USRE38223E1 - Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge - Google Patents
Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge Download PDFInfo
- Publication number
- USRE38223E1 USRE38223E1 US09/504,635 US50463500A USRE38223E US RE38223 E1 USRE38223 E1 US RE38223E1 US 50463500 A US50463500 A US 50463500A US RE38223 E USRE38223 E US RE38223E
- Authority
- US
- United States
- Prior art keywords
- field emission
- carbon nano
- emission cathode
- cylinders
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 10
- 230000005684 electric field Effects 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 74
- 229910052799 carbon Inorganic materials 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 2
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 26
- 229910002804 graphite Inorganic materials 0.000 description 18
- 239000010439 graphite Substances 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 10
- 238000004377 microelectronic Methods 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 238000003491 array Methods 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910003472 fullerene Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052757 nitrogen Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005478 sputtering type Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30403—Field emission cathodes characterised by the emitter shape
- H01J2201/30423—Microengineered edge emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30446—Field emission cathodes characterised by the emitter material
- H01J2201/30453—Carbon types
- H01J2201/30469—Carbon nanotubes (CNTs)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/86—Scanning probe structure
- Y10S977/875—Scanning probe structure with tip detail
- Y10S977/876—Nanotube tip
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/939—Electron emitter, e.g. spindt emitter tip coated with nanoparticles
Definitions
- the invention relates to a field emission cathode device of an electrically conducting material and with a narrow, rod-shaped geometry or a knife edge to achieve high amplification of the electric field strength, such that the electron-emitting part of the field emission cathode has cylindrical molecules.
- the invention also relates to a method for producing such a field emission cathode device.
- Field emission means the emission of electrons from the surface of an electric conductor under the action of an electric field exceeding 10 9 V/m. In practice, such field strengths are realized at sharp edges or tips, where the field strength is amplified. High vacuum is necessary to avoid gas discharges.
- Field emission cathodes are used, for example, in field electron microscopes, in electron accelerators, in high-power switches (OS DE 39 24 745 A1) and in field emission diodes and field emitter arrays for vacuum microelectronics (thus for example Busta, Vacuum microelectronics—1992, Journal of Micromechanics and Microengineering, 2 (1992), pp. 53-60, and Iannazzo, A survey of the present status of vacuum microelectronics, Solid State Electronics, 36 (1993), pp. 301 to 320).
- a tungsten wire can be used as the field emission cathode, whose tip becomes so fine by etching that it can no longer be seen in an optical microscope. Also by etching, the ends of carbon fibers can be made sufficiently fine (Heinrich, Essig, Geiger, Appl. Phys. (1977) 12, pp. 197-202) to serve as a field emission cathode.
- field emission cathodes In vacuum microelectronics, field emission cathodes generally are produced by the methods of microprocess technology, by etching and sputtering, using lithographically produced masks (see Busta, Vacuum microelectronics—1992, Journal of Micromechanics and Microengineering, 2 (1992), pp. 53-60). By this method, one can produce conical tips with a radius of curvature of a few nm or wedge-shaped cutting edges with comparable radii of curvature. As materials for the cathode, one can use, for example, molybdenum, lanthanum hexaboride, hafnium, diamond-like carbon (B. C. Djubua, N. N. Chubun, Emission properties of Spindt-type cold cathodes with different emission cone material, IEEE Transactions on Electron Devices, 38 (1991) No. 10, pp. 2314-2316).
- the like applies to field emission cathodes which are produced by sputtering techniques. The reason for this primarily is that the material structure of the emission tips is not uniquely defined.
- the geometry and microstructure of the tip and thus the work function of the electrons can vary within such wide limits that the electron streams from several tips, which were produced in one process, can differ by orders of magnitude, and furthermore change with operating time.
- field emission cathodes for vacuum microelectronics cannot be produced in their optimal geometry by the prior art.
- Field strength calculations for various geometries of the tips show that the best shape of a field emission cathode is a narrow rod (Utsumi, Vacuum microelectronics: What's new and exciting, IEEE Transactions on Electron Devices 38 (1991), pp. 2276-2283).
- the present methods of microstructure technology can produce at most wedge-shaped tips in a defined manner.
