CN101116193A - 热电材料 - Google Patents

热电材料 Download PDF

Info

Publication number
CN101116193A
CN101116193A CNA2006800043373A CN200680004337A CN101116193A CN 101116193 A CN101116193 A CN 101116193A CN A2006800043373 A CNA2006800043373 A CN A2006800043373A CN 200680004337 A CN200680004337 A CN 200680004337A CN 101116193 A CN101116193 A CN 101116193A
Authority
CN
China
Prior art keywords
thermoelectric material
thermoelectric
splitting
phase
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800043373A
Other languages
English (en)
Inventor
木太拓志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101116193A publication Critical patent/CN101116193A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供了一种由笼形化合物构成的热电材料,所述笼形化合物的组成由Ba8GaXGe(44-X)(其中14≤X≤18)表示。此热电材料不需要通常必需的长时间热处理,而且仍具有与现有热电材料同样优异的热电性质。

Description

热电材料
技术领域
本发明涉及由笼形化合物(clathrate compound)构成的热电材料。
背景技术
长期以来,利用塞贝克效应将热转换为电的热电转换器件(热电器件)为人们所知。这些器件的突出优点是不需要任何驱动元件并且尺寸小、重量轻。然而,与太阳能电池、燃料电池和其它转换系统相比,热电器件的缺点是能量转换效率较低。
对于商业应用,需要能量转换效率至少为10%(性能指数ZT为1或更大)。
特别地,形成热电器件的热电材料的所需性质是较大的热电动势和电导率以及较小的热导率。作为具有上述性质且具有大性能指数的材料,笼形化合物正受到关注。作为典型的笼形热电材料,例如H.Anno等,Proc.of 21st Int.conf. on Thermoelectrics,(2002),78提出了组成由通式Ba8GaXGe(46-X)表示的化合物,特别是当X=15或X=18时呈现出最高性能指数ZT的那些。这些化合物由主晶格构成,所述主晶格由Ga和Ge组成,Ba作为客原子(guest atom)结合在主晶格中。主晶格原子与客原子之间的键较为疏松,因此产生局部热振动并导致声子(phonon)受到有节奏地扰动,从而使通过主晶格传播的振动被客原子所阻碍,进而实现较小的热导率。
在以上通式表示的组成中,该结构的全部主晶格原子Ga和Ge(Ga+Ge=46)与客原子Ba的原子比为46∶8。到目前为止,已经提出了以相同原子比结合不同类型的客原子和不同类型的主晶格原子的各种组成(例如,日本专利公开(A)No.2001-44519、日本专利公开(A)No.2001-48517和日本专利公开(A)No.2002-274831)。
上面提出的笼形化合物热电材料中的某些具有优异的性质。
例如,上面H.Anno等提出的笼形化合物Ba8GaXGe(46-X)当X=18时在950K(677℃)的温度下具有良好的性能指数ZT,其值约为1。然而,需要在800℃下对该化合物进行100小时的长时间热处理以消除分相(segregated phase),因此在效率和制造成本上存在问题。
发明内容
本发明的目的是提供一种由笼形化合物构成的热电材料,所述热电材料具有与上述常规热电材料同样优异的热电性质,并且不需要任何热处理。
为了实现上述目的,本发明提供了一种由笼形化合物构成的热电材料,所述笼形化合物的组成由Ba8GaXGe(44-X)表示,其中14≤X≤18。
与现有技术的46∶8的主晶格原子与客原子的原子比相比,本发明的笼形化合物所采用的全部主晶格原子Ga+Ge与客原子Ba的原子比为44∶8,因而具有与现有热电材料同样优异的热电性质,而且不形成分相,从而不像现有技术那样需要热处理以消除分相。
附图说明
图1为本发明实施例(样品No.1-3)和现有技术的实例(样品No.4)的测量温度与性能指数ZT的关系图。
具体实施方式
通过使具有预定组成的合金熔体固化,然后将所得的固体合金压碎成粉末并对其进行烧结,由此制造使用笼形化合物的热电材料。
对于常规热电材料,得到的烧结体结构不均匀,具有大量的特定元素集中分散于其中的分相。例如,在上述Ba8GaXGe(46-X)(X=18,即Ba8Ga18Ge28)的常规典型组成的情况下,形成密集的Ba分相。此时,至少分相(在一个典型实施例中,高Ba)和与分相相邻的部分(在一个典型实施例中,低Ba)偏离了预定组成(在一个典型实施例中,偏向高Ba侧和低Ba侧),因此合金整体上无法表现出良好的热电性质。为了消除分相以获得均匀结构,需要在800℃下进行100小时的长时间热处理,而这成为制造中的大问题。
为了防止形成使长时间热处理成为必需的分相,本发明人进行了各种研究。基于示差热分析(DTA)的结果,本发明人得出了以下结论:对于具有46个主晶格原子的常规组成Ba8GaXGe(46-X),液相线温度与固相线温度十分不同,因而容易发生相分离,而对于具有44个主晶格原子的Ba8GaXGe(44-X),液相线温度与固相线温度的差异明显变小,因此基本上不发生相分离。
此外,本发明人研究了上述具有44个主晶格原子的Ba8GaXGe(44-X)的热电性质,发现得到了与现有热电材料同样优异的性能指数ZT。
即,本发明的热电材料不需要常规的长时间热处理,而具有与现有热电材料同样优异的热电性质。
这里,对于常规热电材料,Ga+Ge=46并且主晶格的所有晶格点均被Ga或Ge覆盖。与此相反,对于本发明的热电材料,Ga+Ge=44,因此可以认为,并非主晶格的所有晶格点均被覆盖,在结构中包含空晶格点。
另外,在本发明的热电材料中,对于组成Ba8GaXGe(44-X),14≤X≤18。这是因为,当X<14时或X>18时,发生分相,并且在不进行热处理的情况下无法得到均匀结构.
实施例
制备组成示于表1的笼形化合物。样品No.1、2和3为由Ba8GaXGe(44-X)(其中14≤X≤18)构成的本发明的组成,而样品No.4为Ba8GaXGe(46-X)(其中X=18)是常规组成的现有技术实例。
作为原料,按照表1的组成称量Ba(纯度99.9%)、Ga(纯度99.999%)和Ge(纯度99.999%),然后将其电弧熔化以制备合金熔体。将合金熔体浇铸进模具并使其固化。将所得的合金物质压碎成颗粒尺寸为75μm的粉末。然后通过火花等离子体烧结(850℃,1小时,压力为40MPa)进行烧结,得到烧结体。
表1
类别 样品号No  化学组成
 Ba  Ga  Ge  Ga+Ge
本发明实施例 1  8  14  30  44
2  8  16  28
对比例 3  8  18  26
4  8  18  28  46
用600倍的扫描电子显微镜检查所得烧结体的结构。本发明实施例(样品No.1-3)在结构上全部均匀,并且没有观察到分相。对比例(样品No.4)在结构上不均匀,而且其中分布有尺寸约为数微米至10微米的大量富含Ba的分相。
在800℃下仅对对比例(样品No.4)进行100小时的热处理(在真空气氛中)来退火。热处理之后,以与上面相同的方式通过扫描电子显微镜观察结构,发现结构均匀并且没有观察到分相。
在温度范围300K(27℃:室温)至950K(677℃)内的不同温度下,测量如此得到的本发明实施例样品No.1、2和3(仅进行烧结以使结构均匀)以及对比例样品No.4(烧结和退火以使结构均匀)的热电性质。测量结果以性能指数ZT的形式示于图1。
如图1所示,包括本发明实施例和常规实施例的所有样品的性能指数ZT均随着测量温度的升高而平稳增大,并且在950K(677℃)的测量温度下,ZT基本为1,说明具有良好的热电性质。
从这些结果可以得出,具有本发明的组成的热电材料呈现出与具有常规组成的热电材料同样优异的热电性质,并且不需要进行对常规热电材料不可或缺的长时间热处理。
此外,在本发明实施例样品No.1、2和3中,样品No.2 Ba8Ga16Ge28(即Ba8GaXGe(44-X)中的X=16)具有特别优异的热电性质。
工业实用性
根据本发明,提供了一种由笼形化合物构成的热电材料,该热电材料不需要通常必需的长时间热处理,但却具有与现有热电材料相同的热电性质。

Claims (1)

1.一种由笼形化合物构成的热电材料,所述笼形化合物的组成由下式表示:
Ba8GaXGe(44-X)
其中,14≤X≤18。
CNA2006800043373A 2005-03-09 2006-03-03 热电材料 Pending CN101116193A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005065467A JP2006253291A (ja) 2005-03-09 2005-03-09 熱電材料
JP065467/2005 2005-03-09

Publications (1)

Publication Number Publication Date
CN101116193A true CN101116193A (zh) 2008-01-30

Family

ID=36581533

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800043373A Pending CN101116193A (zh) 2005-03-09 2006-03-03 热电材料

Country Status (6)

Country Link
US (1) US20080190475A1 (zh)
EP (1) EP1856746B1 (zh)
JP (1) JP2006253291A (zh)
CN (1) CN101116193A (zh)
DE (1) DE602006002968D1 (zh)
WO (1) WO2006095839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451326A (zh) * 2014-10-27 2015-03-25 华东理工大学 一种新型笼合物热电材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393959B (zh) * 2008-11-07 2012-04-11 中国科学院上海硅酸盐研究所 一种笼型化合物
US8097802B2 (en) * 2009-05-01 2012-01-17 GM Global Technology Operations LLC Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure
TWI509698B (zh) 2013-12-25 2015-11-21 Ind Tech Res Inst 用於退火裝置的樣品座與使用此樣品座的電流輔助退火裝置
CN110168758B (zh) * 2017-01-19 2022-09-30 三菱瓦斯化学株式会社 半导体晶体和发电方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451326A (zh) * 2014-10-27 2015-03-25 华东理工大学 一种新型笼合物热电材料及其制备方法

Also Published As

Publication number Publication date
DE602006002968D1 (de) 2008-11-13
JP2006253291A (ja) 2006-09-21
EP1856746B1 (en) 2008-10-01
EP1856746A1 (en) 2007-11-21
US20080190475A1 (en) 2008-08-14
WO2006095839A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Yin et al. Optimization of the electronic band structure and the lattice thermal conductivity of solid solutions according to simple calculations: a canonical example of the Mg2Si1–x–y Ge x Sn y ternary solid solution
Nie et al. High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials
Salvador et al. Transport and mechanical property evaluation of (AgSbTe) 1− x (GeTe) x (x= 0.80, 0.82, 0.85, 0.87, 0.90)
CN105122485A (zh) 包含石墨烯的热电材料和装置
Salvador et al. Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb-and Ba-filled skutterudites
Schmidt et al. Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4% CdS or ZnS
Bhardwaj et al. Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites
CN101116193A (zh) 热电材料
Gharleghi et al. Enhanced ZT of In x Co4Sb12–InSb Nanocomposites Fabricated by Hydrothermal Synthesis Combined with Solid–Vapor Reaction: A Signature of Phonon-Glass and Electron-Crystal Materials
JP4858976B2 (ja) 複合化した熱電変換材料
Ye et al. The effect of structural vacancies on the thermoelectric properties of (Cu2Te) 1− x (Ga2Te3) x
CN105556688A (zh) 热电材料及其制造方法
Yanagiya et al. Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi
Bulman et al. High-efficiency energy harvesting using TAGS-85/half-Heusler thermoelectric devices
CN103247752B (zh) Ge‑Pb‑Te‑Se复合热电材料及其制备方法
Fornari et al. Prediction of room-temperature high-thermoelectric performance in n-type La (Ru 1− x Rh x) 4 Sb 12
Yang et al. Low temperature transport and structural properties of misch-metal-filled skutterudites
Baitinger et al. Thermoelectric characterization of the clathrate-I solid solution Ba8− δAuxGe46− x
Redzuan et al. Synthesis of Co-doped β-FeSi 2/Si composites through eutectoid decomposition and its thermoelectric properties
Levinský Synthesis, Characterization and Optimization of New Thermoelectric Materials
Ur et al. Mechanical and thermoelectric properties of Zn 4 Sb 3 and Zn 4 Sb 3+ Zn directly synthesized using elemental powders
Rubel et al. A comprehensive first principles calculations on (Ba0. 82K0. 18)(Bi0. 53Pb0. 47) O3 single-cubic-perovskite superconductor
KR102026517B1 (ko) 열전성능이 향상된 망간-규소계 열전재료 및 이의 제조방법
Shim et al. Thermal cycling behavior of zinc antimonide thin films for high temperature thermoelectric power generation applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication