CN101125908B - 一种耐热基体树脂及其制备方法 - Google Patents

一种耐热基体树脂及其制备方法 Download PDF

Info

Publication number
CN101125908B
CN101125908B CN2006100892678A CN200610089267A CN101125908B CN 101125908 B CN101125908 B CN 101125908B CN 2006100892678 A CN2006100892678 A CN 2006100892678A CN 200610089267 A CN200610089267 A CN 200610089267A CN 101125908 B CN101125908 B CN 101125908B
Authority
CN
China
Prior art keywords
resin
apmi
propargyl
heat
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100892678A
Other languages
English (en)
Other versions
CN101125908A (zh
Inventor
赵彤
罗振华
王明存
魏柳荷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN2006100892678A priority Critical patent/CN101125908B/zh
Publication of CN101125908A publication Critical patent/CN101125908A/zh
Application granted granted Critical
Publication of CN101125908B publication Critical patent/CN101125908B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明公开了一种耐热基体树脂及其制备方法。本发明所提供的耐热基体树脂,是由式I结构的PN树脂与式II结构的APMI单体反应得到的。本发明根据PN树脂和APMI单体的特点,采用APMI单体来改性PN树脂,开发出一种具有良好耐热性和工艺性的耐高温复合材料用基体树脂(PN-APMI树脂)。测试结果表明,本发明PN-APMI树脂体系同时具备优良的固化反应活性和优异的耐热性能,制备简单,操作方便,成本较低,适合大规模的推广应用。

