CN101051596B - 碳纳米管场发射电子源及其制造方法 - Google Patents
碳纳米管场发射电子源及其制造方法 Download PDFInfo
- Publication number
- CN101051596B CN101051596B CN200610060236XA CN200610060236A CN101051596B CN 101051596 B CN101051596 B CN 101051596B CN 200610060236X A CN200610060236X A CN 200610060236XA CN 200610060236 A CN200610060236 A CN 200610060236A CN 101051596 B CN101051596 B CN 101051596B
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- tube
- electronic source
- transmitting electronic
- field transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 188
- 239000002041 carbon nanotube Substances 0.000 title claims description 184
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 184
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 229910052746 lanthanum Inorganic materials 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 5
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000001856 Ethyl cellulose Substances 0.000 claims description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229920001249 ethyl cellulose Polymers 0.000 claims description 3
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 3
- 150000002603 lanthanum Chemical class 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims 1
- 229910021392 nanocarbon Inorganic materials 0.000 abstract 6
- 230000005684 electric field Effects 0.000 description 10
- 239000012467 final product Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000009514 concussion Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004720 dielectrophoresis Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- -1 lanthanoid metals Chemical class 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
一种碳纳米管场发射电子源,其包括:一导电基体、至少一碳纳米管和一表面修饰层,该导电基体具有一顶部,该碳纳米管一端与该导电基体顶部电性连接,另一端沿该导电基体顶部向外延伸,该表面修饰层至少形成于该碳纳米管向外延伸的一端的表面,该表面修饰层的逸出功低于碳纳米管的逸出功,本发明还涉及一种制造上述碳纳米管场发射电子源的方法。
Description
【技术领域】
本发明涉及一种场发射电子源及其制造方法,尤其涉及一种碳纳米管场发射电子源及其制造方法。
【背景技术】
