CN101090382B - 用于线性极化发射器的系统、方法和设备 - Google Patents

用于线性极化发射器的系统、方法和设备 Download PDF

Info

Publication number
CN101090382B
CN101090382B CN 200710110606 CN200710110606A CN101090382B CN 101090382 B CN101090382 B CN 101090382B CN 200710110606 CN200710110606 CN 200710110606 CN 200710110606 A CN200710110606 A CN 200710110606A CN 101090382 B CN101090382 B CN 101090382B
Authority
CN
China
Prior art keywords
signal
amplitude
phase
input
predistortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200710110606
Other languages
English (en)
Other versions
CN101090382A (zh
Inventor
禹王命
李彰浩
张在浚
金学善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/754,112 external-priority patent/US7860466B2/en
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of CN101090382A publication Critical patent/CN101090382A/zh
Application granted granted Critical
Publication of CN101090382B publication Critical patent/CN101090382B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种用于提供线性极化发射器的系统和方法。该系统和方法可以包括:产生输入振幅信号和输入相位信号,其中,输入振幅信号和输入相位信号是输入信号的正交分量,且其中,输入振幅输入信号和输入相位信号在相应的第一信号通道和第二信号通道上产生。该系统和方法还可以包括使用振幅误差信号沿第一信号通道处理输入振幅信号以产生预失真振幅信号,以及使用相位误差信号沿第二信号通道处理输入相位信号以产生预失真相位信号。该系统和方法还可以包括沿第一信号通道将预失真振幅信号、以及沿第二信号通道将预失真相位信号提供给功率放大器,以产生输出信号,其中,根据输出信号的至少振幅部分和预失真振幅信号的比较来产生振幅误差信号,且其中,根据输出信号的至少相位部分和预失真相位信号的比较来产生相位误差信号。

Description

用于线性极化发射器的系统、方法和设备
相关申请的交叉参考
本申请要求于2006年6月4日提交的主题为“用于线性极化发射器的系统、方法和设备”的第60/803,871号美国临时申请的优先权,其内容全部结合于此作为参考。
技术领域
本发明大体涉及线性极化发射器,更具体地,涉及用于射频(RF)功率放大器的性能增强的系统、方法和设备。
背景技术
在代价敏感的移动发射器中,必须认真管理性能折衷来以所需增益和线性度实现高效和高输出功率。对于本质非线性功率放大器(PA)本身,实现更好的线性操作的唯一方法是将信号的动态范围限制在PA的全部能力的一小部分中。遗憾的是,由于需要更大的尺寸和消耗更多的功率的放大器结构,因此实现更好线性操作的动态范围中的这种限制非常低效。
随着要求增加数据发射率和通信能力,已经在现有的GSM(全球移动通信系统)规范和基础结构中引入了增强型数据率GSM演进(EDGE)技术。GSM基于高斯最小频移键控(GMSK)的常数包络调制方案,而EDGE是基于主要改善频谱效率的3π/8移位的8-移相键控(8-PSK)的包络变化(evelope-varying)调制方案。由于该包络变化调制方案,EDGE发射器对PA非线性更敏感,这会对EDGE手持装置产生显著的和负面影响。因此,EGDE发射器需要利用附加装置进行精确的振幅和相位控制以补偿由PA非线性特性和非常数包络变化引起的失真。
为了提供有效的放大信号发射,已经提出了利用数字预失真的开环方案和利用模拟反馈的闭环方案形式的多种极化发射器架构。首先,在传统的利用数字预失真的开环方案中,PA以包括功率、温度和频率的校准数据来表征。然后将校准数据存储在查询表中。利用数字逻辑从该查询表中选择用于操作条件的校正系数并用于预失真。基于DSP的线性化可以提供精确、稳定的操作以及易于通过软件程序的能力进行改进。然而,该技术要求在生产线上进行耗时校准以补偿零件间变异(part-to-part variations)并且不能容易的校正系统中的任何老化的影响。当采用反映PA输出端处的变化的通道进行线性化时,电路变的很大并且成本很高以及消耗大量的DC功率。
第二,极化环路包络反馈控制通常用于模拟线性化。在这种反馈控制结构中,在发射器中必须包括精确接收器,且控制环路带宽应该大大超过信号带宽。此外,负反馈中的本征增益减少特性可以引起对没有足够发射增益的放大器的严格限制。此外,传统的极化环路系统反馈失真和信号功率,从而降低了极化环系统的稳定性。同样,在这些传统的极化调制系统中使用的功率放大器被以高度线性切换模式进行操作以实现高效,因此消除高次失真分量变得更加重要。
发明内容
本发明的实施例可以提供一种使用多通道正交递归预失真的模拟线性极化发射器。该发射器可以以低功率模式进行操作并通过反馈低频偶次失真分量(即,线性增益的偏移)实现更大的带宽。此外,失真分量不能被作为反馈添加到输入信号,而是可以被用于以乘法方式对输入信号进行预失真。具体地,当以基波信号乘以低频偶次失真分量时,可以产生奇次带内失真项。因此,这种架构本质上可以比传统的加法极化环系统更稳定。
根据本发明的实施例,提供了一种用于提供线性极化发射器的方法。该方法可以包括:产生输入振幅信号和输入相位信号,其中,输入振幅信号和输入相位信号是输入信号的正交分量,且其中,输入振幅信号和输入相位信号在相应的第一信号通道和第二信号通道上产生;使用振幅误差信号沿第一信号通道处理输入振幅信号,来产生预失真振幅信号;以及使用相位误差信号沿第二信号通道处理输入相位信号,来产生预失真相位信号。该方法可以进一步包括沿第一信号通道将预失真振幅信号以及沿第二信号通道将预失真相位信号提供给功率放大器以产生输出信号,其中,根据该输出信号的至少振幅部分和预失真振幅信号的比较来产生振幅误差信号,以及其中,根据该输出信号的至少相位部分和预失真相位信号的比较来产生相位误差信号。
根据本发明的另一实施例,提供了一种用于线性极化发射器的系统。该系统可以包括输入振幅信号和输入相位信号,其中,该输入振幅信号和输入相位信号是输入信号的正交分量,且其中,该输入振幅信号和该输入相位信号被设置在相应的第一信号通道和第二信号通道上。该系统还可以包括第一预失真模块,用于利用反相振幅误差信号沿第一信号通道处理输入振幅信号以产生预失真振幅信号;以及第二预失真模块,用于利用反相相位误差信号沿第二信号通道处理输入相位信号以产生预失真相位信号。该系统还可以包括功率放大器,用于沿第一信号通道接收预失真振幅信号以及沿第二信号通道接收预失真相位信号,并基于预失真振幅信号和预失真相位信号来产生输出信号,其中,根据该输出信号的至少振幅部分和预失真振幅信号的比较产生振幅误差信号,以及其中,根据该输出信号的至少相位部分和预失真相位信号的比较产生相位误差信号。
根据本发明的再一个实施例,提供了一种用于线性极化发射器的系统。该系统可以包括输入振幅信号和输入相位信号,其中,该输入振幅信号和输入相位信号是输入信号的正交分量,且其中,该输入振幅信号和该输入相位信号被设置在相应的第一信号通道和第二信号通道上。该系统还可以包括第一装置,用于利用反相振幅误差信号沿第一信号通道处理输入振幅信号以产生预失真振幅信号;以及第二装置,用于利用反相相位误差信号沿第二信号通道处理输入相位信号来产生预失真相位信号。该系统还可以包括功率放大器,用于沿第一信号通道接收预失真振幅信号以及沿第二信号通道接收预失真相位信号,并基于预失真振幅信号和预失真相位信号来产生输出信号,其中,根据该输出信号的至少振幅部分和预失真振幅信号的比较来产生振幅误差信号,以及其中,根据该输出信号的至少相位部分和预失真相位信号的比较来产生相位误差信号。
附图说明
上面已经利用一般性术语描述了本发明,现在将参照附图对其进行描述,这些附图不一定按比例绘制,其中:
图1A和图1B示出了根据本发明实施例的极化发射器系统的功能性框图;
图2示出了根据本发明实施例的振幅误差校正环;
图3示出了根据本发明实施例的相位误差校正环;
图4示出了根据本发明实施例的振幅调制方案;
图5示出了根据本发明实施例的相位调制方案;
图6A和图6B分别示出了根据本发明实施例的没有进行预失真和进行了预失真的仿真功率放大器(PA)特性;
图7A和图7B示出了根据本发明实施例的没有进行预失真的EDGE信号的仿真星座结果(EVMrms:15.6%,EVMpeak:24.4%)和进行了预失真的EDGE信号的仿真星座结果(EVMrms:3.4%,EVMpeak:4.9%);
图8示出了根据本发明实施例的EDGE信号的仿真频谱结果(Pout_PDoff=21dBm以及Pout_PDon=26dBm);以及
图9示出了根据本发明实施例的用于示例性发射器架构验证的样机平台。
具体实施方式
下文中,将参照附图更加全面地描述本发明,其中,示出了本发明的一些但不是所有的实施例。实际上,这些发明可包括不同的形式,并不局限于这里所述的实施例;相反,提供的这些实施例只是使得本申请更满足法律要求。通篇中,相同的参考标号表示相同的元件。
本发明的实施例可以提供线性极化发射器,该线性极化发射器基于使用用于振幅和相位的两个相应通道的极化调制技术和模拟正交递归预失真线性化技术。极化调制技术可以通过动态调整功率放大器的偏置电平来提高电池寿命。此外,模拟正交递归预失真可以为射频(RF)功率放大器(PA)中的振幅和相位误差提供基本上瞬时校正。此外,从而提高PA的线性输出功率能力和效率。此外,本发明的实施例可以使用偶次失真分量以乘法方式对输入信号进行预失真,这用于对可能出现在校正环路带宽中的任何失真(包括包络记忆效应)进行校正。
图1A示出了根据本发明实施例的示例性极化发射器系统100的简化功能性框图。如图1A所示,极化发射器系统100可以包括基带调制及控制模块102、数字-模拟转换器(DAC)104a和104b、相位调制器模块106、振幅预失真模块108、放大器功率控制(APC)模块110、功率放大器模块112、振幅调制误差检测模块114、相位调制误差检测模块116。在极化发射器系统100运行期间,基带调制及控制模块102可以产生两个正交输入信号(一个表示输入信号的振幅以及一个表示输入信号的相位),该两个信号被分别提供给数字-模拟转换器(DAC)104a和104b。可以根据本发明的实施例对该两个基带数字输入信号进行同步。应该理解,当该两个正交信号分别与振幅和相位相关时,本发明的其他实施例可以使用用于Cartesian系统的I-分量和Q-分量。此外,使用其他的正交输入信号也不背离本发明的实施例。
DAC 104a输出端处的模拟振幅信号xA(t)可以被提供至振幅预失真模块118作为输入振幅信号。同样,DAC 104b输出端处的模拟相位信号xP(t)被提供至相位调制模块106,以将模拟相位调制信号xP(t)升频变换为RF信号rxP(t)。然后,生成的输入振幅信号rxP(t)可以被提供至相位预失真模块120。
下面将参照图1B来讨论振幅预失真模块118和相位预失真模块120,图1B将提供图1A的极化发射器系统100的更详细的功能性框图。如所示的,振幅预失真模块118可以是乘法器,且相位预失真模块120可以是相位加法器。根据本发明的实施例,用于振幅预失真的振幅乘法器可以是Gilbert单元(Gilbert cell)电压乘法器,而用于相位预失真的相位加法器可以是压控可变移相器(VVP)。
仍然参照图1B,振幅调制误差检测模块114可以包括具有1/a1衰减的衰减器128、包络检测器(EDET)130、和振幅预失真函数132。相位调制误差检测模块116可以包括限幅器134和相位预失真函数136。功率放大器模块112包括具有传递函数G{·}的功率放大器124。此外,功率放大器模块112还可以包括一个或多个输入匹配(IM)电路122和输出匹配(OM)电路126。IM电路122可以在功率放大器124的输入端提供阻抗匹配,同时OM电路126可以在功率放大器124的输出端提供阻抗匹配。
如下面将要进一步详细描述的,振幅预失真模块118和相位预失真模块120可以操作用于分别对基带振幅信号xA(t)和相位调制RF信号rxP(t)进行预失真。具体地,可以通过来自振幅调制误差检测模块114的反相振幅误差信号eA(t)对振幅信号输入xA(t)进行预失真,来产生振幅预失真(amplitude-predistorted)信号zA(t)。因此,输出zA(t)可以包含输入xA(t)的基波项以及输出yA(t)的反相奇次互调失真(IMD)项(诸如三次IMD)、五次IMD等)。反相振幅失真项可以被用于功率放大器模块112以补偿PA输出ry(t)的振幅失真。
为了产生反相振幅误差信号eA(t),振幅调制误差检测模块114(特别是振幅预失真函数132)通常对预失真模块118的输出zA(t)和功率放大器模块112的二极管检测输出yA(t)进行比较。例如,可以利用电压除法器对振幅预失真模块118的输出zA(t)和通过二极管包络检测器130的PA输出ry(t)的包络检测输出yA(t)进行比较。通过用信号yA(t)除信号zA(t),位于基波项附近的奇次失真项被降次变换为较低的奇次失真项。反相振幅误差信号eA(t)可以包括功率放大器模块112的反相振幅增益。反相振幅误差信号eA(t)还可以包括低频、偶次互调失真项,用于缓解在振幅误差校正环路中运行的分量的所需带宽。
同样,相位调制RF信号输入rxP(t)可以由来自相位调制误差检测模块116的反相相位误差信号eP(t)进行预失真,来产生相位预失真RF信号rzP(t)。因此,输出rzP(t)可以包括输入rxP(t)的基波项以及输出ryP(t)的反相奇次互调失真(IMD)项(诸如,三次IMD,五次IMD等)。反相相位失真项可以被用于功率放大器模块112以补偿PA输出ry(t)的相位失真。
为了产生反相相位误差信号eP(t),相位调制误差检测模块116(特别是相位预失真函数436)通常对预失真模块120的输出rzP(t)和功率放大器模块112的限幅输出ryP(t)进行比较。例如,可以由Gilbert-cell电压乘法器对相位预失真模块120和通过限幅器134的PA输出ry(t)的限幅输出ryP(t)进行比较。当将较小的振幅信号施加到Gilbert-cell电压乘法器的输入端口时,Gilbert-cell电压乘法器可以作为模拟乘法器。如果输入的相位误差接近90°,则输出的平均值可以与相位误差成线性比例。该反相相位误差信号eP(t)可以包括功率放大器模块112的反相相位偏移。反相相位误差信号eP(t)还可以包括低频、偶次互调失真项,从而缓解在相位误差校正环中运行的分量所需的带宽。
在图1B中,极化发射器系统100提供了一种线性化方案,其用于查看PA输出ry(t)的任何变化,以及几乎同时地对输入信号xA(t)和rx(t)进行预失真。更具体地,根据本发明实施例的预失真机制可以利用到PA 124的预失真信号作为递归预失真的参考,从而调制误差检测模块114、116的输出eA(t)和eP(t)可以只是PA 124传递函数G{·}的倒数。因此,可以利用模拟部件进行预失真函数(例如,FA132,FP 136)的计算。
如果振幅调制(AM)和相位调制(PM)通道是完全同步的,则通过将发射器输入信号rx(t)和反相PA失真信号e(t)相乘得到的PA 124输入信号rz(t)可以如下定义:
rz(t)=zA(t)∠rzP(t)
={xA(t)·eA(t)}∠{rxP(t)+eP(t)}(1)
=rx(t)·e(t),
其中,xA(t)和rxP(t)分别是基带振幅输入和相位调制RF输入。同样,eA(t)和eP(t)分别是用于振幅的预失真函数FA{·}132和用于相位的预失真函数FP{·}136的输出。
如图1B中的系统100可以基于极化调制,反相PA失真信号e(t)的振幅信号eA(t)和相位信号eP(t)可以分别通过振幅函数FA{·}132和相位误差预失真函数FP{·}136单独计算。当为了简化而考虑PA非线性分量中的直至三次项(K=2)和复形式分析时,PA 124的输出y(t)可以如下描述:
y(t)=rz(t)·G{zA(t)}
                                (2)
=[rx(t)·e(t)]·G{zA(t)},
G { z A ( t ) } = Σ k = 1 K a 2 k - 1 · z A 2 ( k - 1 ) ( t ) , - - - ( 3 )
e(t)=F{zA(t)}=a1·G-1{zA(t)},(4)
其中,G{·}是PA 124奇次传递函数,F{·}是包括FA 132和FP 136的预失真函数,以及ak是PA 124传递函数的第k个复系数。根据本发明的实施例,利用该架构可以容易地产生作为从以上等式(1)~(4)得到的结果的线性放大RF信号a1·rx(t)。
振幅误差校正。下面将参照图2描述包括振幅误差检测模块114的振幅误差校正环路。可以通过比较振幅预失真模块118(例如,乘法器)的输出zA(t)和基于二极管的包络检测器(EDET)130的输出yA(t)来得到反相振幅误差信号eA(t)。一旦得到了振幅误差信号eA(t),就可以将其与输入振幅信号xA(t)相乘来产生振幅预失真信号zA(t)。该处理可以递归进行。
相位误差校正。图3示出了包括相位调制误差检测模块116的相位误差校正环路。和振幅校正环路中一样,根据相位预失真模块120(例如,相位加法器)的输出rzp(t)和限幅器134的限幅输出yP(t)的比较得到反相相位误差信号eP(t)。一旦得到了相位误差信号eP(t),就将其加到相位调制RF输入信号rxP(t)上来产生相位预失真信号rzP(t)。由于被用作相位调制模块106的锁相环(PLL)的输出rxP(t)为射频,因此,根据本发明的实施例,相位预失真模块120可以利用反射型压控可变移相器(VVP)来实现。
振幅调制,在诸如GSM/EDGE的时分多路存取(TDMA)通信系统中,PA输出的功率控制必须满足时间范围(time mask)规范,同时保持电源的效率。可以通过使用线性调节器、切换调节器、或组合结构来进行功率控制。与GSM系统不同,根据本发明实施例的极化EDGE系统可能需要跟踪RF包络信号。跟踪包络信号可能需要更宽的操作带宽。图4示出了可以用于功率效率和宽带操作的合成PA控制器110方案的示例性实例。如图4所示,DC-DC变换器404可以提供DC和低频负载电流,同时AB类线性放大器402可以提供高频负载电流,以保持跟踪环路闭合。DC-DC变换器404可以由AB类放大器402的输出电流来控制。DC-DC变换器404的滞后电流控制器可以尝试最小化AB类放大器402的输出电流,以最大化全部效率。该架构的输出电容428的容量可以很低,以维持AB类放大器402环路的高带宽。此外,DC-DC变换器404的纹波电流可以主要被与反馈环路一起工作的AB类线性放大器402吸收。从而,期望该线性辅助(linear-assisted)架构具有高包络跟踪带宽,以保持良好的线性度和效率。
相位调制。图5示出了根据本发明实施例的可以使用的相位调制模块106。参照图5,相位调制中频(IF)信号xP(t)501被施加至用于锁相参考和相位调制的相位频率检测器(PFD)502。PFD 502将IF信号501和反馈信号511进行比较以产生电流脉冲。具体地,电压脉冲(例如,上/下)指示电荷泵(CP)504提供与检测到的相位误差成比例的电荷量。通常,这些脉冲很小而且具有基本上相同的持续时间,以使在相位完全匹配时,CP 504产生等电荷的正和负脉冲。CP 504的输出ICP被提供给滤波器506(例如,环路滤波器),并且所生成的信号Vc被提供给振荡器508以产生相位校正信号rxP(t)。
图5中,利用带有相位信息的IF参考信号501,可以消除反馈通道上的大部分分量,从而产生较少的相位噪声。此外,通过使用用于降频变换的分数N除法器510,相位调制器模块106只需要如由PFD 502、CP 504、和除法器510所提供的锁相环(PLL)。根据本发明的实施例,相位调制器模块106可以不需要降频变换混频器、本地振荡器(LO)、或滤波器中的一个或多个。
仿真结果。图6A和图6B所示的时域信号测试示出了根据本发明实施例的PA 124的改进性能。具体地,图6A示出了没有使用线性化电路而得到的结果,而图6B示出了根据本发明实施例的使用利用所提供的预失真实现的线性化电路的结果。如图6B所示,即使在通过功率显示分散的PA 124特性的记忆效应的情况下,开启了线性化电路的PA 124输出很好地跟踪原始输入信号,且振幅和相位中的非线性被很好的线性化。
误差矢量幅度(EVM)测量提供了表征由PA在很宽的动态范围内的非线性动作而引入的幅度和相位变化的手段。如图7A和图7B所示,EVM仿真结果显示了通过使用本发明实施例提供的预失真而获得的均方根(RMS)中的12.2%和峰值中的19.5%的改进。图8示出了没有使用预失真的频谱结果,频谱802违反了规范范围804。另一方面,图8中,来自开启了预失真的仿真的频谱806在所显示的范围中很好地位于范围804以下。
示例性实现。图9示出了根据本发明实施例实现的系统1200。系统1200包括:相位调制器1206,用于将相位调制信号升频变换为RF信号rxP(t);预失真器(PD)1208,用于对到PA 1212的输入信号进行预失真;放大器功率控制器(APC),用于功率调节和动态功率控制;振幅调制误差检测器1214,用于AM/AM失真提取;以及相位调制误差检测器1216,用于AM/PM失真提取。如所示,相位调制器1206包括模拟锁相环(PLL)。具体地,如图9所示,PLL由设置在反馈环路中的相位频率检测器(PFD)1232、电荷泵(CP)1234、环路滤波器1236、压控振荡器(VCO)1238、以及分频器1240(例如,分成N份)构成。PD 1208包括乘法器1218,用于使振幅输入信号xA(t)和振幅误差信号eA(t)相乘。此外,PD 1208还包括相位加法器1220,用于将相位误差信号eP(t)加到相位调制RF输入信号rxP(t)。振幅调制(AM)误差检测器1214可以包括用于确定PA 1212的输出ry(t)的振幅的包络检测器1230。此外,AM误差检测器包括用于使用输出ry(t)的振幅和PD 1208的预失真振幅输出来计算反相振幅误差信号eA(t)的除法器1228。相位调制(PM)误差检测器1216包括用于使用输出ry(t)的限幅输出ryP(t)和PD1208的相位预失真输出rzP(t)来确定反相相位误差信号eP(t)的限幅器1242、乘法器1244、和低通滤波器(LPF)1246。本领域的普通技术人员之一可以认识到系统1200可以应用于包括线性PA和切换PA的各种功率放大器1212。
对于具有在前面的描述和相关附图中所呈现的技术优点的这些发明,本领域的技术人员可想到本文阐述的实施例的许多修改和其它实施例。因此,应该理解,本发明不用于限制所披露的特定实施例,所以,各种修改和其它实施例应该在所附权利要求的范围内。虽然本文使用了具体的术语,但是它们仅是一般和描述性的,而不是用于限制的目的。

Claims (20)

1. 一种用于提供线性极化发射器的方法,包括:
产生输入振幅信号和输入相位信号,其中,所述输入振幅信号和所述输入相位信号是输入信号的正交分量,并且其中,所述输入振幅输入信号和所述输入相位信号在相应的第一信号通道和第二信号通道上产生;
使用振幅误差信号沿所述第一信号通道处理所述输入振幅信号以产生预失真振幅信号;
使用相位误差信号沿所述第二信号通道处理所述输入相位信号以产生预失真相位信号;以及
沿所述第一信号通道将所述预失真振幅信号、以及沿所述第二信号通道将所述预失真相位信号提供给功率放大器,以产生输出信号,其中,至少将所述输出信号的振幅部分和所述预失真振幅信号进行比较来产生所述振幅误差信号,以及其中,至少将所述输出信号的相位部分和所述预失真相位信号进行比较来产生所述相位误差信号。
2. 根据权利要求1所述的方法,其中,处理所述输入振幅信号包括将所述输入振幅信号与所述振幅误差信号相乘。
3. 根据权利要求1所述的方法,其中,处理所述输入相位信号包括将所述输入相位信号与所述相位误差信号相加。
4. 根据权利要求1所述的方法,其中,产生输入振幅信号和输入相位信号包括在所述第一信号通道上产生输入振幅矢量以及在所述第二信号通道上产生输入相位矢量。
5. 根据权利要求1所述的方法,其中,所述输入振幅信号、所述输入相位信号、所述振幅误差信号、所述相位误差信号、所述预失真振幅信号、所述预失真相位信号、以及所述输出信号是模拟信号。
6. 根据权利要求1所述的方法,其中,所述振幅误差信号包括偶次振幅失真项,以及其中,所述相位误差信号包括偶次相位失真项。
7. 根据权利要求1所述的方法,其中,所述振幅误差信号包括所述功率放大器的近似反相增益。
8. 根据权利要求1所述的方法,其中,使用应用于所述输出信号的包络检测器来确定所述输出信号的所述振幅部分,以及其中,使用应用于所述输出信号的限幅器来确定所述输出信号的所述相位部分。
9. 根据权利要求8所述的方法,其中,通过以所述输出信号的所述振幅部分除所述预失真振幅信号来确定所述振幅误差信号,以及其中,通过以所述输出信号的所述相位部分乘所述预失真相位信号来确定所述相位误差信号。
10. 一种用于线性极化发射器的系统,包括:
输入振幅信号和输入相位信号,其中,所述输入振幅信号和所述输入相位信号是输入信号的正交分量,以及其中,所述输入振幅信号和所述输入相位信号被设置在相应的第一信号通道和第二信号通道上;
第一预失真模块,用于使用反相振幅误差信号沿所述第一信号通道处理所述输入振幅信号以产生预失真振幅信号;
第二预失真模块,用于使用反相相位误差信号沿所述第二信号通道处理所述输入相位信号以产生预失真相位信号;
功率放大器,用于沿所述第一信号通道接收所述预失真振幅信号以及沿所述第二信号通道接收所述预失真相位信号,并基于所述预失真振幅信号和所述预失真相位信号产生输出信号,其中,至少将所述输出信号的振幅部分和所述预失真振幅信号进行比较来产生振幅误差信号,以及其中,至少将所述输出信号的相位部分和所述预失真相位信号进行比较来产生相位误差信号。
11. 根据权利要求10所述的系统,其中,所述第一预失真模块通过将所述输入振幅信号和所述反相振幅误差信号相乘来处理所述输入振幅信号。
12. 根据权利要求10所述的系统,其中,所述第二预失真模块通过将所述输入相位信号与所述反相相位误差信号相加来处理所述输入相位信号。
13. 根据权利要求10所述的系统,其中,所述输入振幅信号是输入振幅矢量,以及其中,所述输入相位信号是输入相位矢量。
14. 根据权利要求10所述的系统,其中,所述输入振幅信号、所述输入相位信号、所述振幅误差信号、所述相位误差信号、所述预失真振幅信号、所述预失真相位信号、以及所述输出信号是模拟信号。
15. 根据权利要求10所述的系统,其中,所述振幅误差信号包括偶次振幅失真项,以及其中,所述相位误差信号包括低频、偶次相位失真项。
16. 根据权利要求10所述的系统,其中,所述振幅误差信号包括所述功率放大器的近似反相增益。
17. 根据权利要求10所述的系统,其中,使用应用于所述输出信号的包络检测器来确定所述输出信号的所述振幅部分,以及其中,使用应用于所述输出信号的限幅器来确定所述输出信号的所述相位部分。
18. 根据权利要求17所述的系统,其中,通过以所述输出信号的所述振幅部分除所述预失真振幅信号来确定所述振幅误差信号,以及其中,通过以所述输出信号的所述相位部分乘所述预失真相位信号来确定所述相位误差信号。
19. 一种用于提供线性极化发射器的系统,包括:
输入振幅信号和输入相位信号,其中,所述输入振幅信号和所述输入相位信号是输入信号的正交分量,以及其中,所述输入振幅信号和所述输入相位信号被设置在相应的第一信号通道和第二信号通道上;
第一装置,用于使用反相振幅误差信号沿所述第一信号通道处理所述输入振幅信号以产生预失真振幅信号;
第二装置,用于使用反相相位误差信号沿所述第二信号通道处理所述输入相位信号以产生预失真相位信号;以及
功率放大器,用于沿所述第一信号通道接收所述预失真振幅信号以及沿所述第二信号通道接收所述预失真相位信号,并基于所述预失真振幅信号和所述预失真相位信号来产生输出信号,其中,至少将所述输出信号的振幅部分和所述预失真振幅信号进行比较来产生振幅误差信号,以及其中,至少将所述输出信号的相位部分和所述预失真相位信号进行比较来产生相位误差信号。
20. 根据权利要求19所述的系统,其中,所述第一装置通过将所述输入振幅信号和所述反相振幅误差信号相乘来处理所述输入振幅信号,以及其中,所述第二装置通过将所述输入相位信号与所述反相相位误差信号相加来处理所述输入相位信号。
CN 200710110606 2006-06-04 2007-06-04 用于线性极化发射器的系统、方法和设备 Expired - Fee Related CN101090382B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80387106P 2006-06-04 2006-06-04
US60/803,871 2006-06-04
US11/754,112 US7860466B2 (en) 2006-06-04 2007-05-25 Systems, methods, and apparatuses for linear polar transmitters
US11/754,112 2007-05-25

Publications (2)

Publication Number Publication Date
CN101090382A CN101090382A (zh) 2007-12-19
CN101090382B true CN101090382B (zh) 2012-04-25

Family

ID=38943551

Family Applications (3)

Application Number Title Priority Date Filing Date
CN 200710110602 Expired - Fee Related CN101090380B (zh) 2006-06-04 2007-06-04 用于线性包络消除与恢复发射机的系统以及方法
CN 200710110606 Expired - Fee Related CN101090382B (zh) 2006-06-04 2007-06-04 用于线性极化发射器的系统、方法和设备
CN 200710110604 Pending CN101090381A (zh) 2006-06-04 2007-06-04 用于多路径正交递归预失真的系统、方法以及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN 200710110602 Expired - Fee Related CN101090380B (zh) 2006-06-04 2007-06-04 用于线性包络消除与恢复发射机的系统以及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200710110604 Pending CN101090381A (zh) 2006-06-04 2007-06-04 用于多路径正交递归预失真的系统、方法以及装置

Country Status (1)

Country Link
CN (3) CN101090380B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594327B (zh) * 2008-05-26 2012-06-13 芯通科技(成都)有限公司 多通道数字预失真处理装置及预失真处理方法
US8195102B2 (en) * 2010-06-02 2012-06-05 Nxp B.V. System and method for transmitting a baseband real signal with a non-constant envelope using a polar transmitter
US9257943B2 (en) * 2010-12-22 2016-02-09 Sumitomo Electric Industries, Ltd. Amplifier circuit and wireless communication equipment
US20130076418A1 (en) * 2011-09-27 2013-03-28 Intel Mobile Communications GmbH System and Method for Calibration of Timing Mismatch for Envelope Tracking Transmit Systems
GB2498391B (en) * 2012-01-16 2018-11-21 Snaptrack Inc Pre-distortion in RF path in combination with shaping table in envelope path for envelope tracking amplifier
CN104185953B (zh) * 2012-02-09 2016-08-17 天工方案公司 用于包络跟踪的装置和方法
US8841968B2 (en) * 2012-09-26 2014-09-23 Broadcom Corporation Class-AB radio frequency amplifier for envelope detector
GB201309235D0 (en) * 2013-05-22 2013-07-03 Nujira Ltd Transfer function regulation
EP2983454B1 (en) * 2014-08-08 2019-02-27 Nxp B.V. Single tone RF signal generator
US9529380B1 (en) * 2015-08-04 2016-12-27 Qualcomm Incorporated Local oscillator signal generation circuit with harmonic current rejection
US10270394B2 (en) 2015-12-30 2019-04-23 Skyworks Solutions, Inc. Automated envelope tracking system
CN105978500B (zh) * 2016-04-29 2018-12-14 华为技术有限公司 模拟预失真系统、收发信机和通信设备
CN109286377A (zh) * 2017-07-21 2019-01-29 中兴通讯股份有限公司 射频信号的线性化处理电路及方法
CN110071892A (zh) * 2019-04-30 2019-07-30 中国联合网络通信集团有限公司 一种发射信号的方法及装置
CN114710126B (zh) * 2022-06-08 2022-09-20 成都嘉纳海威科技有限责任公司 一种基于GaAs Bi-HEMT工艺的可重构宽带放大器
CN115913134B (zh) * 2023-03-10 2023-06-06 成都明夷电子科技有限公司 一种宽带低噪声放大器和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075411A (en) * 1997-12-22 2000-06-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for wideband predistortion linearization
CN1333604C (zh) * 2003-04-17 2007-08-22 华为技术有限公司 一种脉冲宽度调制方法及装置
CN100337484C (zh) * 2003-06-20 2007-09-12 华为技术有限公司 包络消除与恢复数字功放的同步误差测量方法及装置
US20050181746A1 (en) * 2004-02-13 2005-08-18 Icefyre Semiconductor Corporation Methods and systems for signal amplification through envelope removal and restoration

Also Published As

Publication number Publication date
CN101090380B (zh) 2011-05-18
CN101090381A (zh) 2007-12-19
CN101090380A (zh) 2007-12-19
CN101090382A (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
CN101090382B (zh) 用于线性极化发射器的系统、方法和设备
US7860466B2 (en) Systems, methods, and apparatuses for linear polar transmitters
KR100862491B1 (ko) 다중-경로 직교 순환 전치왜곡 시스템, 방법 및 장치
US6633199B2 (en) Amplifier circuit, radio transmitter, method and use
CN103888085B (zh) 包络追踪系统的校准方法、电源电压的调制方法及装置
US7583754B2 (en) Method and system for broadband predistortion linearization
CN1819471B (zh) 具有可变预失真的极化调制器的发射/接收装置
US7518445B2 (en) Systems, methods, and apparatuses for linear envelope elimination and restoration transmitters
CN101156159B (zh) 用于高效率发射机的数字预失真系统和方法
CN1130819C (zh) 移动无线通讯系统中的功率放大器线性化的装置和方法
CN101821954B (zh) 具有极化发送器的功率放大器控制器
US11502707B2 (en) Digital predistortion of signals
CN102150362B (zh) 使用来自功率放大器的输出的峰值和rms电压反馈的复合调制波形的自适应数字预失真
CN102143107B (zh) 一种实现数字基带预失真的方法及装置
CN101569142A (zh) 基于高线性度和低线性度模式的预失真校正环回
US20030020557A1 (en) Digital signals, radio transmitter circuits and method
CN103117971A (zh) 预失真装置、无线通信单元及相关方法
US7353005B2 (en) Wireless communication unit and linearised transmitter circuit therefor
Shi et al. A LINC transmitter using a new signal component separator architecture
US20240297622A1 (en) Local oscillator clock shaping for pre-distortion
Seely Transmitters
Berland et al. A new dual mode GSM/EDGE transceiver using modulation loop
JP2002344249A (ja) 歪み補償装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20140604