021-08-06 北京壹金新能源科技有限公司 一种提高首次库伦效率的氧化亚硅基复合负极材料及其制备方法
CN113224279B (zh) * 2021-07-07 2021-09-10 北京壹金新能源科技有限公司 一种提高首次库伦效率的氧化亚硅基复合负极材料及其制备方法

Also Published As

Publication number Publication date
CA2597785C (fr) 2013-04-09
US20080176059A1 (en) 2008-07-24
CA2597785A1 (fr) 2006-08-31
CN101128621B (zh) 2011-12-28
FR2882371A1 (fr) 2006-08-25
WO2006090046A3 (fr) 2007-08-09
JP5230206B2 (ja) 2013-07-10
FR2882371B1 (fr) 2008-01-18
WO2006090046A2 (fr) 2006-08-31
JP2008531447A (ja) 2008-08-14
EP1851359A2 (fr) 2007-11-07

Similar Documents

Publication Publication Date Title
CN101128621B (zh) 由多孔基质和金属或金属氧化物纳米微粒组成的复合材料
Papadas et al. A high surface area ordered mesoporous BiFeO 3 semiconductor with efficient water oxidation activity
EP2812110B1 (en) Preparation of highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles
Liu et al. Sea urchin-like Ag–α-Fe 2 O 3 nanocomposite microspheres: synthesis and gas sensing applications
Bing et al. Synthesis of double-shelled SnO 2 nano-polyhedra and their improved gas sensing properties
Han et al. Controlled synthesis of double-shelled CeO 2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid
Xuan et al. One step method to encapsulate nanocatalysts within Fe 3 O 4 nanoreactors
Tian et al. CO oxidation catalyzed by Ag/SBA-15 catalysts prepared via in situ reduction: the influence of reducing agents
Mahugo et al. Observation of Ag nanoparticles in/on Ag@ MIL-100 (Fe) prepared through different procedures
Sun et al. Synthesis of double-shelled SnO 2 hollow cubes for superior isopropanol sensing performance
Borisov et al. Carbon-Supported Palladium–Gold Bimetallic Disperse Systems Formed in Aqueous Solutions at 110° С
Baaziz et al. Thermal behavior of Pd@ SiO 2 nanostructures in various gas environments: a combined 3D and in situ TEM approach
KR102119392B1 (ko) 에어로젤 분말의 제조방법
Carta et al. Cubic Mesoporous Silica (SBA‐16) Prepared Using Butanol as the Co‐Surfactant: A General Matrix for the Preparation of FeCo‐SiO2 Nanocomposites
Miyao et al. Remarkable hydrogen occlusion ability of hollow Ir-SiO 2 nanoparticles prepared by reversed micelle techniques
JP6759298B2 (ja) 酸素貯蔵材料及びその製造方法
TWI400195B (zh) 儲氫結構形成方法
Yang et al. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling
Bhaumik et al. Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica
Liu et al. Fabrication of CeO2@ MnO2 core–shell nanospheres and their application in CO oxidation
US11484866B2 (en) Composite materials and methods of making and use thereof
Vasilev et al. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol
Kasatkin et al. Cu/ZnO and Cu/ZrO 2 interactions studied by contact angle measurement with TEM
Sun et al. Fabrication of functional hollow carbon spheres with large hollow interior as active colloidal catalysts
Wang et al. Effects of different functional group-containing organics on morphology-controlled synthesis of silver nanoparticles at room temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111228

Termination date: 20180216

CF01 Termination of patent right due to non-payment of annual fee