碳纳米管(Carbon Nanotube,CNT)是一种新型碳材料,由日本研究人员Iijima在1991年发现,请参见″Helical Microtubules of Graphitic Carbon″,SIijima,Nature,vol.354,p56(1991)。碳纳米管具有极优异的导电性能、良好的化学稳定性和大的长径比,且其具有几乎接近理论极限的尖端表面积(尖端表面积愈小,其局部电场愈集中),因而碳纳米管在场发射真空电子源领域具有潜在的应用前景。目前的研究表明,碳纳米管是已知的最好的场发射材料之一,它的尖端尺寸只有几纳米至几十纳米,具有极低的场发射电压(小于100伏),可传输极大的电流密度,并且电流极稳定,使用寿命长,因而非常适合作为一种极佳的点电子源,应用在扫描电子显微镜(ScanningElectron Microscope)、透射电子显微镜(Transmission Electron Microscope)等设备的电子发射部件中。
现有的碳纳米管场发射电子源一般至少包括一导电基体和作为发射端的碳纳米管,该碳纳米管形成于该导电基体上。目前,碳纳米管形成于导电基体上的方法主要包括机械方法和原位生长法。其中,机械方法是通过原子力显微镜操纵合成好的碳纳米管,将碳纳米管用导电胶固定到导电基体上,此种方法程序简单,但操作不容易且效率低。另外,通过该方法得到的碳纳米管场发射电子源中碳纳米管是通过导电胶粘覆于导电基体上,在使用时,碳纳米管与导电基体的电接触状态没有预想的好,不易充分发挥碳纳米管的场发射性能。
原位生长法是先在导电基体上镀上金属催化剂,然后通过化学气相沉积、电弧放电或激光蒸发法等方法在导电基体上直接生长出碳纳米管,此种方法虽然操作简单,碳纳米管与导电基体的电接触良好。但是,碳纳米管与导电基体的结合能力较弱,在使用时碳纳米管易脱落或被电场力拔出,从而导致场发射电子源损坏。而且,由于该方法无法控制碳纳米管的生长方向,所以仍存在效率低且可控性差的问题,另外,该方法的生产成本较高。
此外,碳纳米管应用于场发射电子源往往需要通过碳纳米管发射较大电流。根据福勒-诺德汉(Fowler-Nordheim,F-N)方程,场发射电流的大小决定于局域电场大小以及场发射阴极的逸出功(Work Function)的大小。在同一电场的作用下,选择具有更低逸出功的材料作为场发射阴极能够获得更大的场发射电流。现有的方法制造得到的碳纳米管场发射电子源虽然具有极佳的场发射几何结构和较高的场增强因子(Enhancement Factor),但是,碳纳米管本身的逸出功为4.55电子伏特(eV),仅与钨的逸出功相当。
因此,有必要提供一种碳纳米管与导电基体结合紧密、电性连接良好,且具有较低的逸出功,因而具有较大场发射电流的碳纳米管场发射电子源。以及一种生产效率高、成本低、可控性强的制造该碳纳米管场发射电子源的方法。
【发明内容】
以下,将以若干实施例说明一种碳纳米管与导电基体结合紧密、电性连接良好,且具有较低的逸出功,因而具有较大场发射电流的碳纳米管场发射电子源。以及一种生产效率高、成本低、可控性强的制造该碳纳米管场发射电子源的方法。
一种碳纳米管场发射电子源,其包括:一导电基体、至少一碳纳米管和一表面修饰层,该导电基体具有一顶部,该碳纳米管一端与该导电基体顶部电性连接,另一端沿该导电基体顶部向外延伸,该表面修饰层至少形成于该碳纳米管向外延伸的一端的表面,该表面修饰层的逸出功低于碳纳米管的逸出功。
该表面修饰层覆盖整个碳纳米管和导电基体的表面。
该表面修饰层材料为六硼化镧或金属镧。
该六硼化镧的逸出功为2.62电子伏特。
该表面修饰层的厚度为1~10纳米。
该导电基体的顶部为锥形、圆台形或柱形。
该碳纳米管为多壁碳纳米管。
该碳纳米管的长度为10~100微米,直径为1~50纳米。
所述碳纳米管场发射电子源中的碳纳米管的数量仅为一根。
一种碳纳米管场发射电子源的制造方法,包括以下步骤:
(一)提供两个顶部相对的导电基体,使其相对的两顶部共同浸入同一含碳纳米管的溶液中;
(二)施加一交流电压于该两导电基体之间,以使至少一碳纳米管组装至该相对的两顶部之间;
(三)切断两导电基体之间的电流并移除上述两导电基体相对两顶部之间的溶液;
(四)分开上述两相对的导电基体,以使至少一碳纳米管附着于至少一导电基体的顶部;
(五)形成一表面修饰层至少覆盖该碳纳米管用于发射电子一端的表面。
步骤(一)中所述的含碳纳米管的溶液包括作为主要溶剂的异丙醇和用作稳定剂的乙基纤维素。
步骤(一)中所述的相对的两顶部之间的距离为10~20微米。
步骤(二)中进一步包括以下步骤:监控碳纳米管的组装过程,以确定碳纳米管组装于该两相对的导电基体顶部之间。
步骤(五)中表面修饰层的形成方法包括磁控溅射法或电子束蒸发法。
