CN101098416A - 时域自适应均衡器及其包含的判决反馈滤波器 - Google Patents

时域自适应均衡器及其包含的判决反馈滤波器 Download PDF

Info

Publication number
CN101098416A
CN101098416A CNA2006100283491A CN200610028349A CN101098416A CN 101098416 A CN101098416 A CN 101098416A CN A2006100283491 A CNA2006100283491 A CN A2006100283491A CN 200610028349 A CN200610028349 A CN 200610028349A CN 101098416 A CN101098416 A CN 101098416A
Authority
CN
China
Prior art keywords
feedback filter
output
input
filter
delayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100283491A
Other languages
English (en)
Other versions
CN100562076C (zh
Inventor
居峰
何大治
张文军
管云峰
吴松炎
归琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI HIGH DEFINITION DIGITAL TECHNOLOGY INDUSTRIAL Co Ltd
Original Assignee
SHANGHAI HIGH DEFINITION DIGITAL TECHNOLOGY INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI HIGH DEFINITION DIGITAL TECHNOLOGY INDUSTRIAL Co Ltd filed Critical SHANGHAI HIGH DEFINITION DIGITAL TECHNOLOGY INDUSTRIAL Co Ltd
Priority to CNB2006100283491A priority Critical patent/CN100562076C/zh
Publication of CN101098416A publication Critical patent/CN101098416A/zh
Priority to HK08107321.7A priority patent/HK1116970A1/xx
Application granted granted Critical
Publication of CN100562076C publication Critical patent/CN100562076C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明涉及一种时域自适应均衡器,其中输入信号流入前向滤波器,前向滤波器的输出流入加法器的一个输入端,加法器的另两个输入为第一反馈滤波器的输出和第二反馈滤波器的输出。加法器对输入信号相加,其输出连至判决器的输入端。误差生成器根据判决器的输入和输出生成误差信号。抽头系数更新器根据误差信号生成抽头系数,来更新所述前向滤波器和所述判决反馈滤波器的抽头系数。第一反馈滤波器使用转置结构,第二反馈滤波器使用非转置结构并且其输入相对于第一反馈滤波器的输入有一定延时。转置结构和非转置结构的级数是根据所需要对付的最长后径的长度决定的。