Description

一种耐热基体树脂及其制备方法
技术领域
本发明涉及耐高温复合材料用基体树脂及其制备方法。
背景技术
树脂基复合材料具有质轻、比强度和比刚度高、可设计性强以及易于成型大面积结构件等优点,因此被广泛应用于建筑、交通运输和船舶制造领域,同时也受到了航空航天工业的青睐,并被认为是航空航天材料技术进步的重要标志。但是,随着航空航天以及空间技术的发展,该领域对复合材料的耐高温性能提出了更高的要求,因此开发具有优良耐高温性能和优良工艺性的基体树脂成为新的研究热点。
双马来酰亚胺(简称BMI)是由聚酰亚胺派生出来的一类耐热基体树脂,它是以马来酰亚胺集团为活性端基的双官能度化合物。该树脂的突出优点是具有良好的耐热性、高耐疲劳性能以及与环氧树脂相当的耐湿热性能,因此被广泛用于先进复合材料基体树脂。但是,由于该树脂固化物具有很高的交联密度,而且主链中芳环结构密度大,导致固化树脂呈脆性,而且其耐热性也已无法再满足新技术发展的需要,从而限制了该树脂的更加广泛的应用。
乙炔基封端的树脂是另一类耐高温基体树脂,这类树脂具有优良的耐热性和热氧稳定性,而且该树脂具有优良的反应活性,可以在130℃通过热引发而聚合。该树脂的缺点是难以获得良好的流动性,不利于成型加工。
美国专利US48889912公开了一种以乙炔基封端的苯基马来酰亚胺单体-N-(3-乙炔基苯基)马来酰亚胺(APMI)单体,其结构如式(II)所示。该结构特点赋予了该单体一系列优良的性能,如低熔点(129~131℃),优良的固化反应性以及优异的耐热性。但是,该单体的缺点是固化物脆性较大,而且由于其本身为小分子,非密闭环境下固化失重过大,另外其生产成本也偏高。
炔丙基醚化酚醛树脂(PN树脂)是一类加成固化型酚醛树脂,其分子结构如式I所示,其中n为树脂的聚合度,为2~6的整数。文献(Mingcun Wang,Liuhe Wei,TongZhao,Addition-curable propargyl-containing novolac-type phenolic resin:Itssynthesis,characterization,cure,and thermal properties.Journal of appliedpolymer science,2005;99(3):1010-1017)报道了PN树脂的合成工艺,如式(III)所示。PN树脂的分子量可以通过调整线型酚醛树脂母体的分子量(Mn)加以控制,树脂的炔丙基化程度可以通过控制溴丙炔的加入量加以控制,而且当炔丙基与酚羟基的摩尔比超过1∶1时,由于重排反应的发生会使部分氧炔丙基重排的到邻位,此时PN树脂的炔丙基化程度会超过100%。
该PN树脂的固化可以通过炔丙基官能团的热加成反应加以实现,固化过程中无小分子的逸出,易于成型无孔致密材料,而且PN树脂表现出很好的耐热性,动态热机械分析(DMA)测试结果表明,该树脂的模量起始下降温度(E’onset)为357℃。但是,该树脂突出缺点是固化反应性较差,差示扫描量热(DSC)分析结果表明,该树脂固化反应起始温度(Tonset)接近为200℃,固化峰值温度(Tpeak)高达264℃,这些特点给PN树脂的成型加工带来新的困难,限制了其广泛应用。
发明内容
本发明的目的是提供一种耐热性和工艺性皆好的耐热基体树脂及其制备方法。
本发明所提供的耐热基体树脂,是由式I结构的PN树脂与式II结构的APMI单体反应得到的。
本发明通过把PN树脂和APMI单体在一定温度下反应性共混,利用PN树脂中的炔丙基官能团同APMI单体结构中的马来酰亚胺基团间的预聚反应,实现APMI单体的树脂化,最终得到一种新型耐高温复合材料基体树脂(PN-APMI树脂)。
通过调整PN树脂与APMI单体的质量比,可得到具有不同耐热性和工艺性能的PN-APMI树脂,其中,优选的,PN树脂与APMI单体的质量比为1∶4-4∶1。
在本发明中,所使用的PN树脂的数均分子量为350~2000,炔丙基化程度范围为20%~120%。
预聚反应温度控制在120℃~135℃,预聚反应时间为20min~40min。
本发明根据PN树脂和APMI单体的特点,采用APMI单体来改性PN树脂,开发出一种具有良好耐热性和工艺性的耐高温复合材料用基体树脂(PN-APMI树脂)。通过凝胶时间测试和DSC测试评价了PN-APMI树脂体系的固化反应性,利用DMA测试评价该树脂固化物的耐热性。测试结果表明,本发明PN-APMI树脂体系同时具备优良的固化反应活性和优异的耐热性能:与PN树脂相比,凝胶时间测试结果表明,170℃下凝胶时间由140min缩短到5~32min(配方不同凝胶时间不同),DSC测试结果表明固化反应Tpeak由264℃降低到198~250℃(配方不同峰值温度不同);而树脂的耐热性却大大提高,DMA测试结果表明,树脂固化物E’onset由356.8℃提高到358.4~431.4℃,Tg由375.5℃提高到385.7℃~474.4℃。另一方面,与APMI单体相比,固化过程质量损失大大降低,脆性得到改善,可生产成本大大。本发明PN-APMI树脂制备简单,操作方便,成本较低,适合大规模的推广应用。
具体实施方式
实施例1、制备PN-APMI-4-1树脂
取PN树脂(数均分子量为750,炔丙基化程度为115%)60g加入250ml的三口烧瓶,装好机械搅拌、回流冷凝管以及温度计。采用油浴加热,边搅拌边升温,直至体系升温至120℃。称取APMI单体15g,迅速加入烧瓶,加大搅拌力度,保持加热,待树脂体系呈透明后再保温搅拌30min,出料,最终得到PN-APMI-4-1树脂70g。
采用拔丝法在自制的平板圆孔凝胶时间测定仪上,测量树脂PN-APMI-4-1在170℃下的凝胶时间,结果如表1所示。测试结果表明,与PN树脂相比,凝胶时间由140min缩短到31.6min,树脂的固化反应活性大大提高。
采用DSC表征树脂的热固化特性。试验采用N2氛围,温度范围25~450℃,升温速率为10℃/min。测试结果如表2所示,表明固化反应存在两个放热峰,分别位于160~310℃和310~360℃,前者为主放热峰归属于两组份间的共固化,后者为次放热峰,放热量很小,应归属于过量炔丙基集团自身的热固化以及不饱和炔基的热聚合。主固化反应的峰值温度为250.62℃,比PN树脂降低了13.5℃。