所述的监控碳纳米管的组装过程,以确定碳纳米管组装于该两相对的导电基体顶部之间的方法包括:在两导电基体所在的电路中串联一个电阻,在该电阻两端并联一示波器。
相较于现有技术,碳纳米管场发射电子源中碳纳米管与导电基体结合紧密、电性连接良好,碳纳米管表面的表面修饰层可以有效降低碳纳米管场发射电子源电子发射端的逸出功,同时维持碳纳米管原有的场发射几何结构,在维持发射电场不变的情况下,该碳纳米管场发射电子源具有更高的电子发射密度和发射电流。碳纳米管场发射电子源的制造方法一般只需要几秒至几十秒,耗时短,效率高。并且,整个组装过程均可实现自动化操作与监测,提高生产效率,可控性强。同时所需的生产设备简单,生产成本低,适合进行大规模生产。另外,碳纳米管的表面修饰过程能够在维持碳纳米管极佳的场发射几何结构的基础上,降低碳纳米管场发射电子源的碳纳米管电子发射端的逸出功,进而能够增大该碳纳米管场发射电子源的场发射电流,有利于增强碳纳米管场发射电子源的场发射性能。
【附图说明】
图1为本发明实施例的碳纳米管场发射电子源的立体示意图。
图2为图1中II部分的纵向剖视图。
图3为本发明实施例碳纳米管场发射电子源的制造方法的步骤示意图。
图4为本发明实施例组装碳纳米管场发射电子源的装置的示意图。
图5为本发明实施例碳纳米管场发射电子源的扫描电子显微镜照片。
图6为本发明实施例碳纳米管场发射电子源修饰前后的电流-电压曲线对比示意图。
【具体实施方式】
下面将结合附图对本发明作进一步的详细说明。
请参阅图1和图2,本发明实施例提供一种碳纳米管场发射电子源10,该碳纳米管场发射电子源10包括一导电基体12、一碳纳米管14和一表面修饰层16。该导电基体12由导电材料制成,如钨、金、钼、铂等。为测量方便,本实施例导电基体12采用表面镀有金层的原子力显微镜18(AtomicForce Microscope,AFM)的探针。该导电基体12具有一顶部122,该顶部122为锥形。该碳纳米管14的一端142与该导电基体12的顶部122电性连接,并通过范德华力附着于该导电基体12上。该碳纳米管14的另一端144沿该导电基体12的顶部122向远离导电基体12的方向延伸,作为该场发射电子源10的电子发射端。本实施例中,该碳纳米管14为一多壁碳纳米管,其直径范围为1~50纳米,优选为15纳米,长度范围为10~100微米,优选为50微米。该表面修饰层16至少覆盖该碳纳米管14作为电子发射端的一端144的表面,用于增大该碳纳米管场发射电子源10的场发射电流。该表面修饰层16材料的逸出功低于碳纳米管14的逸出功,且相对于碳纳米管14具有良好的浸润性,并能均匀分布于碳纳米管14的表面。优选的,该表面修饰层16材料选用六硼化镧或金属镧,其中,六硼化镧的逸出功为2.62电子伏特,低于碳纳米管的逸出功(4.55电子伏特)。该表面修饰层16的厚度为1~10纳米,优选为5纳米。本实施例中,该表面修饰层16也可覆盖整个碳纳米管14与导电基体12的表面。由于碳纳米管14作为电子发射端的一端144表面覆盖有比碳纳米管14更低逸出功的表面修饰层16,在相同大小的电场作用下,该碳纳米管场发射源10的发射电流比现有的碳纳米管场发射电子源的发射电流显著增大。本实施例中采用六硼化镧或金属镧作为表面修饰层16的碳纳米管场发射电子源10的场发射电流可达到140微安培,优选为45~65微安培,电流发射密度可达到7.9×107A/cm2。进一步的,经测量,本实施例碳纳米管场发射电子源10场发射电流为45~65微安培时,可连续发射电子5万秒未发现衰竭现象,因而,该经过表面修饰的碳纳米管场发射电子源10具有良好的寿命。
另外,本发明实施例中导电基体12还可依实际需要设计成其他形状。该导电基体12的顶部也可为其他形状,如圆台形或细小的柱形,而不限于锥形。本实施例的碳纳米管场发射电子源10可应用于场发射平板显示器、电子枪、微波放大器、X射线源或电子束平板印刷等场发射电子源装置。
请参阅图3和图4,本发明实施例提供的一种制造碳纳米管场发射电子源的方法,主要由以下步骤组成。
(1)提供两导电基体32和42,其分别具有锥形顶部322和422。使该两顶部322和422相对设置,并间隔开一定距离。移取少量含碳纳米管的溶液50于该两顶部322和422之间,并使两者能共同浸入该溶液50中。
(2)对该两导电基体32和42施加一交流电压60,直到至少一碳纳米管组装于该两顶部322和422之间。
(3)切断两导电基体32和42之间的电流并移除上述两导电基体相对两顶部322和422之间的溶液50。
(4)分开上述两相对的导电基体32和42,以使至少一碳纳米管附着于至少一导电基体的顶部,形成碳纳米管场发射电子源。