Description

时域自适应均衡器及其包含的判决反馈滤波器
技术领域
本发明涉及一种时域自适应均衡器,尤其涉及一种基于延时匹配的时域自适应均衡器。
背景技术
在诸如声音、数据和视频通讯等许多不同的数字信息的实际应用中,均衡器是一种非常重要的元件。均衡器被用作全双工通信中喇叭扩音器的回声消除器(补偿器)、数字电视或数字电缆传输中的视频消重影器、无线调制解调器和无线电话的信号调节器等。在信号传输过程中,由于信道中多径信号的存在,会带来码间干扰(ISI),而码间干扰是产生误差的一个重要原因,在大部分单载波数字应用中,一般都使用时域自适应均衡器来修正ISI错误。
图1为传统的时域自适应均衡器100的模块结构框图简图。通常在数字接收机中,时域自适应均衡器100包含一个抽头系数更新器60,一个前向滤波器10,一个判决器40,一个反馈滤波器20,一个误差生成器50和一个加法器30。前向滤波器10可以用有限脉冲响应(FIR)滤波器来实现。前向滤波器10用来接收输入信号,消除前向多径,即相对主传输信号提前到达的多径信号。前向滤波器10的输出sum1连至一个加法器30。加法器30的另一个输入端接收来自反馈滤波器20的输出sum2。加法器30将输入信号sum1和sum2相加并输出一个和信号sum_EQ,作为整个时域自适应均衡器100的输出信号。同时,均衡器输出信号sum_EQ又流入判决器40,判决器40根据它的输入信息sum_EQ和星座点的关系做出判决,判决器的输出值是离sum_EQ最接近的星座点数值。同时,如果判决器40的输出直接作为反馈滤波器20的一个输入,那么这样的反馈滤波器20就属于判决反馈滤波器。反馈滤波器20的输出加和值sum2将修改均衡器的输出信号sum_EQ,以消除后向多径,即晚于主传输信号到达的多径信号,并且能够消除前向滤波器10产生的残留信号。误差信号由误差生成器50根据判决器40的输出和输入信号之差而生成。抽头系数更新器60用来接收误差信号,并生成前向滤波器10和反馈滤波器20的滤波器系数。有很多可行的方法适用于产生滤波器系数,包括最小均方(LMS)和递归最小二乘方(RLS)算法。滤波器的形式也有多种,可以是实数滤波器,即,抽头系数和寄存器的数均为实数,滤波器的乘法运算也是实数运算;也可以是复数滤波器,即,抽头系数和寄存器的数均为复数,滤波器的乘法运算是复数运算;亦可以是准复数滤波器,即,抽头系数和寄存器的数虽然均为复数,但滤波器的乘法运算是实数运算。
图2示出了为传统的时域自适应均衡器模块结构具体框图。与图1相比,图2给出前向滤波器10和反馈滤波器20的具体结构。具体地说,前向滤波器10和反馈滤波器20均采用图3a所示的非转置结构来实现。参见图2和图3a,以反馈滤波器20的非转置结构为例,其中包含级联的M级延时器,反馈滤波器的输入信号(判决器的输出
Figure A20061002834900071
)经1级、2级…M级延时器分别延时,得到相应的M个延时器输出,分别为第1级延时器的输出、第2级延时器的输出…、第M级延时器的输出,M个相应的乘法器把M个延时器输出分别与相应的滤波器系数d1,dK…,dM相乘得到相应的M个乘法器输出,M个乘法器输出由一加法器相加,最后得到反馈滤波器20的输出。前向滤波器10也具有相类似的非转置结构。
理论上,只要均衡器中反馈滤波器的级数足够长,就可以对付无限长的多径信道。但在实际上,均衡器的实现受到2个因素的制约:硬件资源开销和时序关系。对于前者,由于FPGA技术以及ASIC技术的发展,并考虑到多径信号的长度总是有限的,硬件资源开销已经不再是限制均衡器实现的瓶颈问题了;对于后者,时序紧张主要受限于反馈滤波器的运算速度。这是因为,前向滤波器(FIR)对群延时并不敏感,总可以用流水线(Pipeline)技术来解决。而反馈滤波器却通常需要在一个符号周期内做完滤波器中所有的乘、加运算。特别的,当采用盲均衡技术时,进入反馈滤波器的数据不再是硬判数据,而是均衡器加和的软值,此时反馈滤波器将成为无限脉冲响应(IIR)滤波器,反馈滤波器中的乘法器无法用异或门来代替,时序关系将更加紧张。为此,有人提出时域自适应均衡器中的反馈滤波器采用转置结构来实现。