按140℃(1h)+160℃(2h)+200℃(2h)+250℃(4h)的固化制度制作PN-APMI树脂浇铸体。采用DMA评价其耐热性。采用N2氛围,流速为50ml/min,升温速率为5℃/min,测试频率为1HZ,测试结果如表3所示。测试结果表明,与PN树脂相比,该树脂的耐热性略有升高,Eonset=358.4℃,Tg=385.7℃。
实施例2、制备PN-APMI-2-1树脂
取PN树脂(数均分子量为750,炔丙基化程度为115%)40g加入250ml的三口烧瓶,装好机械搅拌、回流冷凝管以及温度计。采用油浴加热,边搅拌边升温,直至体系升温至120℃。称取APMI单体20g,迅速加入烧瓶,加大搅拌力度,保持加热,待树脂体系呈透明后再保温搅拌32min,出料,最终得到PN-APMI-2-1树脂56g。
采用拔丝法在自制的平板圆孔凝胶时间测定仪上,测量树脂PN-APMI-2-1在170℃下的凝胶时间,结果如表1所示,表明凝胶时间缩短到18.8min,树脂的固化反应活性大大提高。
采用DSC表征树脂的热固化特性。试验采用N2氛围,温度范围25~450℃,升温速率为10℃/min。测试结果如表1所示,表明固化反应仍存在两个放热峰,分别位于170~310℃和315~390℃,前者为主放热峰归属于两组份间的共固化,后者为次放热峰,与PN-APMI-4-1相比放热量占的比例更小,该峰应归属于不饱和炔基的热固化。主固化反应的峰值温度为224.05℃,比PN树脂降低了40℃,说明树脂的热固化活性大大升高。
按140℃(1h)+160℃(2h)+200℃(2h)+250℃(4h)的固化制度制作PN-APMI-2-1树脂浇铸体。采用DMA评价其耐热性,结果如表3所示。测试结果表明,Eonset=368.4℃,Tg=414.2℃,表明该树脂的耐热得到了提高。
实施例3、制备PN-APMI-1-1树脂
取PN树脂(数均分子量为750,炔丙基化程度为115%)40g加入250ml的三口烧瓶,装好机械搅拌、回流冷凝管以及温度计。采用油浴加热,边搅拌边升温,直至体系升温至130℃。称取APMI单体40g,迅速加入烧瓶,加大搅拌力度,保持加热,待树脂体系呈透明后再保温搅拌28min,出料,最终得到PN-APMI-1-1树脂76g。
采用拔丝法在自制的平板圆孔凝胶时间测定仪上,测量树脂PN-APMI-1-1在170℃下的凝胶时间,结果如表1所示,表明凝胶时间缩短到8.7min,树脂的固化反应活性大大提高。
采用DSC表征树脂的热固化特性。试验采用N2氛围,温度范围25~450℃,升温速率为10℃/min。测试结果如表1所示,结果表明固化反应仍存在两个放热峰,分别位于150~320℃和350~410℃,前者为主放热峰归属于两组份间的共固化,后者为次放热峰,与PN-APMI-2-1相比放热量占的比例更小,该峰应归属于不饱和炔基的热固化。主固化反应的峰值温度为222.6℃,比PN树脂降低了41℃,说明树脂的热固化活性大大升高。
按140℃(1h)+160℃(2h)+200℃(2h)+250℃(4h)的固化制度制作PN-APMI-1-1树脂浇铸体。采用DMA评价其耐热性,结果如表3所示。测试结果表明,Eonset=386.4℃,与PN树脂相比提高了30℃,表明该树脂的耐热得到了较大幅度的提高。
实施例4、制备PN-APMI-1-2树脂
取APMI单体40g加入250ml的三口烧瓶,装好机械搅拌、回流冷凝管以及温度计。采用油浴加热,边搅拌边升温,直至体系升温至135℃。待单体熔融,称取PN树脂(数均分子量为1500,炔丙基化程度为50%)20g,迅速加入烧瓶,加大搅拌力度,保持加热,待树脂体系呈透明后再保温搅拌25min,出料,最终得到PN-APMI-1-2树脂56g。
采用拔丝法在自制的平板圆孔凝胶时间测定仪上,测量树脂PN-APMI-1-2在170℃下的凝胶时间,结果如表1所示,测试结果表明其凝胶时间为4.4min。
采用DSC表征树脂的热固化特性。试验采用N2氛围,温度范围25~450℃,升温速率为10℃/min,测试结果如表1所示。测试结果表明,本树脂的固化反应只存在一个放热峰,位于150~320℃。固化反应的放热温度范围宽,放热缓慢,容易控制。固化放热峰的Tonset=189.37℃,Tpeak=221℃,比PN树脂降低了43℃,说明树脂的热固化活性大大升高。
按140℃(1h)+160℃(2h)+200℃(2h)+250℃(4h)的固化制度制作PN-APMI-1-2树脂浇铸体。采用DMA评价其耐热性,结果如表3所示。测试结果表明,Eonset=415.8℃,与PN树脂相比提高了将近60℃,表明该树脂的耐热大大提高。
实施例5、制备PN-APMI-1-4树脂
取APMI单体60g加入250ml的三口烧瓶,装好机械搅拌、回流冷凝管以及温度计。采用油浴加热,边搅拌边升温,直至体系升温至135℃。称取PN树脂(数均分子量为1000,炔丙基化程度为95%)15g,迅速加入烧瓶,加大搅拌力度,保持加热,待树脂体系呈透明后再保温搅拌23min,出料,最终得到PN-APMI-1-4树脂70g。
采用拔丝法在自制的平板圆孔凝胶时间测定仪上,测量树脂PN-APMI-1-4在170℃下的凝胶时间,结果如表1所示,测试结果表明其凝胶时间为1.5min。
采用DSC表征树脂的热固化特性。试验采用N2氛围,温度范围25~450℃,升温速率为10℃/min,测试结果如表1所示。测试结果表明,本树脂的固化反应只存在一个放热峰,位于145~320℃。固化反应的放热温度范围宽,放热缓慢,容易控制。固化放热峰的Tonset=185.37℃,Tpeak=216.57℃,比PN树脂将近50℃,说明树脂的热固化活性大大提高。
按140℃(1h)+160℃(2h)+200℃(2h)+250℃(4h)的固化制度制作PN-APMI-1-4树脂浇铸体。采用DMA评价其耐热性,结果如表3所示。测试结果表明,Eonset=415.8℃,与PN树脂相比提高了将近75℃,表明该树脂的耐热大大提高。
表1PN-APMI树脂体系在170℃下的凝胶时间
Figure G06189267820060825D000061
表2PN-APMI树脂体系DSC测试结果的特征参数
表3PN-APMI树脂体系DMA测试结果的特征参数
以上结果表明,本发明的耐热基体树脂,与PN树脂相比,其凝胶时间大大缩短,固化反应峰值温度下降了14~70℃,而树脂的耐热性却大大提高,树脂固化物的玻璃化转变温度提高了10~100℃;另一方面,与APMI单体相比,固化过程质量损失大大降低,脆性得到改善。

Claims (5)

1.一种耐热基体树脂,是由式I结构的炔丙基醚化酚醛树脂与式II结构的N-(3-乙炔基苯基)马来酰亚胺单体反应得到的,n为2-6的整数;
所述炔丙基醚化酚醛树脂与N-(3-乙炔基苯基)马来酰亚胺单体的质量比为1∶4-4∶1。
Figure DEST_PATH_FA20192135200610089267801C00011
2.根据权利要求1所述的耐热基体树脂,其特征在于:所述炔丙基醚化酚醛树脂的数均分子量为350~2000,炔丙基化程度范围为20%~120%。
3.权利要求1所述耐热基体树脂的制备方法,是将式I结构的炔丙基醚化酚醛树脂与式II结构的N-(3-乙炔基苯基)马来酰亚胺单体进行预聚反应,得到所述耐热基体树脂;
所述炔丙基醚化酚醛树脂与N-(3-乙炔基苯基)马来酰亚胺单体的质量比为1∶4-4∶1。
4.根据权利要求3所述的制备方法,其特征在于:所述炔丙基醚化酚醛树脂的数均分子量为350~2000,炔丙基化程度范围为20%~120%。
5.根据权利要求3或4所述的制备方法,其特征在于:预聚反应温度控制在120℃~135℃,预聚反应时间为20min~40min。
CN2006100892678A 2006-08-14 2006-08-14 一种耐热基体树脂及其制备方法 Expired - Fee Related CN101125908B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100892678A CN101125908B (zh) 2006-08-14 2006-08-14 一种耐热基体树脂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100892678A CN101125908B (zh) 2006-08-14 2006-08-14 一种耐热基体树脂及其制备方法

Publications (2)

Publication Number Publication Date
CN101125908A CN101125908A (zh) 2008-02-20
CN101125908B true CN101125908B (zh) 2010-07-28

Family

ID=39094058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100892678A Expired - Fee Related CN101125908B (zh) 2006-08-14 2006-08-14 一种耐热基体树脂及其制备方法

Country Status (1)

Country Link
CN (1) CN101125908B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396649B (zh) * 2013-07-11 2014-12-03 合肥工业大学 一种炔基化腰果酚型酚醛树脂/二氧化钛复合材料的制备方法
CN104559046B (zh) * 2015-02-03 2016-09-07 中南大学 一种间乙炔基苯偶氮线性酚醛泡沫及其制备方法
CN105037737B (zh) * 2015-06-18 2017-09-26 西安理工大学 一种自由基纳米捕获材料及其制备方法
JP6666138B2 (ja) * 2015-12-24 2020-03-13 エア・ウォーター株式会社 多価アルキン化合物、その製法および用途
CN106883363B (zh) * 2017-03-09 2019-03-08 中国科学院化学研究所 一种硼杂化加成固化型酚醛树脂及其制备方法和应用
CN106957403B (zh) * 2017-04-13 2019-01-01 中国科学院化学研究所 一种加成固化型硼硅协同杂化酚醛树脂及其制备方法与应用
CN114437513A (zh) * 2021-12-30 2022-05-06 浙江华正新材料股份有限公司 自固化树脂及其制备方法和应用
CN115160730B (zh) * 2022-07-01 2023-06-23 蚌埠凌空科技有限公司 一种高性能防隔热用树脂基复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889912A (en) * 1987-08-20 1989-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acetylene terminated aspartimides and resins therefrom
CN1626577A (zh) * 2003-11-05 2005-06-15 三井化学株式会社 树脂组合物、使用该树脂组合物的预浸料及叠层板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889912A (en) * 1987-08-20 1989-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acetylene terminated aspartimides and resins therefrom
CN1626577A (zh) * 2003-11-05 2005-06-15 三井化学株式会社 树脂组合物、使用该树脂组合物的预浸料及叠层板

Also Published As

Publication number Publication date
CN101125908A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
CN101125908B (zh) 一种耐热基体树脂及其制备方法
Goertzen et al. Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability
US8846552B2 (en) Soluble terminally modified imide oligomer using 2-phenyl-4, 4′-diaminodiphenyl ether, varnish, cured product thereof, imide prepreg thereof, and fiber-reinforced laminate having excellent heat resistance
CN101654518B (zh) 一种热固性聚酰亚胺树脂及其制备方法与应用
Wang et al. Phthalonitrile terminated fluorene based copolymer with outstanding thermal and mechanical properties
US4689378A (en) Stable imide-containing composition from diamino phenyl indane-bis-maleimide and alkenyl phenol
CN112778519B (zh) 含官能团的苯并噁嗪齐聚物、高耐热固化物及其制备方法
Wang et al. Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group
JP2016514742A (ja) キシリレンビスマレイミドをベースとする硬化性混合物
Liu et al. Preparation and properties of acetylene-terminated benzoxazine/epoxy copolymers
CN105153009A (zh) 具有不对称分子结构的双马来酰亚胺、其制备方法及在制备复合树脂中的应用
CN104628544A (zh) 一种三分支芳族结构的丙烯基苯氧基化合物及其制备方法和利用其改性的双马来酰亚胺树脂
CN101845143B (zh) 改性双马来酰亚胺树脂及其制备方法与应用
JP2014114368A (ja) 熱硬化性ビスマレイミド系樹脂組成物及びプリプレグ並びにそれらの製造方法
Li et al. Highly soluble phenylethynyl terminated oligoimides derived from 5 (6)-amino-1-(4-aminophenyl)-1, 3, 3-trimethylindane, 4, 4′-oxydianiline and mixed thioetherdiphthalic anhydride isomers
JP2602157B2 (ja) イミド基を含有する重合体の製造法
TW201930384A (zh) 熱硬化性樹脂組成物
CN101570599A (zh) 氰酸酯/双噁唑啉共固化树脂及其制备方法、应用
IL299364B2 (en) Innovative compositions with improved properties
Rong et al. Preparation and properties of dipropargyl ether of bisphenol A‐modified bismaleimide resins and composites
CN101735458B (zh) 低熔体粘度氰酸酯/双马来酰亚胺树脂、制备方法及其应用
CN102443170A (zh) 热固性聚苯基喹噁啉树脂及其制备方法与应用
US20210340344A1 (en) Novel Amide Acid Oligomer Process For Molding Polyimide Composites
CN108409966B (zh) 一种适于树脂转移模塑工艺的改性双马来酰亚胺树脂及其制备方法
JP2001316429A (ja) ビスマレイミド樹脂組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100728

Termination date: 20150814

EXPY Termination of patent right or utility model