(5)修饰该碳纳米管的表面使该场发射电子源具有更低的逸出功。
在本实施例中,所述的导电基体32和42均采用表面镀金的原子力显微镜探针。导电基体32和42也可以采用其他的导电材料制作,如钨、金、钼、铂等,其自身形状可依实际需要设计。顶部322和422也可为其他形状,如圆台形或细小的柱形,而不限于锥形。应指出的是,当顶部322和422的端面为平面时,在组装碳纳米管的过程中最好使两顶部322和422的部分端面相对设置,如两端面的边缘相对设置。另外,该两顶部322和422之间的距离应根据所采用的碳纳米管长度加以设定,最好与碳纳米管长度相近,不宜太大,否则不利于组装。该间隔距离一般小于100微米,优选为10~20微米。
所述的含碳纳米管的溶液50是以异丙醇为主要溶剂,通过超声震荡的方法使碳纳米管在其中均匀分散而得到的。为使该溶液50稳定,还可加入少量的乙基纤维素。碳纳米管为采用低压化学气相沉积(Low PressureChemical Vapor Deposition,LP-CVD)合成的多壁碳纳米管。当然,溶液50还可采用其他方法制备,例如采用其他溶剂、稳定剂或者增加分离过滤等处理步骤,以得到均匀稳定的碳纳米管溶液为宜,不必以具体实施例为限。
另外,可以理解的是,溶液50的浓度可能影响后期被组装的碳纳米管数量。一般,溶液50的浓度越大,后期则较容易组装上多根碳纳米管。因此,可根据实际需要调配溶液50的浓度,如只组装一根碳纳米管,则应尽量降低溶液50的浓度。反之,也可以通过调整溶液50的浓度,在一定程度上控制被组装的碳纳米管数量。为避免发射电子时,碳纳米管之间的相互干扰影响,本实施例为组装一根碳纳米管在导电基体上。
溶液50可由吸管、移液管、注射器或其他适宜的装置移取并施加于导电基体顶部322和422之间。所施加的溶液50不宜过多,以使该两顶部322和422能共同浸入同一滴溶液50即可。另外,也可将两顶部322和422直接浸入少量的由烧杯等容器盛放的溶液50中。该溶液50需移除时,只需同样通过吸管、移液管、注射器或其他适宜的装置移取即可,当两顶部322和422是直接浸入少量的由烧杯等容器盛放的溶液50中时,只需将两顶部322和422从溶液50中移出即可。
另外,步骤(2)中,所述的交流电压的峰值最好在10伏以内,频率在1千至10兆赫兹之间。本实施例主要是依据双向电泳法原理:在交流电场中,溶液50中的碳纳米管向电场强度大的方向运动,最终运动到场强最大的两顶部322和422相对的区域,并被吸附到该两顶部322和422上。此后,碳纳米管依靠与该两顶部322和422的范德华力牢固吸附在顶部322和422的表面上。一般,通电时间只需几秒至几十秒,因此该组装方法耗时短,效率高。
步骤(5)中,该碳纳米管表面的修饰方法进一步包括通过磁控溅射或电子束蒸发的方法形成一厚度为1~10纳米的表面修饰层于该碳纳米管表面。该表面修饰层应选择能与碳纳米管浸润良好,且能均匀分布于碳纳米管表面的材料,更重要的是,该表面修饰层材料的逸出功应低于碳纳米管的逸出功。优选的,本实施例通过磁控溅射的方法形成一厚度为5纳米的六硼化镧层或金属镧层于该碳纳米管和附着有碳纳米管的导电基体表面,该六硼化镧的逸出功为2.62电子伏特。另外,由于碳纳米管主要通过其一端发射电子,实际上只需控制形成该表面修饰层覆盖该碳纳米管发射电子的一端的表面即可。
另外,应指出的是,可采用监测系统对整个碳纳米管组装过程进行监控,从而实现实时监控、实时调整,提高成品率。例如,根据未组装上碳纳米管的两顶部322和422是处于断路状态、而组装上碳纳米管后该两者是处于通路状态,可方便地对这两个状态进行监测。在本实施例中,采用的监测方法就是依据上述原理,在图4所示的电路中串联一电阻(图中未显示),用示波器观察该电阻两端的波形变化。当波形发生突变则表示碳纳米管已经组装到两个顶部322和422之间,这时就可以降压断电并移走液滴。当然,也可以采用其他的监测方法及设备进行,不必限于本实施例。
进而,整个组装过程均可实现自动化操作与监测,避免手动或半手动操作的偏差以及化学气相沉积法中碳纳米管生长的不可控性,提高生产效率,增强可控性,同时所需的生产设备简单,生产成本低,适合进行大规模生产。
另外,本发明实施例可进一步制造包括多个碳纳米管场发射电子源的碳纳米管场发射阵列用于如平板场发射显示器中作为电子发射源。可将形成有多个导电基体的一阴极电极层直接浸入含有碳纳米管的溶液中。通过施加电压于该阴极电极层与另一可活动的导电基体,并将该可活动的导电基体顶部逐一靠近形成于阴极电极层的导电基体顶部,以将碳纳米管分别组装于该多个导电基体上,最后通过修饰碳纳米管表面形成表面修饰层即可。
请参阅图5,从扫描电子显微镜照片可看出,碳纳米管被组装到原子力显微镜的尖端,并且已被拉直。这是因为碳纳米管组装于两顶部过程中在电场中被极化产生电偶极距,两端带有电荷,电场对其作用力有一沿其轴向的分力,使碳纳米管拉伸变直。
请参阅图6,经测量,本实施例通过六硼化镧修饰后的碳纳米管场发射电子源的开启电场强度约为0.7V/μm(伏特/微米),低于修饰前的碳纳米管场发射电子源(约1.5V/μm),修饰后的碳纳米管场发射电子源场发射电流也显著增大。另外,经过测量,通过六硼化镧修饰后的碳纳米管场发射电子源对应于开启电场强度的碳纳米管拔出力为14.1nN(纳牛顿),低于修饰前的碳纳米管场发射电子源(54.4nN)。因此,修饰后的碳纳米管场发射电子源中碳纳米管与导电基体结合紧密,且电性连接良好。
本发明碳纳米管场发射电子源的组装方法一般只需要几秒至几十秒,耗时短,效率高。并且,整个组装过程均可实现自动化操作与监测,提高生产效率,增强可控性。同时所需的生产设备简单,生产成本低,适合进行大规模生产。另外,碳纳米管的表面修饰层能够在维持碳纳米管极佳的场发射几何结构的基础上,降低碳纳米管场发射电子源的碳纳米管电子发射端的逸出功,进而能够增大该碳纳米管场发射电子源的场发射电流,有利于增强碳纳米管场发射电子源的场发射性能。
本技术领域技术人员应明白,本发明碳纳米管场发射电子源的制造方法中也可通过现有的其他方式如显微镜操纵组装法或原位生长法组装碳纳米管于导电基体上,再通过修饰碳纳米管的电子发射端部形成具有低逸出功的表面修饰层,也可同样增大碳纳米管场发射电子的场发射电流。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (15)
1.一种碳纳米管场发射电子源,其包括:一导电基体和至少一碳纳米管,该导电基体具有一顶部,该导电基体的顶部为锥形,该碳纳米管一端与该导电基体顶部的锥形尖端电性连接,另一端沿该导电基体顶部向外延伸,其特征在于,进一步包括一表面修饰层覆盖整个碳纳米管和导电基体的表面,该表面修饰层的逸出功低于碳纳米管的逸出功。
2.如权利要求1所述的碳纳米管场发射电子源,其特征在于,该表面修饰层材料为六硼化镧或金属镧。
3.如权利要求2所述的碳纳米管场发射电子源,其特征在于,该六硼化镧的逸出功为2.62电子伏特。
4.如权利要求1所述的碳纳米管场发射电子源,其特征在于,该表面修饰层的厚度为1~10纳米。
5.如权利要求1所述的碳纳米管场发射电子源,其特征在于,该导电基体材料可选自钨、金、钼或铂。
6.如权利要求1所述的碳纳米管场发射电子源,其特征在于,该碳纳米管为多壁碳纳米管。
7.如权利要求6所述的碳纳米管场发射电子源,其特征在于,该碳纳米管的长度为10~100微米,直径为1~50纳米。
8.如权利要求7所述的碳纳米管场发射电子源,其特征在于,该碳纳米管的长度为50微米,直径为15纳米。
9.如权利要求1所述的碳纳米管场发射电子源,其特征在于,所述碳纳米管场发射电子源中的碳纳米管的数量仅为一根。
10.一种碳纳米管场发射电子源的制造方法,包括以下步骤:
(一)提供两个顶部相对的导电基体,使其相对的两顶部共同浸入同一含碳纳米管的溶液中,所述导电基体的顶部为锥形;
(二)施加一交流电压于该两导电基体之间,以使至少一碳纳米管组装至该相对的两顶部锥形尖端之间;
(三)切断两导电基体之间的电流并移除上述两导电基体相对两顶部之间的溶液;
(四)分开上述两相对的导电基体,以使至少一碳纳米管附着于至少一导电基体的顶部的锥形尖端;
(五)形成一表面修饰层至少覆盖该碳纳米管用于发射电子一端的表面。
11.如权利要求10所述的碳纳米管场发射电子源的制造方法,其特征在于,步骤(五)中表面修饰层的形成方法包括磁控溅射法或电子束蒸发法。
12.如权利要求10所述的碳纳米管场发射电子源的制造方法,其特征在于,步骤(一)中所述的含碳纳米管的溶液包括作为主要溶剂的异丙醇和用作稳定剂的乙基纤维素。
13.如权利要求10所述的碳纳米管场发射电子源的制造方法,其特征在于,步骤(一)中所述的相对的两顶部之间的距离为10~20微米。
14.如权利要求10所述的碳纳米管场发射电子源的制造方法,其特征在于,步骤(二)中进一步包括以下步骤:监控碳纳米管的组装过程,以确定碳纳米管组装于该两相对的导电基体顶部之间。
15.如权利要求14所述的碳纳米管场发射电子源的制造方法,其特征在于,所述的监控碳纳米管的组装过程,以确定碳纳米管组装于该两相对的导电基体顶部之间的方法包括:在两导电基体所在的电路中串联一个电阻;在该电阻两端并联一示波器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610060236XA CN101051596B (zh) | 2006-04-07 | 2006-04-07 | 碳纳米管场发射电子源及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610060236XA CN101051596B (zh) | 2006-04-07 | 2006-04-07 | 碳纳米管场发射电子源及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101051596A CN101051596A (zh) | 2007-10-10 |
CN101051596B true CN101051596B (zh) | 2010-09-29 |
Family
ID=38782913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610060236XA Active CN101051596B (zh) | 2006-04-07 | 2006-04-07 | 碳纳米管场发射电子源及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101051596B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106683955B (zh) * | 2015-11-11 | 2019-01-25 | 北京卫星环境工程研究所 | 航天器无功耗自适应电位控制器及其制造方法 |
US20190322531A1 (en) * | 2016-06-15 | 2019-10-24 | Tohoku University | Carbon material and method for manufacturing same |
CN107564784A (zh) * | 2017-07-07 | 2018-01-09 | 国家纳米科学中心 | 一种基于异质结的增强型光辅助场发射电子源及其制备方法 |
CN107424887B (zh) * | 2017-07-07 | 2020-07-07 | 国家纳米科学中心 | 基于低功函数复合纳米材料的光致热电子发射源及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6504292B1 (en) * | 1999-07-15 | 2003-01-07 | Agere Systems Inc. | Field emitting device comprising metallized nanostructures and method for making the same |
USRE38223E1 (en) * | 1994-02-23 | 2003-08-19 | Till Keesmann | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
CN1715181A (zh) * | 2004-06-30 | 2006-01-04 | 北京大学 | 控制碳纳米管取向排列、分布及密度的方法 |
-
2006
- 2006-04-07 CN CN200610060236XA patent/CN101051596B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE38223E1 (en) * | 1994-02-23 | 2003-08-19 | Till Keesmann | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US6504292B1 (en) * | 1999-07-15 | 2003-01-07 | Agere Systems Inc. | Field emitting device comprising metallized nanostructures and method for making the same |
CN1715181A (zh) * | 2004-06-30 | 2006-01-04 | 北京大学 | 控制碳纳米管取向排列、分布及密度的方法 |
Non-Patent Citations (1)
Title |
---|