图3b示出转置结构的示例图。图3b所示的转置结构包括M个乘法器、M-1个延时器和M-1个加法器,输入信号先不经过延时,而是经由M个乘法器分别和相应的M个抽头系数dM,dM-1,…,d1相乘,得到M个输出乘积值。输入信号与系数dM相乘所得的第一乘积值输入第一级延时器,所得到的延时输出和输入信号与系数dM-1相乘所得的第二乘积值相加,其加和值又输入第二级延时器,所得到的延时输出和输入信号与系数dM-2相乘所得的第三乘积值相加,依此类推,第M-1级延时器输出和输入信号与系数d1相乘所得的第M乘积值相加,最终得到转置结构的滤波器的输出。转置结构和传统非转置结构的先延时输入数据再和N级系数分别相乘然后相加的方式输出信号和滤波效果都是一致的。然而,加法树的基本结构是M=2n个输入进行第一级加法后得到M/2个结果,第二级的输入是第一级的M/2个输出,第二级加完后得到M/4个输出值,每一级加法需要一个符号周期的延时,一般的,如果2n<M<=2n+1,那么总共需要的级数就是n+1级,总延时n+1个符号周期,特殊的若M=2n,那么总共需要的级数就是log2M级,总延时log2M个符号周期,传统的非转置结构从输入信号到输出信号之间要经过一个log2M级的加法树,所以必须经过加法树的log2M个符号周期的延时才能有输出;转置结构的输入和输出信号之间最短的只有一个加法器,所以延时只有一级加法延时,也就是一个符号周期。因此,由于传统非转置结构一般会使用加法树对M个乘积值进行加和,这样会引入log2M个符号周期的加法延时,而转置结构的好处就是将这个延时降低为1个符号周期,并且对于处理的流水线处理不会有任何影响。反馈滤波器的延时如果大于1个符号周期,假设为d大于1,那么在主径后面(d-1)个符号周期内的后向多径该反馈滤波器是不能对付的,传统的非转置结构反馈滤波器如果想能对付所有的后径,必须在一个符号周期内把所有的M个乘积值相加输出,这就带来相应的时序问题,而转置结构则能避免这种时序问题。但是用转置结构实现的弊端在于:由于硬件上面的定点化处理,每做一次加法,为了保证不溢出,输出的比特位宽相对输入数据要增加一位,随着加和的进行,需要的比特精度将越来越高。比如N级的加法输出转置结构的比特位宽就会增加N-1位,而传统的非转置结构只会增加log2N个比特位宽。这样相比于非转置结构,转置结构的硬件资源的消耗就会增多。如果反馈滤波器的级数很多,为了节省硬件资源,需要限制输入信号的比特位数,这样不仅限制了盲均衡的实现,对于实现多星座点的调制方式也是一大障碍。
综上所述,非转置结构的硬件资源开销少,基于FPGA技术以及ASIC技术的发展,已不再是问题,但是时序关系紧张。而转置结构的输出结果与非转置结构的相同,缓解了时序关系,但硬件资源开销很大。
因此传统的时域自适应均衡器无法对抗信道传输中的长多径,尤其是长而强的后向多径。
发明内容
本发明针对数字电视地面传输系统现有技术中存在的不足和缺陷,对传统均衡器的结构进行改进,提出了一种基于延时匹配的时域自适应均衡器。通过精心地设计反馈滤波器的延时线,使得较长级数的反馈滤波器也可以用传统的横向滤波器结构来实现,这样不仅节省了硬件资源,还可以有效的提高均衡器的精度,有效的抵消长多径,并使得盲均衡成为可能。
在本发明的一个实施例中,提供了一种判决反馈滤波器,包括:第一反馈滤波器,其具有转置结构;第二反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第一预定延时并且具有非转置结构。
在本发明的另一实施例中,判决反馈滤波器还包括多个延时器,所述多个延时器是级联的,前一级延时器的输出为下一级延时器的输入,其中多个延时器中第一延时器的输入是所述第一反馈滤波器的输入信号,相对第一反馈滤波器之输入信号具有所述第一预定延时的延时器输出是所述第二反馈滤波器的输入。
在本发明的再一个实施例中,提供了一种时域自适应均衡器,包括:前向滤波器,其接收输入信号,用于消除前向多径;判决反馈滤波器,用于消除后向多径;加法器,其接收来自前向滤波器和判决反馈滤波器的输出作为输入,进行求和操作并输出一个均衡器输出;判决器,接收所述均衡器输出作为输入信号,并将输出提供给所述判决反馈波滤器;误差信号生成器,根据所述判决器的输入信号和所述判决器的输出来生成误差信号;抽头系数更新器,根据所述误差信号生成抽头系数以更新前向滤波器和判决反馈滤波器的抽头系数,所述判决反馈滤波器包括:第一反馈滤波器,其具有转置结构;第二反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第一预定延时并且具有非转置结构。
在本发明的又一个实施例中,时域自适应均衡器还包括多个延时器,所述多个延时器是级联的,前一级延时器的输出为下一级延时器的输入,其中多个延时器中第一延时器的输入是所述第一反馈滤波器的输入信号,相对第一反馈滤波器之输入信号具有所述第一预定延时的延时器输出是所述第二反馈滤波器的输入。
附图说明
图1为传统的时域自适应均衡器模块结构框图简图。
图2为传统的时域自适应均衡器模块结构具体框图。
图3a为非转置结构的示例图。
图3b为转置结构的示例图。
图4为基于延时匹配的时域自适应均衡器结构框图简图。
图5为基于延时匹配的时域自适应均衡器结构具体框图。
具体实施方式
结合本发明的内容提供以下实施例,应用在数字电视地面广播系统中。
图4为基于延时匹配的时域自适应均衡器200的结构框图简图。在本发明的一个实施例中,基于延时匹配的时域自适应均衡器200包括:前向滤波器10、第一反馈滤波器21、第二反馈滤波器22、判决器40、误差生成器50、抽头系数更新器60和加法器30。其各部件之间的相互连接关系为:输入信号首先进入前向滤波器10,前向滤波器10的输出sum1连至一个加法器30。加法器30的另两个输入sum2和sum3分别为第一反馈滤波器21和第二反馈滤波器22的输出。加法器30将输入信号sum1、sum2和sum3相加,并输出sum_EQ信号,作为整个时域自适应均衡200的输出信号。均衡器输出sum_EQ又流入判决器40,判决器40根据它的输入信息sum_EQ和星座点的关系做出判决,判决器的输出值是离sum_EQ最接近的星座点数值。同时,如果判决器40的输出直接作为第一反馈滤波器21的一个输入,第一反馈滤波器21的输出加和值sum2和第二反馈滤波器22的输出加和值sum3将修改均衡器的输出信号sum_EQ,以消除后向多径,即晚于主传输信号到达的多径信号,并且能够消除前向滤波器10产生的残留信号。误差信号由误差生成器50根据判决器40的输出和输入信号之差而生成。抽头系数更新器60用来接收误差信号,并生成前向滤波器10、第一反馈滤波器21和第一反馈滤波器22的滤波器系数。其中,第一反馈滤波器21共B级,第二反馈滤波器22共M级,其中M=2^(B-A),A是延时器级数,表示第二反馈滤波器22的输入相对于第一馈滤波器21的输入经过A级延时器的延时,A为大于等于零、小于等于B的整数。
参见图5,图5为基于延时匹配的时域自适应均衡器100的结构具体框图。其中,第一反馈滤波器21是由图3所示的转置结构实现的,而第二反馈滤波器22是由图3所示的非转置结构实现的。均衡器的输出SUM_EQ经过一个判决器40可以得到判决值
Figure A20061002834900111
作为第一反馈滤波器21的输入,而第一反馈滤波器21中多个延时器中的第A级延时器的输出
Figure A20061002834900112
作为第二反馈滤波器22的输入,SUM_EQ和
Figure A20061002834900113
的差值通过误差生成器50生成误差信号,误差信号输入抽头系数更新器60,以更新前向滤波器10的抽头
Figure A20061002834900114
第一反馈滤波器21的抽头
Figure A20061002834900115
以及第二反馈滤波器的抽头
Figure A20061002834900116
抽头系数的产生和更新方式都是本领域技术人员所公知的。
下面对第一反馈滤波器21中的多个延时器加以说明。所述多个延时器是级联的,前一级延时器的输出为下一级延时器的输入,其中多个延时器中第一延时器的输入是所述第一反馈滤波器的输入信号,而第A级延时器的输出则是所述第二反馈滤波器的输入,它使第二反馈滤波器的输入相对于第一反馈滤波器的输入具有一定的延时。
在以上描述中,每一级的延时量与前向滤波器、转置结构和非转置结构中的单位延时量都是相等的。
其中,前向滤波器10是一个长度为400级、符号间隔的复数滤波器;第一反馈滤波器21是一个长度为32级的符号间隔的复数滤波器,采用转置结构实现,这样能够一个符号节拍内完成加和输出,而且由于级数较短,加和输出的比特宽度不至于太大,第一反馈滤波器21的输入为判决器40的输出;第二反馈滤波器22,共2(32-23)=512级。第二反馈滤波器的级数不一定是指数,原则上只要小于这个指数值都可以硬件实现,但只要硬件资源许可,则通常会选择最接近这个最大值来表示。由于级数很多,采用转置结构实现比较困难,难以控制输出的比特位宽,不利于控制硬件资源,所以采用传统非转置结构的延时匹配的方式实现,第二反馈滤波器22的输入为第一反馈滤波器21的第23级延时器的抽头输出,其中,每一级延时器的延时量是相等的。这样就允许第二反馈滤波器22的加和可以有(32-23)=9个时钟周期的延时用于流水线的结构实现,这样的结构既能满足所有级数的反馈滤波器在一个符号节拍内完成加和的时序要求,又能很好的控制输出的比特位宽,整体效果相当于一个总级数为32+2(32-23)的判决反馈滤波器,能保证在一个符号周期内完成加和输出,并且能将最终的均衡器输出比特位宽保持在一个合理范围内。
这种基于延时匹配的反馈滤波器结构可以支持从第一反馈滤波器21的第一级延时之前直至最后一级延时之后的总共B+1个位置中的任意一个位置的输出作为第二反馈滤波器22的输入信号。
例如,在本发明的另一实施例中,第一反馈滤波器21仍为长度为32级的符号间隔的复数滤波器,采用转置结构实现,而第一反馈滤波器21在其第1级延时器之前就输出,相当于第一反馈滤波器21和第二反馈滤波器22的输入信号是相同的,对应于我们这里的A=0,由于B仍旧等于32,那么第二反馈滤波器的级数就为2(32-0),这样就允许第二反馈滤波器22的加和可以有(32-0)=32个时钟周期的延时用于流水线的结构实现,这样的结构既能满足所有级数的反馈滤波器在一个符号节拍内完成加和的时序要求,又能很好的控制输出的比特位宽,整体效果相当于一个总级数为32+2(32-0)的判决反馈均衡器200,也能保证在一个符号周期内完成加和输出,并且能将最终的均衡器200的输出比特位宽保持在一个合理范围内。
又例如,在本发明的再一个实施例中,第一反馈滤波器21仍为长度为32级的符号间隔的复数滤波器,采用转置结构实现,而如果第一反馈滤波器21在其最后一级延时后输出,那么就对应于我们这里A=B,由于B仍取32,则A=32,此时第二反馈滤波器22的级数就为2(32-32)=1,整个反馈滤波器就相当于级数32+2(32-32)=33的反馈滤波器。
关于B的值也是可以改变的,但是总的来说B和A的选择是根据所需要对付的最长后径的长度决定的。通过以上描述可知,本发明的时域自适应均衡器中的第二反馈滤波器为2B-A级,A为大于等于0的整数,即,第二反馈滤波器最多可以是2B级(取A=0时)。也就是说,本发明的反馈滤波器最多可相当于级数为B+2B的反馈滤波器。如果需要对付的最长多径需要X级延时的反馈滤波器,那么只要能满足X<B+2B,就能对付最长多径。例如,当需要对付的最长多径需要512级的反馈滤波器时,考虑到要满足512<B+2B,B又为整数,因此B的值为B≥9。因此,B取任何大于等于9的值均能对付需要512级反馈滤波器的最长多径,例如在本发明中,B=32。B值确定了之后,再根据需满足的条件X<B+2B-A来确定A值。在本例中,由于X=512,B=32,因此得出A大于等于0且小于等于23的整数。
当第一反馈滤波器21中延时器的级数一定时,使用第一反馈滤波器21的输入经不同级数的延时器而得到的输出作为第二反馈滤波器22的输入的操作是本领域的普通技术人员能够容易构想到的,本发明并不限于上述用第0、第23、第32级延时器处的输出作为第二反馈滤波器22输入的实施例,其他延时器输出的位置也是可行的。
在本发明还有一方面,反馈滤波器也不限于上述的第一和第二反馈滤波器,而是可以包括三个或更多个反馈滤波器。例如,如果在原来B=32,A=23的基础上,使用第一反馈滤波器21的输入经C级延时器输出而得到第三反馈滤波器的输入,然后进行类似地滤波器操作,其中A<C<B。第三反馈滤波器的输出也输入加法器30。这样形成的判决反馈滤波器以及包含所述判决反馈滤波器的自适应均衡器也能解决本发明的技术问题。
以上揭示了按照本发明的基于延时匹配的时域自适应均衡器。
本领域的技术人员可以理解,信息和信号可以用多种不同技术和工艺中的任一种来表示。例如,上述说明中可能涉及的数据、指令、命令、信息、信号、比特、码元和码片可以用电压、电流、电磁波、磁场或其粒子、光场或其粒子或它们的任意组合来表示。
本领域的技术人员能进一步理解,结合这里所公开的实施例所描述的各种说明性的逻辑块、模块和算法步骤可以作为电子硬件、计算机软件或两者的组合来实现。为了清楚说明硬件和软件间的互换性,各种说明性的组件、框图、模块、电路和步骤一般按照其功能性进行了阐述。这些功能性究竟作为硬件或软件来实现取决于整个系统所采用的特定的应用程序和设计。技术人员可以认识到在这些情况下硬件和软件的交互性,以及怎样最好地实现每个特定应用程序的所述功能。技术人员可能以对于每个特定应用不同的方式来实现所述功能,但这种实现决定不应被解释为造成背离本发明的范围。
结合这里所描述的实施例来描述的各种说明性的逻辑块、模块和算法步骤的实现或执行可以用:通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、场可编程门阵列(FPGA)或其它可编程逻辑器件、离散门或晶体管逻辑、离散硬件组件或者为执行这里所述功能而设计的任意组合。通用处理器可能是微处理器,然而或者,处理器可以是任何常规的处理器、控制器、微控制器或状态机。处理器也可能用计算设备的组合来实现,如,DSP和微处理器的组合、多个微处理器、结合DSP内核的一个或多个微处理器或者任意其它这种配置。
结合这里所公开实施例描述的方法或算法的步骤可能直接包含在硬件中、由处理器执行的软件模块中或在两者当中。软件模块可能驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM或本领域中已知的任何其它形式的存储介质中。示例性存储介质与处理器耦合,使得处理器可以从存储介质读取信息,或把信息写入存储介质。或者,存储介质可以与处理器整合。处理器和存储介质可能驻留在ASIC中。ASIC可能驻留在用户终端中。或者,处理器和存储介质可能作为离散组件驻留在用户终端中。
上述优选实施例的描述使本领域的技术人员能制造或使用本发明。这些实施例的各种修改对于本领域的技术人员来说是显而易见的,这里定义的一般原理可以被应用于其它实施例中而不背离本发明的精神或范围。因此,本发明并不限于这里示出的实施例,而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。

Claims (14)

1.一种判决反馈滤波器,其特征在于包括:
第一反馈滤波器,其具有转置结构;
第二反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第一预定延时并且具有非转置结构。
2.如权利要求1所述的判决反馈滤波器,其特征在于,
所述转置结构包括:
多个乘法器,所述多个乘法器中的每个乘法器的一个输入端接收第一反馈滤波器输入信号,另一个输入端接收相应的滤波系数,并对它们相乘以得到一相应的乘法器输出;
多个延时器,所述多个延时器中的第一延时器接收所述多个乘法器中的第一乘法器的输出,对其进行延时以得到经延时的第一乘法器输出以输出到第一加法器,所述多个延时器中除第一延时器之外的其余延时器接收前一级加法器的输出作为输入;以及
多个加法器,所述多个加法器中的每个加法器的一个输入端接收一个经延时的当前级乘法器的输出,另一个输入端接收一个下一级乘法器输出,并对它们进行相加,所述多个加法器中除最后一个加法器以外的所有加法器的输出均为下一级延时器的输入,所述多个加法器中最后一个加法器的输出为转置结构的输出,
所述非转置结构包括:
多个延时器,所述多个延时器中的第一延时器接收第二反馈滤波器的输入信号,所述多个延时器依次级联;
多个乘法器,所述多个乘法器中的每一个乘法器的一个输入端接收经相应延时器延时的输入信号,另一个输入端接收相应的滤波系数,并对它们相乘以得到多个相应的乘法器输出;以及
一个加法器,所述加法器对所述多个乘法器输出进行相加,输出为非转置结构的输出。
3.如权利要求1或2所述的判决反馈滤波器,其特征在于还包括多个延时器,所述多个延时器是级联的,前一级延时器的输出为下一级延时器的输入,其中多个延时器中第一延时器的输入是所述第一反馈滤波器的输入信号,相对第一反馈滤波器之输入信号具有所述第一预定延时的延时器输出是所述第二反馈滤波器的输入。
4.如权利要求3所述的判决反馈滤波器,其特征在于,所述转置结构为B级,所述非转置结构为M级,M=2B-A,其中A是实现所述第一预定延时的延时器的级数,B和M的值是根据所需要对付的最长后径的长度决定的。
5.如权利要求3或4所述的判决反馈滤波器,其特征在于,所述第一反馈滤波器和第二反馈滤波器的输出之和为所述判决反馈滤波器的输出。
6.如权利要求1所述的判决反馈滤波器,其特征在于还包括第三反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第二预定延时,所述第二预定延时大于所述第一预定延时,所述第三反馈滤波器为非转置结构。
7.如权利要求5或6的所述的判决反馈均衡器,其特征在于,所述第一反馈滤波器、第二反馈滤波器、第三反馈滤波器中的任一个是实数滤波器、复数滤波器和准复数滤波器的其中之一。
8.一种时域自适应均衡器,包括:
前向滤波器,其接收输入信号,用于消除前向多径;
判决反馈滤波器,用于消除后向多径;
加法器,其接收来自前向滤波器和判决反馈滤波器的输出作为输入,进行求和操作并输出一个均衡器输出;
判决器,接收所述均衡器输出作为输入信号,并将输出提供给所述判决反馈波滤器;
误差信号生成器,根据所述判决器的输入信号和所述判决器的输出来生成误差信号;
抽头系数更新器,根据所述误差信号生成抽头系数以更新前向滤波器和判决反馈滤波器的抽头系数,
其特征在于,所述判决反馈滤波器包括:
第一反馈滤波器,其具有转置结构;
第二反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第一预定延时并且具有非转置结构。
9.如权利要求8所述的时域自适应均衡器,其特征在于,
所述转置结构包括:
多个乘法器,所述多个乘法器中的每个乘法器的一个输入端接收第一反馈滤波器输入信号,另一个输入端接收相应的滤波系数,并对它们相乘以得到一相应的乘法器输出;
多个延时器,所述多个延时器中的第一延时器接收所述多个乘法器中的第一乘法器的输出,对其进行延时以得到经延时的第一乘法器输出以输出到第一加法器,所述多个延时器中除第一延时器之外的其余延时器接收前一级加法器的输出作为输入;以及
多个加法器,所述多个加法器中的每个加法器的一个输入端接收一个经延时的当前级乘法器的输出,另一个输入端接收一个下一级乘法器输出,并对它们进行相加,所述多个加法器中除最后一个加法器以外的所有加法器的输出均为下一级延时器的输入,所述多个加法器中最后一个加法器的输出为转置结构的输出,
所述非转置结构包括:
多个延时器,所述多个延时器中的第一延时器接收第二反馈滤波器的输入信号,所述多个延时器依次级联;
多个乘法器,所述多个乘法器中的每一个乘法器的一个输入端接收经相应延时器延时的输入信号,另一个输入端接收相应的滤波系数,并对它们相乘以得到多个相应的乘法器输出;以及
一个加法器,所述加法器对所述多个乘法器输出进行相加,输出为非转置结构的输出。
10.如权利要求8或9所述的时域自适应均衡器,其特征在于还包括多个延时器,所述多个延时器是级联的,前一级延时器的输出为下一级延时器的输入,其中多个延时器中第一延时器的输入是所述第一反馈滤波器的输入信号,相对第一反馈滤波器之输入信号具有所述第一预定延时的延时器输出是所述第二反馈滤波器的输入。
11.如权利要求10所述的时域自适应均衡器,其特征在于,所述转置结构为B级,所述非转置结构为M级,M=2B-A,其中A是实现所述第一预定延时的延时器的级数,B和M的值是根据所需要对付的最长后径的长度决定的。
12.如权利要求10或11所述的时域自适应均衡器,其特征在于,所述第一反馈滤波器和第二反馈滤波器的输出之和为所述判决反馈滤波器的输出。
13.如权利要求8所述的时域自适应均衡器,其特征在于还包括第三反馈滤波器,其输入信号相对于第一反馈滤波器的输入信号具有第二预定延时,所述第二预定延时大于所述第一预定延时,所述第三反馈滤波器为非转置结构。
14.如权利要求12或13所述的时域自适应均衡器,其特征在于,所述第一反馈滤波器、第二反馈滤波器、第三反馈滤波器中的任一个是实数滤波器、复数滤波器和准复数滤波器的其中之一。
CNB2006100283491A 2006-06-29 2006-06-29 时域自适应均衡器及其包含的判决反馈滤波器 Active CN100562076C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2006100283491A CN100562076C (zh) 2006-06-29 2006-06-29 时域自适应均衡器及其包含的判决反馈滤波器
HK08107321.7A HK1116970A1 (en) 2006-06-29 2008-07-02 Time-domain adaptive equalizer and judging feedback filter included in which

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100283491A CN100562076C (zh) 2006-06-29 2006-06-29 时域自适应均衡器及其包含的判决反馈滤波器

Publications (2)

Publication Number Publication Date
CN101098416A true CN101098416A (zh) 2008-01-02
CN100562076C CN100562076C (zh) 2009-11-18

Family

ID=39011898

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100283491A Active CN100562076C (zh) 2006-06-29 2006-06-29 时域自适应均衡器及其包含的判决反馈滤波器

Country Status (2)

Country Link
CN (1) CN100562076C (zh)
HK (1) HK1116970A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223328A (zh) * 2010-04-14 2011-10-19 华为技术有限公司 信号判决方法和装置
WO2012040966A1 (zh) * 2010-09-29 2012-04-05 中兴通讯股份有限公司 数字微波均衡方法和装置
CN101527697B (zh) * 2009-03-16 2012-08-29 上海高清数字科技产业有限公司 时域自适应均衡器及其均衡方法
CN102714639A (zh) * 2012-01-21 2012-10-03 华为技术有限公司 一种自适应均衡方法和自适应均衡器
CN103179060A (zh) * 2011-12-26 2013-06-26 富士通株式会社 均衡器的系数更新装置和方法
CN103516648A (zh) * 2013-10-18 2014-01-15 南京信息工程大学 一种修正的模判决多模盲均衡方法
WO2014101341A1 (zh) * 2012-12-28 2014-07-03 成都泰格微波技术股份有限公司 Mesh自组网信道自适应均衡器
CN104682919A (zh) * 2013-11-29 2015-06-03 无锡华润矽科微电子有限公司 一种解决均衡器定点化后出现频率漂移的方法
CN105827557A (zh) * 2016-05-24 2016-08-03 桂林市思奇通信设备有限公司 一种基于mimo的时域均衡器
CN107005307A (zh) * 2014-12-09 2017-08-01 华为技术有限公司 一种设置均衡装置的方法及均衡装置
CN107534629A (zh) * 2015-04-10 2018-01-02 华为技术有限公司 判决反馈均衡装置、方法及光传输系统
CN108616265A (zh) * 2018-05-04 2018-10-02 重庆邮电大学 一种基于五模余数基的rns dwt滤波器组的电路结构
CN110224955A (zh) * 2019-06-19 2019-09-10 北京邮电大学 一种数字均衡器结构及实现方法
CN110957995A (zh) * 2019-10-25 2020-04-03 四川汇源光通信有限公司 一种分布式故障监测装置iir滤波系统及其设计方法
CN113595949A (zh) * 2021-09-30 2021-11-02 苏州浪潮智能科技有限公司 自适应pam4判决反馈均衡电路
CN113992485A (zh) * 2021-10-27 2022-01-28 西安微电子技术研究所 一种判决反馈均衡电路和高速信号信道传输结构

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527697B (zh) * 2009-03-16 2012-08-29 上海高清数字科技产业有限公司 时域自适应均衡器及其均衡方法
CN102223328B (zh) * 2010-04-14 2014-04-16 华为技术有限公司 信号判决方法和装置
CN102223328A (zh) * 2010-04-14 2011-10-19 华为技术有限公司 信号判决方法和装置
CN102437978A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 数字微波均衡方法和装置
WO2012040966A1 (zh) * 2010-09-29 2012-04-05 中兴通讯股份有限公司 数字微波均衡方法和装置
CN103179060A (zh) * 2011-12-26 2013-06-26 富士通株式会社 均衡器的系数更新装置和方法
CN103179060B (zh) * 2011-12-26 2016-04-27 富士通株式会社 均衡器的系数更新装置和方法
CN102714639A (zh) * 2012-01-21 2012-10-03 华为技术有限公司 一种自适应均衡方法和自适应均衡器
WO2012092890A3 (zh) * 2012-01-21 2012-12-27 华为技术有限公司 一种自适应均衡方法和自适应均衡器
CN102714639B (zh) * 2012-01-21 2014-03-26 华为技术有限公司 一种自适应均衡方法和自适应均衡器
US8982940B2 (en) 2012-01-21 2015-03-17 Huawei Technologies Co., Ltd. Adaptive equalization method and adaptive equalizer
CN103067320B (zh) * 2012-12-28 2015-09-16 成都泰格微波技术股份有限公司 Mesh自组网信道自适应均衡器
WO2014101341A1 (zh) * 2012-12-28 2014-07-03 成都泰格微波技术股份有限公司 Mesh自组网信道自适应均衡器
CN103516648A (zh) * 2013-10-18 2014-01-15 南京信息工程大学 一种修正的模判决多模盲均衡方法
CN103516648B (zh) * 2013-10-18 2016-09-28 南京信息工程大学 一种修正的模判决多模盲均衡方法
CN104682919B (zh) * 2013-11-29 2018-02-27 无锡华润矽科微电子有限公司 一种解决均衡器定点化后出现频率漂移的方法
CN104682919A (zh) * 2013-11-29 2015-06-03 无锡华润矽科微电子有限公司 一种解决均衡器定点化后出现频率漂移的方法
CN107005307A (zh) * 2014-12-09 2017-08-01 华为技术有限公司 一种设置均衡装置的方法及均衡装置
CN107005307B (zh) * 2014-12-09 2019-06-28 华为技术有限公司 一种设置均衡装置的方法及均衡装置
CN107534629A (zh) * 2015-04-10 2018-01-02 华为技术有限公司 判决反馈均衡装置、方法及光传输系统
CN107534629B (zh) * 2015-04-10 2020-02-14 华为技术有限公司 判决反馈均衡装置、方法及光传输系统
CN105827557A (zh) * 2016-05-24 2016-08-03 桂林市思奇通信设备有限公司 一种基于mimo的时域均衡器
CN108616265B (zh) * 2018-05-04 2022-07-01 重庆邮电大学 一种基于五模余数基的rns dwt滤波器组的电路结构
CN108616265A (zh) * 2018-05-04 2018-10-02 重庆邮电大学 一种基于五模余数基的rns dwt滤波器组的电路结构
CN110224955A (zh) * 2019-06-19 2019-09-10 北京邮电大学 一种数字均衡器结构及实现方法
CN110957995A (zh) * 2019-10-25 2020-04-03 四川汇源光通信有限公司 一种分布式故障监测装置iir滤波系统及其设计方法
CN110957995B (zh) * 2019-10-25 2023-06-30 四川汇源光通信有限公司 一种分布式故障监测装置iir滤波系统及其设计方法
CN113595949A (zh) * 2021-09-30 2021-11-02 苏州浪潮智能科技有限公司 自适应pam4判决反馈均衡电路
US11881971B2 (en) 2021-09-30 2024-01-23 Inspur Suzhou Intelligent Technology Co., Ltd. Adaptive PAM4 decision feedback equalization circuit
CN113992485A (zh) * 2021-10-27 2022-01-28 西安微电子技术研究所 一种判决反馈均衡电路和高速信号信道传输结构
CN113992485B (zh) * 2021-10-27 2023-05-30 西安微电子技术研究所 一种判决反馈均衡电路和高速信号信道传输系统

Also Published As

Publication number Publication date
HK1116970A1 (en) 2009-01-02
CN100562076C (zh) 2009-11-18

Similar Documents

Publication Publication Date Title
CN100562076C (zh) 时域自适应均衡器及其包含的判决反馈滤波器
JP3357956B2 (ja) 判定帰還形等化器
US5297071A (en) Arithmetic circuit, and adaptive filter and echo canceler using it
CN102882817A (zh) 均衡电路、数据传输系统和均衡方法
CN102035502A (zh) 一种fir滤波器的实现结构
CN1845539B (zh) 一种具有重叠结构的时域自适应均衡器
JPH0418808A (ja) 自動等化器及び半導体集積回路
CN100547988C (zh) 有线数字电视中的自适应均衡电路
US20070014345A1 (en) Low complexity Tomlinson-Harashima precoders
CN107786476B (zh) 一种滤波器、时域均衡器以及接收机
US5898731A (en) Auto-coefficient renewal digital channel equalizer
CN203278880U (zh) 判决反馈均衡器
CN101521643B (zh) 干扰信号的处理方法和系统
US8374232B2 (en) Equalizer adapting circuit
CN101304495B (zh) 一种重影消除均衡器
CN111800356B (zh) 并行变步长cma均衡算法、装置、电子设备及存储介质
Leus et al. MMSE time-varying FIR equalization of doubly-selective channels
CN101599931B (zh) 基于区块的均衡器及执行基于区块的均衡方法
US6993071B2 (en) Low-cost high-speed multiplier/accumulator unit for decision feedback equalizers
CN103346822B (zh) 用于解调器的可转换均衡器
CN101422004B (zh) 一种优化时域均衡器的方法
CN108040026A (zh) 一种用于蓝牙接收机的符号同步和均衡器电路
KR100186532B1 (ko) 에이치디티브이용 고속 채널 등화기
Perry et al. Pipelined DFE architectures using delayed coefficient adaptation
CN102685044B (zh) 均衡器与均衡方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1116970

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1116970

Country of ref document: HK