CN101072998A - 具有铰接悬臂和可旋转c臂的移动射线照相设备 - Google Patents
具有铰接悬臂和可旋转c臂的移动射线照相设备 Download PDFInfo
- Publication number
- CN101072998A CN101072998A CNA2005800423005A CN200580042300A CN101072998A CN 101072998 A CN101072998 A CN 101072998A CN A2005800423005 A CNA2005800423005 A CN A2005800423005A CN 200580042300 A CN200580042300 A CN 200580042300A CN 101072998 A CN101072998 A CN 101072998A
- Authority
- CN
- China
- Prior art keywords
- detector
- radiation
- source
- locating device
- pipeline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种用于检查管道等的移动射线照相设备包括连接至移动运输车辆的铰接空中悬臂。枢轴支架被可旋转地连接至空中悬臂的远端。具有滑轨的平台被可操作地连接至枢轴支架。安装夹具被可旋转地安装在支架上,该支架又被连接至平台的滑轨。辐射源和辐射探测器被安装在夹具的正好相对的侧上,以便利用辐射来照射管道或其它对象的外表面。第一定位装置被提供以用于相对于管道粗略定位扫描装置。第二定位装置被提供以用于相对管道精确定位扫描装置。当辐射源利用辐射来照射管道时,可从远程位置操作第二定位装置。第一和第二定位装置为定位扫描装置提供多个自由度。
Description
相关申请的交叉参考
本申请要求2004年10月8日提交的顺序号为60/616,986的美国临时专利申请的优先权权益。
发明领域
本发明一般而言涉及一种用于采用贯穿辐射来非接触无损检查对象的系统,特别涉及一种用于当固定部件在使用中时无损测量和检查这些部件以便确定老化和状态的移动扫描装置和方法,这些固定部件例如是运行设施、工厂或系统的管道、弯头、泵和扩散器。
发明背景
管道是工业的组成部分,并广泛用于炼油厂、发电厂和其它工业应用。管道、特别是用于这些应用的管道随着时间老化,从而造成管壁变薄。机械应力、流动加速的腐蚀或侵蚀、化学侵蚀、水或电化学过程可以造成内管壁变薄。另外,例如来自降雨和降雪的湿气可被夹在位于管子边缘周围的绝缘体和管子的外表面之间。收集的湿气可以腐蚀在绝缘条件下的管道,从而使外管壁变薄。管壁变薄可以使管道容易泄漏或破裂,特别是在加压时。管壁的损坏以及所产生的泄漏会引起设施的停工期,需要昂贵的修理,并对工人和环境造成严重伤害。
数字射线照相术广泛应用于工业中以用于无损检验对象,这些对象例如是管道、焊缝、飞行器机身、涡轮叶片、火箭发动机、以及其它复合结构。我们在先的美国专利No.6,925,145描述了一个示例性系统,其公开由此作为参考被结合于此。
在一些情况下,扫描装置被放在固定位置,并且待检验的对象移向扫描器并旋转以提供必要的扫描视图。这种系统的一个缺点在于常常必须拆开在检验中的对象,以使各部分可以移向固定的设施来进行检查。在其它实例中,提供移动扫描器来对现场的大结构进行成像,但是这种系统由于其大的尺寸和重的重量而往往使用不便,并且通常不能提供用于将扫描装置精确地定位在对象的特定部分上的简单、可靠和灵敏的驱动和控制系统。而且,这种已知的移动系统通常需要辅助支承结构例如脚手架以支持人员接近。
因此,强烈需要提供一种可靠且可操纵的移动扫描装置,该装置能够在使用不便、难于到达的位置周围进行操纵以提供必要的扫描视图,并且该装置能够将成像有效载荷精确地定位在检验中的对象上。还期望提供一种扫描装置,该装置可以被远程操作以便消除在进行成像的特定位置处对于辅助支承基础结构的需要,并允许在辐射源产生辐射时从远程离开位置精确地定位该装置。因此,如果配置的辐射探测器能够经由通信网络系统在远离检验中的对象的距离上传输数字图像,那么这将是期望的。本发明的这些和其它优点在阅读后面的详细描述、附图和所附权利要求书后将变得显而易见。
发明概要
一种用于检查管道等的移动射线照相设备包括连接至移动运输车辆的铰接空中悬臂(articulating aerial boom)。枢轴支架被可旋转地连接至空中悬臂的远端。具有滑轨的平台被可操作地连接至枢轴支架。安装夹具例如C环夹具被可旋转地安装在支架上,该支架又被连接至平台的滑轨。该夹具定位辐射源和辐射探测器以将辐射引导至管道或其它对象并从那里收集成像辐射。第一定位装置被提供以用于相对于管道粗略地定位扫描装置。第二定位装置被提供以用于相对于管道精确地定位扫描装置。当辐射源用辐射来照射管道时,可从远程位置操作第二定位装置。第一和第二定位装置为定位该扫描装置提供多个自由度。这些自由度允许与待成像的对象的最佳对准,并简化对象的配准或映射,以及允许精确的移动以对管道、容器和弯头执行轴向、周向或其它扫描。该机构因此适于利用不同的辐射组件(即X射线和伽马)、成像器(线阵、平板)和成像协议来成像。
附图简述
图1是说明商用移动空中铰接悬臂的和相关枢轴支架的多轴运动的该悬臂的透视图;
图2是连接至悬臂的远端上的枢轴支架的扫描装置的透视图;
图3-5是主要说明安装夹具以及相关辐射源和探测器的旋转运动的扫描装置的透视图;
图6是说明便于装置的不同部件之间的控制和通信的系统的客户机-服务器架构的图;
图7A是说明用于粗略定位扫描装置的示例性运动控制系统的通信通道的示意图;
图7B是说明用于精确定位扫描装置的示例性运动控制系统的通信通道的示意图;
图8是说明用于粗略和精确定位扫描装置的示例性运动控制系统的通信通道的示意图,其中基于计算机的控制系统与图像采集系统连接。
示例性实施例的详细描述
以下将参考附图来描述用于描述本发明的示例性实施例和实例。参考图1,用数字10总的表示移动X射线传送系统。虽然在此所述的示例性实施例与产生X射线的X射线源22的使用相关,但是应当理解可以采用其它类型的辐射源例如伽马射线源而不背离本发明的较宽范围。
如图1所示,本发明的自动X射线传送系统基于市场上可买到的载人升降机(man-lift),其包括由多个轮子14从地上支撑的移动运输车辆12。
转动架16被安装在车辆12的上表面以用于支撑主铰接悬臂18。用数字20总的表示的射线照相扫描系统被安装在主悬臂18的远端。
在图1和图2的示例性实施例中,扫描系统20的特征是安装在C型安装夹具25的正好相对两侧的X射线源22和辐射探测器24。应当注意,在本发明的一个示例性实施例中采用C环安装夹具,尽管当然可以采用许多不同形状的安装夹具,例如U型、蛤壳等等,以实现相同的结果和/或优化对于特定应用的接近。在本实施例中,C环25被可旋转地安装到支架26,该支架又被可滑动地安装到平台28。该平台28又被旋转(pivotally)连接至与主悬臂18的远端连接的枢轴支架30。
枢轴支架30代替有效载荷吊篮。添加了例如可以以Helac L20-15旋转致动器的形式来实施的枢轴支架30,以允许扫描装置20相对于悬臂18旋转360°。由于明显的安全原因,不允许对人员输送车进行这种360°旋转。附加的液压轴和相关的控制硬件可以被连接至OEM控制器以控制旋转的枢轴支架。
扫描系统20由粗略定位系统和精确定位系统来控制,并参考图7A、7B、8被更详细地讨论。一般而言,粗略定位系统由商用载人升降机的OEM液压系统组成。可从连接至运输车辆的操作员平台来操作粗略定位系统,并将其用于粗略定位和操纵运输车辆12的主铰接悬臂18。在本实施例中,该示例性主悬臂18一直向空中伸出大约40英尺。该结构被限定以处理在悬臂端部处大约500磅材料的最大额定载荷。
如图2最佳所示,扫描装置20的精确定位系统包括连接至悬臂18D的端部的具有滑轨29的平台28。C环25通过支架26被可旋转地连接至滑轨29,该滑轨例如由电动机来驱动以在检验中围绕管道(未示出)周向和纵向地旋转C环。C环25围绕管的外径周向地旋转该源22和探测器24,以便围绕管道的方位提供完全覆盖。滑轨29允许支架26的线性运动,该支架26又允许C环25和相关的辐射源22与探测器24沿管道的纵轴提供线性覆盖。例如可以由蜗杆与滚轮式机构和相关的电动机以本领域已知的方式来驱动精确定位控制系统。还可在操作平台上配置具有定位反馈传感器的独立控制箱。
采用商用载人升降机平台解决了对安全的担心。用于提升人类乘客的经过检验的车辆具有确保有效载荷安全的故障保险和冗余的机构,例如正压双液压和棘轮锁机构。因此,大大降低了会对工厂产生破坏的机械/液压故障的危险。
利用OEM液压系统来操纵主悬臂18以便相对于检验中的管道粗略定位扫描系统20。可专门从载人升降机上的操作员平台来操作粗略定位系统。比较起来,扫描装置20的精确定位系统的控制可以从操作员平台和远程离开位置二者来操作。因为可在X射线源产生辐射时操作精确定位控制,所以这种冗余控制系统提高了操作员的安全。这允许真正的实时射线照相。
精确定位系统由液压和电驱动装置的组合构成,所述液压和电驱动装置对枢轴支架30、平台28、支架26和相关的C环25提供多轴精确定位控制。用图1-2中箭头A-I总的表示控制轴。并非所有的接头、托架或者铰接都需要可独立运动,但是某些对可以被连接以对有关石油化工厂或炼油厂的管道和容器的导航共同提供可有效定位的组件。
运动控制系统的目标之一是使多轴精确定位控制系统的远程控制自动化。如以下更全面地讨论的,可由中央计算机操纵精确控制,该中央计算机在本实施例中包括经由TCP/IP协议进行通信的数据采集计算机。当然,定量射线照相检查需要对装置的几何方位的良好控制知识,例如源探测器相对于成像对象(即管道)的几何形状。
电缆从操作员平台通过悬臂以本领域已知的方式连接至C环的端部,以传送功率和使读出电缆等到达X射线管和探测器系统。
传送系统的自由度
本发明必要地包括相对于管道装置定向扫描装置的四级位置控制:(1)运输车辆的推进和定位;(2)液压铰接空中悬臂的粗略定位;(3)枢轴支架、平台、滑轨、支架和相关的C环的(电和液压)精确定位;以及(4)X射线的(电)方向定位。
在本示例性实施例中,为了运输车辆的推进和为了空中悬臂18的液压方面的定位而保留载人升降机的大部分OEM性能。
关于精确定位系统,本实施例除了由图1-2中箭头A-I所示的车辆驱动性能以外,还设想了运动性能的至少九个轴。所述多个轴在此被定义为:(A)平台滚动(液压);(B)扫描轴俯仰(液压);(C)C环扫描(电);(D)C环旋转(电);(E)悬臂举起(液压);以及(F)悬臂延伸(液压);(G)悬臂旋转(液压),(H)悬臂倾斜(液压),以及(I)平台旋转(液压)。
如上所述,可以由机电驱动器例如伺服电动机来控制C环扫描和旋转。还期望包括连同近程传感器一起的位置编码器以监视成像硬件相对于管道环境的位置。这些在运动控制器计算机或PLC中被读出,所述计算机或PLC被包含在运行于中央服务器上的运动控制器客户机过程中。
本发明的示例性实施例采用手动系统,其中通过用于启动和停止每个轴上的运动的通/断开关来实施控制。然而,如以下更全面地讨论的,本发明还提供一种基于计算机的控制系统,其中每个定位轴由计算机控制以便与数据采集系统一起协调扫描参数和运动控制。此控制系统启用扫描协议,例如需要位置的协调序列的轮廓外形。这允许不是严格周向或线性的扫描,以及允许可识别目标区域例如弯头、T形接头、流动渐缩管等等的成像。
控制系统的概观
整个DR成像系统包括3个主要的子系统:(1)采集计算机;(2)传送系统;以及(3)X射线探测器成像系统。为了使系统有效地工作,可从采集站操作精确定位系统。可以完全理解,并非所有的定位控制都将在远程站可以使用。例如,液压粗略定位系统和运输车辆推进系统的控制通常不在远程站。然而,如上所述,为了安全的原因,期望在远程站提供对精确定位系统的控制。在两个位置都提供启动和停止扫描轴和C环旋转的装置。
连同本地和远程位置的控制性能一起,期望具有指示轴所处位置的位置指示器并从近程传感器获得报警指示。还必须有使定位平台与采集站直接通信的能力,从而可以利用采集图像的位置来给图像作注解。
如图6最佳所示,与X射线探测器和X射线管通信的数据采集系统基于客户机-服务器结构。例如可以在LINUX平台上执行这些实体。该示例性架构允许主服务器发送和接收如由严格的接口所定义的命令。该接口独立于计算机和设备之间的物理连接。在探测器的情况下,该物理连接是光纤,而对X射线管而言,它是串行电缆。由在客户机中所包含和支持的软件来处理通信协议。
在此架构中,服务器可以启动与任何数量的客户机之间的通信。与此实例相关的特定添加是用于命令操纵器或运动系统的客户机。客户机的实施取决于物理连接以及连接至所讨论设备的软件接口。
轴控制器的细节
对于在台架和采集系统之间的通信有两个主要方面,也就是:(1)在采集系统和轴控制器之间;以及(2)在轴控制器和驱动器之间。这两个通信通道经由运动控制器CPU的特定制造商实施所提供的接口来限定。
在控制器和电动机驱动器之间
控制器厂商通常提供用户接口以向驱动器控制器交互发出命令,该驱动器控制器经由控制器处理器来操纵电动机。因此,对驱动状态、速度、加速度等等参数以及启动和停止运动的命令的访问都是这个包的一部分。这些命令可被包成指令集或程序(取决于厂商),并且可通过直接调用在控制器上的这些程序来运行。
在控制器和采集系统之间
通常通过由控制器的制造商所提供的接口来促进在采集系统和轴控制器之间的通信。此接口和相关的库提供一种经由通信协议(即RS-232、TCP/IP等等)连接至控制器的手段,并提供询问轴的状态以及发送执行运动的命令或串的能力。
在图7A和7B中以更具体的形式来示出这些通信通道和控制器逻辑。
控制系统
现在参考附图7A、7B,示出了轴控制接口的示例性设计。这里,可以由机械通/断开关来控制不同的轴,并且可在硬件中设置速度。不提供计算机控制。引入增加的功能将需要附加的电缆和开关。
图7B说明根据本发明示例性实施例的第一电动机控制的示意图。当然可以修改此示意图,或者其它示意图可用于执行与所说明的示意图相同的功能。所说明的示意图包括连接至可编程逻辑控制器(PLC)410输入端和输出端的用户接口悬架(pendant)(UIP)401。
响应于来自UIP 410的输入、或者来自运动控制客户机401A和防止碰撞传感器402的采集系统指令,PLC产生输出信号来用于控制分别用数字431和432总的表示的液压和电的精确定位运动。例如,中继输出411、412为每个液压电磁阀提供两个输出。输出413运行以使开关能够启动电动机液压泵420。输出414被连接至主液压配压阀421以用于控制精确定位液压运动的速度。输出415、416被连接至C旋转电动机和扫描电动机422、423以用于控制电精确定位运动。如所示,对于总计四个驱动器输出,输出415、416包括每个驱动器2个通道,并具有模拟电流输出。
图8说明根据本发明示例性实施例的第二运动控制系统。本领域技术人员将认识到,可修改此示例性系统以执行与所说明的示意图相同的功能而不背离本发明的范围。与基于手动控制的图7B的第一示例性运动控制系统不同,图8的第二示例性控制系统基于连接至图像采集系统的计算机控制系统。在此示例性实施例中,运动控制系统800经由以太网或RS-232电缆被连接至基于Linux的PC 520和编程计算机821,以由中央处理器使运动和采集能够被同步和控制。
运动控制
如上所述,一个示例性实施例基于手动控制,而另一个实施例包括连接到图像采集系统的计算机控制系统。这将由中央处理器使运动和采集被同步和控制。
此系统被设计成处理至少七个自由度,这些自由度由液压和电动机的组合来控制。为了同时处理所用的多个液压轴的可能性,在设计中规定了升级的液压泵和储液器。如前所述,接头和托架不必独立移动,但是可以被连接。
传感器和保护
如图3-5最佳所示,本发明的扫描装置的示例性实施例配备有多个防止碰撞传感器601,以确定扫描装置在其路径上何时会碰到障碍物。这样,装备了超声传感器阵列601,以对操作员给出扫描装置在其路径上接近障碍物的警报。经由GUI(图形用户接口)将该警报显示给用户。
传感器601被安装在C臂内以对操作员提供有关X射线源和探测器相对于管道的位置的反馈。传感器还被安装在外壳边缘,以确保运动中的扫描平台在其碰撞对象之前可以被停止。
如在此所述,本发明的基本系统从一般的传送系统开始,其由移动平台、多自由度铰接机构、以及连接至远端的成像末端执行器(即扫描装置)组成。将主要认为此初始配置是手动操作系统,从而利用现有的移动平台传送车辆。无疑,现有的平台被修改/扩建为包括末端执行器和相关的成像硬件。附加的自由度对于定位用于线性和按方位扫描管道或类似结构的成像硬件是必要的。尽管一个可能的实施例是辐射源和探测器正好相对的C臂构造,但是这仅仅表示一种可能的结构。其它结构包括可调整的U型臂结构,其中可调整源-探测器偏移距离,以及可能相对于U型臂平台的底座调整源-探测器轴。另一个可能的末端执行器结构将是独立地将源和探测器安装在分离的多自由度机构上(例如具有多个旋转和/或棱形轴的串联操纵器)。如果趋向于更小(和更轻)的探测器和源,则独立地将源和探测器机构安装至更大(总的定位)末端执行器的远端非常可行。
初始实施例可以采用多于一种的功率传输方法来驱动各种轴;例如在当前的示例性实施例中,最接近底座的轴液压驱动,而远轴被电驱动。在最基本的实施方式中,可通过简单的通/断开关面板接口来控制系统的每个轴,该面板接口还可包括调整/限制驱动轴速度的能力。系统的实施可能需要改变现有的车辆电和液压子系统以包括用于附加轴的必要框架。
为了改进性能和操作方便,可以容易地扩建上述的系统。利用基于简单微处理器的系统,例如可编程逻辑控制(PLC)设备,可以增强铰接系统的定位的操作。示例性实施例利用可远离车辆底座使用的悬架来实施用户接口。有线(或无线)悬架使操作员能够在配置位置周围走动并改进视觉访问以有助于定位末端执行器。另外,悬架将使操作员能够在距辐射源的安全距离处定位/重定位末端执行器。在最简单的结构中,基于PLC的系统将必要地代替控制液压电磁阀、电动机功率、或某一其它致动器的手动通/断开关。仍然作为开环控制系统工作,悬架和PLC系统可为位置控制添加几个特征,例如各个轴速度控制、同时多轴运动、以及基于时间的慢进运动。还可容易地将防止碰撞传感器信息添加至此系统以限制或停止给定轴的运动。
在基于PLC的系统的更复杂实施例中,一些或者所有的轴可配备有位置传感器。位置传感器可用于简单地监视给定轴的位置并将此信息提供给操作员,或者反馈信号可以用于闭环控制。利用闭环控制,系统将具有增强的性能,例如对于各个轴轨迹控制的精确的速度和位置控制。轨迹控制可用于确保给定轴的平滑启动和停止,以有助于防止在末端执行器处任何不需要的振动。除了简单地限制速度或加速度以外,也可使用专用的运动轮廓例如线性/抛物线混合或五次样条轮廓,以改善运动的平滑度。
闭环控制将需要修改初始实施例。例如,液压轴电磁阀应当被伺服阀替换,而电动机驱动器应当被PWM功率放大器替换以允许在每个轴上的精确控制。
由于铰接系统和末端执行器的结构变得更为复杂,所以可以利用增强/改进操作员的使用方便性、定位精度和可重复性、与成像系统的集成、碰撞防止、运动程序等等的多轴协调控制方案。采用多轴协调控制器允许操作员在任务空间中控制末端执行器。任务空间可看作是相对于对象或某一其它基于地面的参考点的标准三维坐标系。这样,操作员将能够基于此直观的正交坐标系(绕每个轴旋转的x-y-z、相对于待检查的对象的固定或者某一车辆参考点的w/r/t)来定位末端执行器,而不必调整铰接系统的每个接头以试图产生例如线性运动。
因为对象相对于传送平台复杂的运动和变化的位置,所以任务空间轨迹的产生不是一件简单的事情。由于将相对于正检查的当前对象或者相对于某一教导点(任务空间)限定轨迹,所以轨迹是依赖于结构的,即依赖于当前的联合空间结构。换言之,为了对给定任务空间运动计算操纵器轴(联合空间)的必要运动,当前的结构必须是已知的。这意味着对于给定运动不能脱机或先验地计算任务空间轨迹(如在明确限定环境中机器人系统通常所完成的)。因此,为了实现合适的运动,将实施可以计算逆运动的运动控制器(这需要能够对闭环控制足够快地计算必要轴变换的快速DSP系统)。
利用此能力,操作员可更容易控制该传送系统。例如,利用任务空间控制能力,操作员可以垂直或平行于给定管道来容易地移动末端执行器(与管道的实际方位无关)。控制器,主要是机器人运动控制器,将允许实时的基于传感器的轨迹修改和基于任务空间的慢进运动。
还注意到,对高d.o.f.操纵器产生逆运动解是重要的。如先前所讨论的,可能必须将系统分为精确和粗略运动操纵器。这将有助于简化逆运动,但会防止粗略和精确运动的同时协调控制。
尽管已经在典型示例性实施例中说明和描述了本公开,但是本公开不打算限于所示出的细节,因为可以进行各种修改和替换而无论如何不会背离本发明的精神。因此,仅仅使用常规实验的本领域技术人员可以想到在此所披露的本公开的进一步的修改和等同物,并且所有这样的修改和等同物被认为处于如由后面的权利要求书所限定的公开的范围内。
Claims (12)
1.一种用于从对象收集成像信息的移动射线照相检查设备,包括:
辐射源,用于利用辐射来照射对象;
辐射探测器,用于探测透射通过所述对象的辐射;
定位夹具,包括:
第一定位装置,用于相对于所述对象粗略定位所述源和探测器;
第二定位装置,用于相对于所述对象精确定位所述源和探测器,所述第二定位装置可以从远程位置来操作,以当所述源利用辐射来照射所述对象时以协调的方式相对于所述对象来移动所述源和探测器。
2.权利要求1所述的设备,其中所述定位夹具还包括用于协调多个自由度以便相对于所述对象的目标区域以协调的位置序列来定位所述源和探测器的装置。
3.权利要求2所述的设备,其中所述第二定位装置绕所述对象周向旋转所述源和探测器,以便提供对所述对象的全方位覆盖。
4.权利要求3所述的设备,还包括数据采集系统,该采集系统可操作地与所述源和探测器相关联以从所述对象收集所述成像信息。
5.权利要求4所述的设备,还包括基于计算机的控制系统,该控制系统可操作地与所述数据采集系统相关联以用于控制所述第一和第二定位装置。
6.权利要求5所述的设备,其中所述数据采集系统包括用于使服务器能够启动与多个客户机的通信的客户机-服务器网络架构。
7.权利要求6所述的设备,其中所述定位夹具包括:
移动运输车辆;
铰接空中悬臂,其具有第一端和一个远端,所述第一端可操作地连接至所述车辆;
旋转枢轴支架,其被旋转连接至所述空中悬臂的所述远端;
平台,其被可操作地连接至所述枢轴支架,所述平台包括沿所述平台的长度布置的滑轨;以及
至少一个安装夹具,其被可旋转地安装到所述滑轨上以用于相对于所述对象可旋转地安装所述源和探测器。
8.权利要求7所述的设备,还包括安装在所述定位夹具上的多个防止碰撞传感器。
9.权利要求8所述的设备,其中所述第一定位装置包括用于粗略定位所述空中悬臂的液压定位装置。
10.权利要求9所述的设备,其中所述第二定位装置包括液压和电的定位装置。
11.权利要求10所述的设备,其中所述安装夹具是C环。
12.权利要求11所述的设备,其中所述对象是管道。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61698604P | 2004-10-08 | 2004-10-08 | |
US60/616,986 | 2004-10-08 | ||
US11/207,015 | 2005-08-18 | ||
US11/207,015 US7319738B2 (en) | 2004-10-08 | 2005-08-18 | Delivering X-ray systems to pipe installations |
PCT/US2005/036159 WO2006137905A2 (en) | 2004-10-08 | 2005-10-05 | Mobile radiographic device with articulating boom and pivotable c-arm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101072998A true CN101072998A (zh) | 2007-11-14 |
CN101072998B CN101072998B (zh) | 2011-12-21 |
Family
ID=36145320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800423005A Expired - Fee Related CN101072998B (zh) | 2004-10-08 | 2005-10-05 | 具有铰接悬臂和可旋转c臂的移动射线照相设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7319738B2 (zh) |
EP (1) | EP1800114B1 (zh) |
JP (1) | JP2008516238A (zh) |
CN (1) | CN101072998B (zh) |
WO (1) | WO2006137905A2 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103718028A (zh) * | 2011-04-15 | 2014-04-09 | 美国科技工程公司 | 用于执行有限空间中复杂目标的反向散射检查的方法 |
CN101978278B (zh) * | 2008-02-20 | 2014-08-20 | 微波视点公司 | 用于确定被测对象的辐射图的设备和方法 |
CN104950003A (zh) * | 2015-06-24 | 2015-09-30 | 中国石油天然气第一建设公司 | 一种小径管对接接头的伽马射线检测方法 |
CN105259193A (zh) * | 2015-10-10 | 2016-01-20 | 东北石油大学 | 多尺度管道焊缝检测装置 |
CN105301017A (zh) * | 2015-10-10 | 2016-02-03 | 东北石油大学 | 管道对接焊缝检测装置的曲率调节机构 |
CN110710985A (zh) * | 2018-07-12 | 2020-01-21 | 西门子医疗有限公司 | 计算机断层扫描设备的全向行走机构 |
CN110811652A (zh) * | 2018-08-14 | 2020-02-21 | 通用电气公司 | 用于移动x射线成像系统的系统和方法 |
CN111091736A (zh) * | 2020-01-14 | 2020-05-01 | 宁波创导三维医疗科技有限公司 | 一种仿c臂机构 |
CN115219530A (zh) * | 2022-09-20 | 2022-10-21 | 安徽启路达光电科技有限公司 | 辐射检查系统 |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
US7568836B2 (en) * | 2004-07-30 | 2009-08-04 | Neurologica Corp. | Mobile computerized tomography (CT) imaging system with off-center x-ray beam |
US8888364B2 (en) | 2004-07-30 | 2014-11-18 | Neurologica Corp. | Anatomical imaging system with centipede scanning drive, bottom notch to accommodate base of patient support, and motorized drive for transporting the system between scanning locations |
US7736056B2 (en) * | 2004-07-30 | 2010-06-15 | Neurologica Corp. | X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems |
US8971482B2 (en) | 2004-07-30 | 2015-03-03 | Neurologica Corp. | Anatomical imaging system with centipede belt drive and bottom notch to accommodate base of patient support |
US11298093B2 (en) | 2004-07-30 | 2022-04-12 | Neurologica Corp. | Anatomical imaging system with centipede belt drive |
US7175347B2 (en) * | 2004-07-30 | 2007-02-13 | Neurologica, Corp. | Anatomical imaging system with centipede belt drive |
US8905637B2 (en) * | 2004-07-30 | 2014-12-09 | Neurologica Corp. | X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems |
US8057097B1 (en) | 2004-07-30 | 2011-11-15 | Neurologica Corp. | Transportable anatomical imaging system with radiation-protective curtains |
DE102006028327B3 (de) * | 2006-06-20 | 2008-01-31 | Siemens Ag | Robotergesteuerte Aufzeichnungsvorrichtung, insbesondere für die Aufzeichnung von Röntgenbilddaten, sowie zugehöriges Verfahren |
US7481578B2 (en) * | 2006-09-18 | 2009-01-27 | Cartstream Health, Inc. | Digital radiography apparatus |
US20080069304A1 (en) * | 2006-09-18 | 2008-03-20 | Eastman Kodak Company | Radiography apparatus with multiple work zones |
JP4557951B2 (ja) * | 2006-10-24 | 2010-10-06 | 悦司 岡本 | 回転運動器具 |
WO2008127394A2 (en) * | 2006-11-16 | 2008-10-23 | Koninklijke Philips Electronics N. V. | Foldable nuclear medicine gantry |
JP2008275352A (ja) * | 2007-04-26 | 2008-11-13 | Hitachi Ltd | 配管の検査方法及び配管の検査装置 |
DK2197547T3 (da) * | 2007-09-13 | 2014-07-07 | Toby D Henderson | Positioneringssystem til billeddannelse og som har robotplaceret d-arm |
US7594448B2 (en) | 2007-11-08 | 2009-09-29 | Fabtec Solutions, Llc | Crawler for inspecting pipes |
EP2263427B1 (en) * | 2007-12-19 | 2019-07-31 | Rapiscan Systems, Inc. | Rotatable boom cargo scanning system |
US7656997B1 (en) | 2008-09-15 | 2010-02-02 | VJ Technologies | Method and apparatus for automated, digital, radiographic inspection of piping |
WO2010033265A1 (en) * | 2008-09-19 | 2010-03-25 | Analogic Corporation | Pipeline inspection |
DE102008063193B4 (de) * | 2008-12-29 | 2011-06-16 | Yxlon International Gmbh | Vorrichtung zur zerstörungsfreien Untersuchung zylindrischer oder rohrförmiger Prüfobjekte mittels Röntgenstrahlung |
WO2010136614A1 (es) * | 2009-05-25 | 2010-12-02 | Vicinay Cadenas, S.A. | Equipo para inspección automática de piezas |
WO2011046656A1 (en) * | 2009-07-21 | 2011-04-21 | Clear Path Technologies, Inc. | Blast radius warning system and method |
PL2459991T3 (pl) * | 2009-07-29 | 2020-01-31 | American Science & Engineering, Inc. | Przyczepa do odgórnej kontroli rentgenowskiej |
US8824632B2 (en) | 2009-07-29 | 2014-09-02 | American Science And Engineering, Inc. | Backscatter X-ray inspection van with top-down imaging |
GB0915141D0 (en) | 2009-08-28 | 2009-10-07 | Shawcor Ltd | Method and apparatus for external pipeline weld inspection |
PL2494340T3 (pl) * | 2009-10-29 | 2020-11-02 | Rapiscan Systems, Inc. | Mobilny system kontroli statku powietrznego |
US20110203024A1 (en) * | 2010-02-25 | 2011-08-25 | Morgan Arthur C | Rifle Rated Ballistic Helmet |
CN101887037B (zh) * | 2010-04-27 | 2011-12-14 | 丹东奥龙射线仪器有限公司 | 轮式x射线探伤机器人装置 |
US8706340B2 (en) * | 2011-04-19 | 2014-04-22 | Electric Power Research Institute, Inc. | Underground utility vault inspection system and method |
DE102011078682B4 (de) * | 2011-07-05 | 2015-10-01 | Siemens Aktiengesellschaft | C-Bogen-Anlage |
WO2013016032A2 (en) * | 2011-07-26 | 2013-01-31 | American Science And Engineering, Inc. | Stowable arcuate detector array |
CN102507611B (zh) * | 2011-10-28 | 2014-08-27 | 中国核工业二三建设有限公司 | 一种用于焊缝射线检验机的行走装置 |
US10319484B1 (en) * | 2011-11-17 | 2019-06-11 | Nuscale Power, Llc | Method for imaging a nuclear reactor |
US9014836B2 (en) * | 2011-12-15 | 2015-04-21 | The Boeing Company | Autonomous carrier system for moving aircraft structures |
US10670740B2 (en) | 2012-02-14 | 2020-06-02 | American Science And Engineering, Inc. | Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors |
US9745081B2 (en) * | 2013-07-12 | 2017-08-29 | The Boeing Company | Apparatus and method for moving a structure in a manufacturing environment |
US10151710B2 (en) * | 2014-07-18 | 2018-12-11 | Peltec Services, Inc. | Portable industrial radiography apparatus |
WO2016032367A1 (ru) * | 2014-08-27 | 2016-03-03 | Общество с ограниченной ответственностью "Центр цифровой промышленной радиографии "Цифра" | Система радиографического контроля сварных швов трубопровода |
FR3032793B1 (fr) * | 2015-02-13 | 2020-05-15 | Metrolab | Dispositif de detection de defaut de rail par rayonnement electromagnetique |
GB201504471D0 (en) * | 2015-03-17 | 2015-04-29 | Johnson Matthey Plc | Apparatus and method for scanning a structure |
MX2017012069A (es) | 2015-03-20 | 2018-06-27 | Rapiscan Systems Inc | Sistema portatil de inspeccion de retrodispersion. |
US11536672B2 (en) | 2015-09-08 | 2022-12-27 | American Science And Engineering, Inc. | Systems and methods for using backscatter imaging in precision agriculture |
GB2558464C (en) | 2015-09-08 | 2021-10-27 | American Science & Eng Inc | Backscatter imaging for precision agriculture |
WO2017044441A1 (en) | 2015-09-10 | 2017-03-16 | American Science And Engineering, Inc. | Backscatter characterization using interlinearly adaptive electromagnetic x-ray scanning |
US10168288B2 (en) * | 2015-09-21 | 2019-01-01 | General Electric Company | System for radiography imaging and method of operating such system |
DK3433154T3 (da) * | 2016-03-21 | 2020-09-14 | Railpod Inc | Kombineret passiv og aktiv fremgangsmåde samt systemer til detektering og måling af interne fejl i metalskinner |
WO2018088259A1 (ja) * | 2016-11-14 | 2018-05-17 | 三菱重工業株式会社 | 配管検査装置 |
US10945905B2 (en) * | 2017-05-31 | 2021-03-16 | Mizuho Osi | System, apparatus and method for supporting and/or positioning a patient before, during, or after a medical procedure |
EP3461415A1 (en) | 2017-09-27 | 2019-04-03 | Koninklijke Philips N.V. | System and method for positioning a mobile medical imaging system |
CN108802071B (zh) * | 2018-06-06 | 2023-09-22 | 丹东华日理学电气有限公司 | X射线内曝光式磁力管道数字成像检测装置及检测方法 |
US10830911B2 (en) | 2018-06-20 | 2020-11-10 | American Science And Engineering, Inc. | Wavelength-shifting sheet-coupled scintillation detectors |
US10783623B2 (en) * | 2018-12-03 | 2020-09-22 | Mistras Group, Inc. | Systems and methods for inspecting pipelines using a robotic imaging system |
US11143599B2 (en) | 2018-12-03 | 2021-10-12 | Mistras Group, Inc. | Systems and methods for inspecting pipelines using a pipeline inspection robot |
CN109580674A (zh) * | 2019-01-22 | 2019-04-05 | 淇淩智能科技(上海)有限公司 | 一种自屏蔽在线焊点、焊缝检测系统 |
WO2021011045A2 (en) * | 2019-04-25 | 2021-01-21 | Aerovironment, Inc. | Ground support equipment for a high altitude long endurance aircraft |
WO2020223114A2 (en) | 2019-04-25 | 2020-11-05 | Aero Vironment, Inc. | Off-center parachute flight termination system (fts) |
EP3959133A4 (en) | 2019-04-25 | 2023-06-14 | AeroVironment, Inc. | PROCEDURE FOR CLIMBING AND FLOATING OF AIRCRAFT AT HIGH ALTITUDE WITH LONG ENDURANCE |
EP3764089A1 (en) * | 2019-07-11 | 2021-01-13 | Direct Conversion AB | X-ray weld inspection |
CA3088817A1 (en) * | 2019-08-19 | 2021-02-19 | Mistras Group, Inc. | Systems and methods for inspecting pipelines using a robotic imaging system |
CN110376228B (zh) * | 2019-08-30 | 2021-11-26 | 云南电网有限责任公司电力科学研究院 | 一种应用于架空高压输电线路的检测系统 |
US11733182B2 (en) * | 2019-12-20 | 2023-08-22 | Varex Imaging Corporation | Radiographic inspection system for pipes and other structures using radioisotopes |
US11193898B1 (en) | 2020-06-01 | 2021-12-07 | American Science And Engineering, Inc. | Systems and methods for controlling image contrast in an X-ray system |
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
US11493480B2 (en) | 2020-10-12 | 2022-11-08 | Russell Nde Systems Inc. | Method and apparatus for the detection of corrosion under insulation (CUI), corrosion under fireproofing (CUF), and far side corrosion on carbon steel piping and plates |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
CN112589786A (zh) * | 2020-12-01 | 2021-04-02 | 杭州思锐迪科技有限公司 | 机器人与外部轴协同运动的控制方法和装置 |
CN114397316B (zh) * | 2021-12-24 | 2024-05-28 | 江苏龙山管件有限公司 | 一种自定位的管件弯头缺陷射线检测装置 |
FR3135815A1 (fr) * | 2022-05-17 | 2023-11-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Porteur mobile destiné à un dispositif de mesure |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187425A (en) * | 1978-04-14 | 1980-02-05 | Ndt Systems, Inc. | Pipe inspection systems |
DE3413348A1 (de) | 1984-04-09 | 1985-10-17 | Siemens AG, 1000 Berlin und 8000 München | Roentgenuntersuchungsgeraet |
IT1182578B (it) * | 1985-09-30 | 1987-10-05 | Fassi Gru Idrauliche Spa | Gru elettricamente isolata ad elevata manovrabilita per il sollevamento e l accesso di operatori a linee elettriche aeree sotto tensione |
JPH0621782B2 (ja) * | 1989-03-22 | 1994-03-23 | 石川島播磨重工業株式会社 | 配管用検査装置 |
US5014293A (en) * | 1989-10-04 | 1991-05-07 | Imatron, Inc. | Computerized tomographic x-ray scanner system and gantry assembly |
JPH06317542A (ja) * | 1993-05-10 | 1994-11-15 | Toshiba Corp | 放射線透視検査装置 |
US6217214B1 (en) * | 1993-11-22 | 2001-04-17 | Hologic, Inc. | X-ray bone densitometry apparatus |
US5657369A (en) * | 1993-11-22 | 1997-08-12 | Hologic, Inc. | X-ray bone densitometry system having forearm positioning assembly |
US5425069A (en) * | 1993-11-26 | 1995-06-13 | Lorad Corporation | Mobile X-ray apparatus |
US5521957A (en) * | 1994-03-15 | 1996-05-28 | Hansen; Steven J. | X-ray imaging system |
US5722505A (en) * | 1995-06-08 | 1998-03-03 | Teco, Inc. | Man platform for an aerial boom |
US5627873B1 (en) | 1995-08-04 | 2000-03-14 | Oec Medical Systems | Mini c-arm assembly for mobile x-ray imaging system |
JPH0989810A (ja) * | 1995-09-25 | 1997-04-04 | Hihakai Kensa Kk | 配管検査装置 |
JPH09304303A (ja) * | 1996-05-15 | 1997-11-28 | Hitachi Eng & Services Co Ltd | 可搬型x線ct装置 |
US5698854A (en) * | 1996-05-20 | 1997-12-16 | Omega International Technology, Inc. | Method and apparatus for inspecting pipes |
US6501818B1 (en) * | 1997-11-26 | 2002-12-31 | Ge Medical Systems Global Technology Company, Llc | Apparatus and methods for displaying computed tomography fluoroscopy images including data transfer provided over a network |
US6131690A (en) * | 1998-05-29 | 2000-10-17 | Galando; John | Motorized support for imaging means |
EP1123640A4 (en) | 1998-10-19 | 2004-05-06 | Fluoroscan Imaging Systems Inc | MINIATURE C-ARM APPARATUS WITH MONITOR WITH TWO VIDEO DISPLAY DEVICES AND SINGLE CONTROL INTERFACE |
WO2001010300A1 (fr) * | 1999-08-06 | 2001-02-15 | Hitachi Medical Corporation | Appareil de radiographie mobile |
WO2001047420A1 (en) * | 1999-12-24 | 2001-07-05 | Koninklijke Philips Electronics N.V. | Electromagnetic object detector provided with an additional electrode and intended for a medical radiation apparatus |
US6853703B2 (en) * | 2001-07-20 | 2005-02-08 | Siemens Medical Solutions Usa, Inc. | Automated delivery of treatment fields |
US6785578B2 (en) * | 2001-10-09 | 2004-08-31 | General Electric Company | User input device for controlling medical imaging equipment motion |
US6614874B2 (en) * | 2002-01-28 | 2003-09-02 | Ge Medical Systems Global Technology Company, Llc | Robust and efficient decomposition algorithm for digital x-ray de imaging |
DE10215982A1 (de) * | 2002-04-11 | 2003-11-06 | Siemens Ag | Röntgeneinrichtung |
US6830375B2 (en) * | 2002-08-30 | 2004-12-14 | Ge Medical Systems Global Technology Company, Inc. | Anti-collision method and apparatus for use with C-arm x-ray machine |
US6925145B2 (en) * | 2003-08-22 | 2005-08-02 | General Electric Company | High speed digital radiographic inspection of piping |
-
2005
- 2005-08-18 US US11/207,015 patent/US7319738B2/en not_active Expired - Fee Related
- 2005-10-05 CN CN2005800423005A patent/CN101072998B/zh not_active Expired - Fee Related
- 2005-10-05 EP EP05858225A patent/EP1800114B1/en not_active Not-in-force
- 2005-10-05 WO PCT/US2005/036159 patent/WO2006137905A2/en active Application Filing
- 2005-10-05 JP JP2007535840A patent/JP2008516238A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101978278B (zh) * | 2008-02-20 | 2014-08-20 | 微波视点公司 | 用于确定被测对象的辐射图的设备和方法 |
CN103718028B (zh) * | 2011-04-15 | 2016-08-17 | 美国科技工程公司 | 用于执行有限空间中复杂目标的反向散射检查的方法 |
CN103718028A (zh) * | 2011-04-15 | 2014-04-09 | 美国科技工程公司 | 用于执行有限空间中复杂目标的反向散射检查的方法 |
CN104950003A (zh) * | 2015-06-24 | 2015-09-30 | 中国石油天然气第一建设公司 | 一种小径管对接接头的伽马射线检测方法 |
CN104950003B (zh) * | 2015-06-24 | 2017-08-15 | 中国石油天然气第一建设有限公司 | 一种小径管对接接头的伽马射线检测方法 |
CN105259193A (zh) * | 2015-10-10 | 2016-01-20 | 东北石油大学 | 多尺度管道焊缝检测装置 |
CN105301017A (zh) * | 2015-10-10 | 2016-02-03 | 东北石油大学 | 管道对接焊缝检测装置的曲率调节机构 |
CN110710985A (zh) * | 2018-07-12 | 2020-01-21 | 西门子医疗有限公司 | 计算机断层扫描设备的全向行走机构 |
US11685186B2 (en) | 2018-07-12 | 2023-06-27 | Siemens Healthcare Gmbh | Omnidirectional chassis for a gantry of a computed tomography device |
CN110710985B (zh) * | 2018-07-12 | 2023-09-19 | 西门子医疗有限公司 | 计算机断层扫描设备的全向行走机构 |
CN110811652A (zh) * | 2018-08-14 | 2020-02-21 | 通用电气公司 | 用于移动x射线成像系统的系统和方法 |
CN110811652B (zh) * | 2018-08-14 | 2024-01-02 | 通用电气公司 | 用于移动x射线成像系统的系统和方法 |
CN111091736A (zh) * | 2020-01-14 | 2020-05-01 | 宁波创导三维医疗科技有限公司 | 一种仿c臂机构 |
CN115219530A (zh) * | 2022-09-20 | 2022-10-21 | 安徽启路达光电科技有限公司 | 辐射检查系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2008516238A (ja) | 2008-05-15 |
US7319738B2 (en) | 2008-01-15 |
CN101072998B (zh) | 2011-12-21 |
EP1800114A2 (en) | 2007-06-27 |
EP1800114B1 (en) | 2012-08-15 |
WO2006137905A3 (en) | 2007-03-22 |
US20060078091A1 (en) | 2006-04-13 |
WO2006137905A2 (en) | 2006-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101072998B (zh) | 具有铰接悬臂和可旋转c臂的移动射线照相设备 | |
US11571821B2 (en) | System and method for a robotic manipulator system | |
US9943962B2 (en) | Robotic medical apparatus with collision detection and method for collision detection in a robotic medical apparatus | |
EP3893074B1 (en) | Localization method for mobile remote inspection and/or manipulation tools in confined spaces and associated system | |
US20160339584A1 (en) | Robot for inspection of confined spaces | |
CN103950517A (zh) | 具有由电马达组成的驱动器的海运装载臂 | |
CN114153221B (zh) | 卫星高精度跟踪指向控制地面仿真系统及方法 | |
CN208906510U (zh) | 用于控制双机械臂柔性带电作业的系统 | |
US11850740B2 (en) | Apparatus and method for inspecting an underground utility vault | |
CN115962372A (zh) | 一种悬挂巡查的管道侦查机器人及悬挂巡查方法 | |
JPH09149309A (ja) | 走行型点検ロボット | |
JPS6222758B2 (zh) | ||
Burkett et al. | Wireless self-powered visual and NDE robotic inspection system for live gas distribution mains | |
KR102360388B1 (ko) | 지하매설관로3d 매핑 시스템 | |
Prajapati | MULTI-FUNCTIONAL PIPELINE INSPECTION ROBOT | |
Schilling et al. | Teleoperated inspection robots for space and Earth applications | |
AU2023204895A1 (en) | Multi-function rendezvous and capture module | |
KR20220111961A (ko) | 지중 케이블 탐상 장치 및 지중 케이블 진단 시스템 | |
Korayem et al. | Online recording the position and orientation of an end-effector of a spatial cable-suspended robot for close loop control using hybrid sensors | |
Ward et al. | Robotics Applications at the Savannah River Site | |
Berglin | Hanford Tanks Initiative alternate retrieval system demonstrations-final report of testing performed by Grey Pilgrim LLC | |
Lee et al. | Robotic Systems for Automated Bridge Inspection | |
Lipsett et al. | Mobile robotics for CANDU reactor maintenance: case studies and near-term improvements | |
KR20130023442A (ko) | 증기발생기 다목적 수실 정비로봇 로딩용 2축 구동 로봇시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111221 Termination date: 20131005 |