蒋军等.HfC涂敷碳纳米管增强场发射性能研究.真空电子技术,场发射与真空微纳电子会议专辑.2006,48-50,57. * |
Also Published As
Publication number | Publication date |
---|---|
CN101051596A (zh) | 2007-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101051595B (zh) | 碳纳米管场发射电子源 | |
CN101042977B (zh) | 碳纳米管场发射电子源及其制造方法以及一场发射阵列 | |
CN100573783C (zh) | 碳纳米管场发射电子源的制造方法 | |
CN101425438B (zh) | 一种场发射电子源的制备方法 | |
CN100543905C (zh) | 一种场发射装置及其制备方法 | |
US6709566B2 (en) | Method for shaping a nanotube and a nanotube shaped thereby | |
US7959781B2 (en) | Apparatus and method for manufacturing carbon nano-tube probe by using metallic vessel as an electrode | |
CN101538031B (zh) | 碳纳米管针尖及其制备方法 | |
US20050269559A1 (en) | Field emission ion source based on nanostructure-containing material | |
US20090239439A1 (en) | Method for manufacturing field emission electron source having carbon nanotubes | |
KR20050084226A (ko) | 나노구조체 함유 물질 및 관련 물품의 조립 및 분류 방법 | |
CN103193217B (zh) | 一种硼掺杂金刚石与碳纳米管复合纳米锥的制备方法 | |
CN101425439B (zh) | 一种场发射电子源的制备方法 | |
CN101051596B (zh) | 碳纳米管场发射电子源及其制造方法 | |
US8013505B2 (en) | Field emission electron source having a carbon nanotube needle | |
US7932477B2 (en) | Electron beam heating system having carbon nanotubes | |
CN100411866C (zh) | 碳纤维复合单根碳纳米管及其制备方法 | |
TWI309428B (en) | Emission source having carbon nanotube | |
TWI309055B (en) | Method for making emission source having carbon nanotube | |
TWI310201B (en) | Emission source having carbon nanotube and method for making same | |
JP2005100885A (ja) | 電界放射電子源およびこれを用いた顕微鏡 | |
KR101356820B1 (ko) | 전도성 나노구조물 및 이의 성형 방법 및 이를 이용하는 전계 방출 에미터의 제조 방법 | |
Wang et al. | Room-temperature synthesis and characterisation of ion-induced iron-carbon nanocomposite fibres | |
WO2013154361A1 (ko) | 금속 바인더를 이용한 방전에 강한 고 안정성 탄소나노튜브 전계방출형 전자빔 에미터의 제조방법 및 이를 이용한 탄소나노튜브 전계방출형 전자빔 에미터 | |
Choi et al. | Fabrication and characterization of a carbon nanotube-based point electron source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |