CN101070150A - 非晶碳纳米管的大规模制备方法 - Google Patents

非晶碳纳米管的大规模制备方法 Download PDF

Info

Publication number
CN101070150A
CN101070150A CN200710021019.4A CN200710021019A CN101070150A CN 101070150 A CN101070150 A CN 101070150A CN 200710021019 A CN200710021019 A CN 200710021019A CN 101070150 A CN101070150 A CN 101070150A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
crystal carbon
preparation
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200710021019.4A
Other languages
English (en)
Other versions
CN100577561C (zh
Inventor
沈健民
侯文华
朱俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN200710021019A priority Critical patent/CN100577561C/zh
Publication of CN101070150A publication Critical patent/CN101070150A/zh
Application granted granted Critical
Publication of CN100577561C publication Critical patent/CN100577561C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种制备非晶态碳纳米管的方法,它是将1mmol二茂铁溶于20-50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至120-180℃恒温反应12-72小时。反应结束后,将过滤所得黑色产物用蒸馏水和乙醇依次洗涤3次,最后置于真空中80℃下干燥10小时,即可获得非晶碳纳米管。本发明制备非晶碳纳米管的产率超过90%,生成能耗低、效率高,无需外加催化剂,方法简便易行,原料简单易得,规模易于扩大,适合连续化、大批量生产。

Description

非晶碳纳米管的大规模制备方法
技术领域
本发明涉及非晶碳纳米管的制备方法。具体地,是利用低温溶剂热法大规模制备非晶碳纳米管。
背景技术
自从1991年日本电子公司(NEC)的S.Iijima正式发现碳纳米管以来[参见:Iijima S.,Nature,1991,354,56.],在世界范围内掀起了对以碳纳米管为代表的一维纳米结构的研究热潮[参见:(a)Rothschild A.,J.Am.Chem.Soc.2000,122,5169.(b)Pan Z.W.,Science2001,291,1947.]。碳纳米管的结构可以看作是由单层或多层、微小的圆筒状石墨片形成的中空碳笼管,其尺度、特殊的结构及组成赋予其极为独特的性质,而受到科学界的广泛关注,无论在基础科学研究还是在技术应用方面都具有非常重大的意义。碳纳米管具有较大的比表面积,能吸附其他的原子和分子,因此在催化剂载体和储氢材料方面有潜在的应用前景[参见:(a)Planeix J.M.,J.Am.Chem.Soc.1994,116,7936.(b)Liu C.,Science 1999,286,1127.];碳纳米管的电学性质随其晶格螺旋角和直径的不同,可呈现金属或半导体性,对其进行掺杂,还能进一步改变其导电特性,因此碳纳米管可以用作未来的新型电子器件和微型传感器[参见:(a)Kong J.,Appl.Phys.A 1999,69,305.(b)Collins P.G.,Science 2000,287,1801.(c)Kong J.,Science 2000,287,622.];碳纳米管管壁的网格结构是由sp2杂化的C=C共价键组成,键能很高,因此具有很高的强度,能极大的增强复合材料的韧性[参见:Ruoff R.S.,Carbon 1995,33,925.]。
与管壁结构由结晶良好的石墨片层组成的单层和多层碳纳米管不同,非晶碳纳米管的管壁则完全是由无规则排列的碳原子所构成,因此非晶碳纳米管在气体吸附、催化剂载体等应用领域更胜一筹,也更容易进行化学修饰以进一步功能化。
目前,已报道的制备非晶碳纳米管的方法主要有电弧放电、化学气相沉积、热分解有机物和溶剂热法等等[参见:(a)Zhao T.K.,Carbon 2005,43,2907,(b)Nishino H.,Carbon 2003,41,2165,(c)Nishino H.,Carbon 2003,41,2819,(d)Hu Z.D.,J.Phys.Chem.B 2006,110,8263,(e)Xiong Y.J.,Carbon 2004,42,1447.(f)Luo T.,Carbon 2006,44,2844.]。但是这些制备方法都存在产率低、能耗高、设备复杂、必须外加催化剂和后处理复杂等问题。迄今为止,还没有在低温下,使用简便的设备,无需催化剂参与,高效率地大规模制备非晶碳纳米管的报道。
发明内容
本发明的目的是提供一种温和条件下大规模制备非晶碳纳米管的方法。
本发明的技术方案如下:
一种制备非晶碳纳米管的方法,它是将二茂铁溶于四氯化碳溶剂中搅拌均匀,然后升温至120-180℃恒温反应12-72小时,反应结束后,将过滤所得黑色产物用蒸馏水和乙醇依次洗涤,最后置于真空下干燥,即可获得非晶碳纳米管。
上述的非晶碳纳米管的制备方法,所述的二茂铁与四氯化碳的用量比例是1mmol二茂铁溶于20-50ml四氯化碳。
上述的非晶碳纳米管的制备方法,所述的反应是在聚四氟乙烯衬底的不锈钢反应釜中进行。
本发明的非晶碳纳米管经粉末X-射线衍射(XRD)测定,结果表明没有明显的衍射峰,为完全非晶的产物。没有发现杂相峰,说明产品的纯度比较高。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析,观察到本发明的非晶碳纳米管的外直径为250~300nm,壁厚为40~50nm,长度在2~6μm之间,产率超过90%。
本发明制备所得的非晶碳纳米管的纯度较高,纳米管的外直径为250~300nm,壁厚为40~50nm,长度在2~6μm之间。本发明制备非晶碳纳米管的方法生产能耗低、效率高,无需外加催化剂,方法简便易行,原料简单易得,能连续化、大批量生产,规模易于扩大,适合产业化生产。
附图说明
图1为本发明的非晶碳纳米管的XRD图;
图2为本发明的非晶碳纳米管的SEM图片,图2b中箭头所指处为纳米管的开口。
图3a为本发明的非晶碳纳米管的TEM照片和相应的选区电子衍射(SAED)图样,图3b为本发明的非晶碳纳米管的微区成分(EDS)分析结果。
具体实施方式
实施例1.非晶碳纳米管的制备
一种制备非晶碳纳米管的方法,它是将2mmol二茂铁溶于50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至180℃恒温反应12小时。反应结束后,将过滤所得黑色产物用蒸馏水和乙醇依次洗涤3次,最后置于真空中80℃下干燥10小时,即可获得非晶碳纳米管0.8克。产物经粉末X-射线衍射(XRD)测定,结果(见附图1)表明没有明显的衍射峰,为完全非晶的产物。没有发现杂相峰,表明产品的纯度比较高。通过SEM分析(见附图2),观察到本发明的非晶碳纳米管是外直径为250~300nm,壁厚为40~50nm,长度在2~6μm之间。由TEM分析中的选区电子衍射图样和微区成分分析结果(见附图3)可进一步证实这些纳米管为非晶的碳纳米管。
实施例2.非晶碳纳米管的制备
2mmol二茂铁溶于50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至180℃恒温反应18小时,制备的其他条件同实施例1。同样也得到尺寸和形态类似的产品0.8克。
实施例3.非晶碳纳米管的制备
2mmol二茂铁溶于50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至160℃恒温反应24小时,制备的其他条件同实施例1。同样也得到尺寸和形态类似的产品0.6克。
实施例4.非晶碳纳米管的制备
2mmol二茂铁溶于50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至120℃恒温反应3天,制备的其他条件同实施例1。同样也得到尺寸和形态类似的产品0.4克。
实施例5.非晶碳纳米管的制备
1mmol二茂铁溶于50ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至180℃恒温反应12小时,制备的其他条件同实施例1。同样也得到尺寸和形态类似的产品0.35克。
实施例6.非晶碳纳米管的制备
2mmol二茂铁溶于40ml四氯化碳中搅拌均匀,移入聚四氟乙烯衬底的不锈钢反应釜中,然后升温至180℃恒温反应12小时,制备的其他条件同实施例1。同样也得到尺寸和形态类似的产品0.65克。

Claims (3)

1.一种制备非晶碳纳米管的方法,其特征是:将二茂铁溶于四氯化碳溶剂中搅拌均匀,然后升温至120-180℃恒温反应12-72小时,反应结束后,将过滤所得黑色产物用蒸馏水和乙醇依次洗涤,最后置于真空下干燥,即可获得非晶碳纳米管。
2.根据权利要求1所述的非晶碳纳米管的制备方法,其特征是:所述的二茂铁与四氯化碳的用量比例是1mmol二茂铁溶于20-50ml四氯化碳。
3.根据权利要求1所述的非晶碳纳米管的制备方法,其特征是:所述的反应是在聚四氟乙烯衬底的不锈钢反应釜中进行。
CN200710021019A 2007-03-22 2007-03-22 非晶碳纳米管的大规模制备方法 Expired - Fee Related CN100577561C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710021019A CN100577561C (zh) 2007-03-22 2007-03-22 非晶碳纳米管的大规模制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710021019A CN100577561C (zh) 2007-03-22 2007-03-22 非晶碳纳米管的大规模制备方法

Publications (2)

Publication Number Publication Date
CN101070150A true CN101070150A (zh) 2007-11-14
CN100577561C CN100577561C (zh) 2010-01-06

Family

ID=38897594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710021019A Expired - Fee Related CN100577561C (zh) 2007-03-22 2007-03-22 非晶碳纳米管的大规模制备方法

Country Status (1)

Country Link
CN (1) CN100577561C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502586A (zh) * 2011-11-08 2012-06-20 天津大学 在铁基非晶粉末上直接生长非晶碳纳米管的方法
CN102698713A (zh) * 2012-05-24 2012-10-03 山东中烟工业有限责任公司 一种多孔碳片、其制备方法及在卷烟滤嘴中的应用
CN110316720A (zh) * 2019-06-27 2019-10-11 沈健民 硫、氮双掺杂碳纳米管薄膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502586A (zh) * 2011-11-08 2012-06-20 天津大学 在铁基非晶粉末上直接生长非晶碳纳米管的方法
CN102502586B (zh) * 2011-11-08 2013-07-24 天津大学 在铁基非晶粉末上直接生长非晶碳纳米管的方法
CN102698713A (zh) * 2012-05-24 2012-10-03 山东中烟工业有限责任公司 一种多孔碳片、其制备方法及在卷烟滤嘴中的应用
CN102698713B (zh) * 2012-05-24 2014-05-21 山东中烟工业有限责任公司 一种多孔碳片、其制备方法及在卷烟滤嘴中的应用
CN110316720A (zh) * 2019-06-27 2019-10-11 沈健民 硫、氮双掺杂碳纳米管薄膜及其制备方法
CN110316720B (zh) * 2019-06-27 2021-03-30 沈健民 硫、氮双掺杂碳纳米管薄膜及其制备方法

Also Published As

Publication number Publication date
CN100577561C (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
Zhang et al. Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
Dong et al. Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production
Wang et al. Co–VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction
Zhang et al. Organic small molecule activates transition metal foam for efficient oxygen evolution reaction
CN104944410B (zh) 一种合成钴纳米粒子与竹节状氮掺杂碳纳米管复合材料的方法
CN111170309B (zh) 一种超长少壁碳纳米管阵列的制备方法
Hou et al. Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe (CO) 5 as floating catalyst precursor
Wu et al. Vertical graphene on rice-husk-derived SiC/C composite for highly selective photocatalytic CO2 reduction into CO
Chen et al. One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes
CN102923686B (zh) 一种石墨烯/碳纳米管复合材料的制备方法
Shang et al. A broom-like tube-in-tube bundle O-doped graphitic carbon nitride nanoreactor that promotes photocatalytic hydrogen evolution
CN102658153B (zh) 铜基体表面生长富勒烯掺杂多孔碳纳米纤维的制备方法
Vir Singh et al. Catalytic chemical vapor deposition methodology for carbon nanotubes synthesis
Baghel et al. Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications
Yang et al. Symmetrical growth of carbon nanotube arrays on FeSiAl micro-flake for enhancement of lithium-ion battery capacity
Ye et al. Simple one-pot, high-yield synthesis of 2D graphitic carbon nitride nanosheets for photocatalytic hydrogen production
CN1789120A (zh) 一种碳绒球材料及其制备方法和用途
CN100577561C (zh) 非晶碳纳米管的大规模制备方法
Wang et al. Polydopamine-coated graphene nanosheets as efficient electrocatalysts for oxygen reduction reaction
Lu et al. Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation
Yang et al. Photo-thermal catalytic pyrolysis of waste plastics: Investigation into light-induced metal-support interaction
Xing et al. Hybrid composite materials generated via growth of carbon nanotubes in expanded graphite pores using a microwave technique
Shah et al. Waste plastic-derived FWCNT-NiMgAl composite for supercapacitor application
Zhang et al. In-situ preparation of carbon nanotubes on CuO nanowire via chemical vapor deposition and their growth mechanism investigation
Zhong et al. Temperature-driven, dynamic catalytic synthesis of three-dimensional hollow few-layer graphite framework

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100106

Termination date: 20100322