- Carbon nano-cylinders were observed for the first time in an electron microscope by Iijima (Nature, 354 (1991), p. 56). They can now be produced in large quantities, for example at the cathode of a visible arc (Iijima, Materials Science and Engineering, B19 (1993), pp. 172-180). In the presence of iron or cobalt, one can produce single-shell carbon nano-cylinders. Theoretical calculations show that, depending on the helicity of the hexagonal ring structure, the walls of the carbon nano-cylinders are electrically conducting or semiconducting (Saito, Fujita, Dresselhaus, Dresselhaus, Materials Science and Engineering, B19 (1993), pp. 185-191). The carbon nano-cylinders can also be filled with metals, for example with lead. Other methods for producing carbon nano-cylinders are described in the literature:
- Carbon nano-cylinders can be produced by the catalytic decomposition of acetylene through iron particles at about 700° C. (Jose-Yacaman, Miki-Yoshida, Rendon, Applied Physics Letters 62 (6) 1993, pp. 657-659).
- single-shell carbon nano-cylinders can be found in the carbon deposit on the chamber walls of a visible arc apparatus (Iijima, Nature 363 (1993), pp. 603-605).
- carbon nano-cylinders By sputtering ultra-pure graphite with electron beams in vacuum, carbon nano-cylinders can be produced on substrates consisting of various materials, such that the carbon nano-cylinders are aligned in the direction of the vapor jet (Kosakovskaya et al., JETP Lett., 56 (1992), p. 26).
- disordered carbon particles generally are also deposited on the substrate. These can be removed, for example, by treatment in an oxidizing atmosphere at an elevated temperature up to 500° C., preferably 400° C.
- the carbon nano-cylinders at the end caps can be opened in a similar manner in an oxidizing atmosphere (air, CO 2 , or pure oxygen). This offers the possibility of filling the carbon nano-cylinders with metals, as described for a filling with lead by Ajayan and Iijima in Nature 361, p. 333.
- the present invention is based on the object or on the technical problem of specifying a field emission cathode which avoids the disadvantages of the prior art, assures high emission quality, makes possible a longer lifetime, and in particular resists bombardment with residual gas ions. Furthermore, the present invention is based on the object or on the technical problem of specifying a method for producing a field emission cathode of the type mentioned in the introduction, so as to assure technically optimal manufacture together with economy.
- the inventive field emission cathode device consists of an electrically conducting material and having the shape of a narrow rod or a knife edge to achieve high magnification of the electric field strength, such that the electron emitting part of the field emission cathode has cylindrical molecules, wherein the cylindrical molecules are formed at least in part as single-shell or multiple-shell carbon nano-cylinders.
- the inventive method for producing the field emission cathode device with carbon non-cylinders which have been expanded during the gas phase.
- An especially preferred design of the inventive field emission cathode is characterized in that carbon nano-cylinders are used as field emission cathodes.
- Single-shell carbon nano-cylinders with a diameter of about 1 nanometer and a length greater than 1 micrometer, or also multiple-shell ones with a diameter up to several nanometers can be produced. Bundles of single-shell carbon nano-cylinders with diameters of about 5 nanometers can also be produced.
- the walls of the carbon nano-cylinders consist of carbon atoms in a hexagonal pattern, while the end caps additionally contain 5-ring structures.
- the individual carbon atoms of the carbon nano-cylinders are strongly bound chemically, as a result of which the carbon nano-cylinders have extremely great mechanical strength. This also results in their high sputtering strength in comparison to randomly grown tips, which are sputtered according to the prior art.
- the production method can be used to produce either individual field emission cathodes or also field emission cathode arrays.
- FIG. 1 shows an individual field emission element of a field emitter array, such as can be produced by the prior art.
- FIG. 2 shows the same element in accordance with the first inventive process step, so as to provide the emission tip with carbon nano-cylinders.
- FIG. 3 shows the same element after carbon has been sputtered.
- FIG. 4 shows the same element after the last process step, in its final state.
- FIG. 5 shows a section of a field emitter array with individually actuatable emission tips.
- FIG. 6 shows the cross section of a graphite wafer with a knife edge.
- FIG. 7 shows in cross section a prepared block of ten graphite wafers with a clamping fixture for sputtering carbon nano-cylinders.
- FIG. 8 shows a diode for the power pulse technique with an inventively prepared field emission cathode.
- field emission cathodes of carbon nano-cylinders can be produced, such as can be used, for example, as cathodes for diodes or switches.
- field emission cathodes for a field emitter array can be produced by the methods of microstructure technology.
- FIG. 6 shows such a graphite wafer 100 with a knife edge 101 , beveled on one side.
- FIG. 7 shows how ten of these graphite wafers 100 a to 100 j are collected together into a block in a clamping fixture 103 , in such a way that the knife edges 101 a to 101 j on one side of the block lie in one plane and an aluminum foil or Teflon foil is situated between each of the graphite wafers as a spacer 102 a to 102 j.
- the clamping fixture consists of two brass blocks, into which recesses have been milled to receive the ten graphite wafers with their spacer foils. These blocks are screwed together by two screws 104 .
- the prepared block is installed in a vacuum apparatus, in which a target of ultra-pure graphite is sputtered with an electron beam.
- the graphite target and the block are arranged here in such a way that the carbon vapor strikes the plane of the graphite knife edges perpendicularly. Under these conditions, carbon nano-cylinders grow on the knife edges individually and in bundles of several cylinders, in the direction of the carbon vapor beam. When a layer several tenths of a micrometer thick has been reached, the sputtering process is terminated.
- the knife edges and the beveled surfaces of the graphite wafers are now coated with carbon nano-cylinders, which have extremely high mechanical strength.
- the microstructure of the surface is characterized by cylindrical elevations with sharp tips which have a radius of curvature of a few nanometers.
- FIG. 8 shows how a graphite wafer prepared in this manner can be used in a diode that operates as a switching element.
- An anode 112 with a large surface and a cathode pin 111 are fused in an evacuated glass flask 110 .
- the graphite wafer 100 with its knife edge 101 is fastened on the cathode pin in such a way that it is situated opposite the anode at a distance of about 1 mm. If a sufficiently high negative voltage is applied to the cathode, an electrical current can flow through the diode.
- knife edges are characterized in that, in contrast to knife edges without carbon nano-cylinders, they amplify the electric field much more. A consequence of this is that, given the same voltage, the field emission current is much greater. Furthermore, the emission tips are not already destroyed after a brief operating time by the ions of the residual gas.
- the production method described above can easily be transferred to a rather large number of graphite wafers with longer knife edges. Also, the edge angle and the spacing between the knife edges can be varied within broad limits. This therefore represents a field emission cathode whose electron-emitting surface and current density can be adapted to many applications, for example in power pulse technology.
- FIG. 1 shows a field emitter cathode with a gate electrode.
- Reference No. 10 designates the electrically conducting, n-doped silicon substrate, 11 designates a sputtered insulating layer about 2 ⁇ m thick and consisting of SiO 2 .
- Reference No. 10 designates the electrically conducting, n-doped silicon substrate, 11 designates a sputtered insulating layer about 2 ⁇ m thick and consisting of SiO 2 .
- the gate openings 14 of the molybdenum layer are preferably chosen to lie between 0.4 and 0.8 ⁇ m.
- a sacrificial layer of aluminum is applied to the field emitter array which, in this form, already corresponds to the prior art. This is done by rotating the substrate perpendicular to the surface and sputtering it with aluminum at slant incidence. This type of sputtering prevents the aluminum from depositing in the cathode openings.
- FIG. 2 shows a field emitter element produced in accordance with this process step; the aluminum sacrificial layer is designated by 20 .
- the graphite target disposed above the field emitter array is sputtered by an electron beam, and the carbon is deposited on the field emitter array.
- a portion of the carbon atomic beam penetrates through the gate opening and deposits on the cathode tips.
- cylindrical, parallel graphite fibers thus form in the direction of the incident atomic beam.
- the growth process is improved if, during this process step, a voltage U G of the order of 50 V is applied between the cathode and gate layer.
- FIG. 3 shows a field emitter element made in accordance with this process step.
- 30 designates the deposited carbon layer on the gate electrode
- 31 designates one or more carbon nano-cylinders on the molybdenum tip.
- the voltage source to create the field strength at the cathode tip is also shown schematically.
- the growth of the carbon nano-cylinders can be controlled through the emission current Ic.
- the process must be terminated at the proper time, when the carbon nano-cylinders have reached a length of several tenths of a ⁇ m. It is here advantageous to modulate the gate voltage V G slightly.
- the quotient dIc/dU G is designated as the differential slope and can be used as a measure of the quality of the field emitter array.
- the carbon layer with the aluminum sacrificial layer is etched off, so that, after this step, the field emitter element looks as shown in FIG. 4 .
- the cathodes instead of producing the cathodes so as to be electrically connected in their totality and lying at the same potential, they can also be produced in such a way that only one row of them is electrically coupled together.
- the gate electrodes can be produced in such a way that only one row of them is electrically coupled together, although perpendicular to the direction of the row of cathodes that are connected together. This then offers the possibility of driving each cathode individually.
- This type of circuit is already known and is used, for example, for a screen with digitally actuatable image points, from LETI Company (described in Busta loc. cit., pp. 69-70).
- This circuit for the case of three rows of cathodes and three rows of gates, is shown schematically, in a top view, in FIG. 5 .
- Electrically conducting cathode tracks K 1 , K 2 , and K 3 for example consisting of n-doped silicon, are applied on a substrate with an electrically non-conducting surface 1 , along a width of a few micrometers.
- the following insulating layer of silicon dioxide (not shown), about 2 micrometers thick, corresponds to the arrangement described by Spindt.
- the gate electrodes G 1 , G 2 , and G 3 are applied in strips just like the cathodes, but perpendicular to the direction of the cathode tracks.
- the further process steps correspond to the steps used to produce the field emitter cathodes that cannot be individually actuated.
- the center electrode of the last column in FIG. 5 can now be driven in such a way, for example, that a negative voltage is applied to the cathode strips K 2 and a negative voltage is applied to the gate strips G 3 ; a field emission current will then flow from this electrode, which can be measured in the cathode or gate circuit or which can be detected by a suction anode, which is not shown here.
- this arrangement of the cathode strips and gate strips can be used to control specifically the production process of each individual cathode. It is then possible to measure the emission current from each field emitter tip during the production process, and not merely the total amount from the entire field emitter array. By turning off the voltage at one field emission cathode, one can favor the formation of an end cap with 5-ring structures, so that no further growth will occur.
- carbon nano-cylinders it is advantageous for the formation of carbon nano-cylinders to form them at elevated temperatures of 100° to 700° C. (degrees Celsius), preferably 300°-400° C.
- cathodes produced conventionally—by sputtering in vacuum by the methods of microstructure technology or by etching are coated with electrically conducting host molecules.
- the host molecules can be fullerenes, hetero-fullerenes, or their derivatives, especially also endohedral or exohedral compounds, for example, of the type M 3 C 60 or M 3 C 70 , where M designates a metal, preferably the alkali metals potassium or sodium.
- the host molecules can also be applied to the cathode in crystalline form, for example C 60 in the form of fullerite.
- the field emission cathodes whose resistivity and emission properties have been improved by coating them with carbon nano-cylinders or also with fullerenes and their derivatives, in molecular or crystalline form, can be used wherever thermionic cathodes in vacuum were used previously, and in all applications of vacuum microelectronics. Typical fields of application will be listed below, without this listing being exhaustive, and a person skilled in the art can easily transfer the inventive field emission cathode to similar applications.
- Single emitter tips, emitter edges, or emitter arrays can be used as electron sources for X-ray tubes, X-ray tubes with planar, drivable cathodes, for example for computer tomography, electron beam lithography, miniature electron microscopes, power switching tubes, diodes or triodes, logic circuit elements, video screens.
- Field emission cathodes can be used in miniaturized electronic components, such as ultra-high frequency diodes, ultra-high frequency triodes, diodes and triodes in combination with semiconductor components, temperature-stable diodes and triodes in the engines of motor vehicles, temperature-stable logic components, electronic components with diode and triode functions, which are particularly resistant to electromagnetic interference and ionizing radiation, pressure sensors, in which the cathode gate distance is influenced by the pressure, microwave generators and amplifiers.
- miniaturized electronic components such as ultra-high frequency diodes, ultra-high frequency triodes, diodes and triodes in combination with semiconductor components, temperature-stable diodes and triodes in the engines of motor vehicles, temperature-stable logic components, electronic components with diode and triode functions, which are particularly resistant to electromagnetic interference and ionizing radiation, pressure sensors, in which the cathode gate distance is influenced by the pressure, microwave generators and amplifiers.
- field emission cathodes can be used preferably as electron sources with a large surface, yielding a high current density, drivable electron sources for planar video screens with a high light density in monochromatic or color designs.
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/504,635 USRE38223E1 (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US10/408,871 USRE38561E1 (en) | 1995-02-22 | 1995-02-22 | Field emission cathode |
US10/409,363 US20040036402A1 (en) | 1994-02-23 | 2003-04-08 | Field emission cathode using carbon fibers |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4405768A DE4405768A1 (en) | 1994-02-23 | 1994-02-23 | Field emission cathode device and method for its manufacture |
DE4405768 | 1994-02-23 | ||
US09/504,635 USRE38223E1 (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US08/702,684 US5773921A (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
PCT/DE1995/000221 WO1995023424A1 (en) | 1994-02-23 | 1995-02-22 | Field-emission cathode and method of manufacturing it |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000221 Reissue WO1995023424A1 (en) | 1994-02-23 | 1995-02-22 | Field-emission cathode and method of manufacturing it |
US08/702,684 Reissue US5773921A (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/702,684 Continuation US5773921A (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US10/409,363 Continuation US20040036402A1 (en) | 1994-02-23 | 2003-04-08 | Field emission cathode using carbon fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE38223E1 true USRE38223E1 (en) | 2003-08-19 |
Family
ID=6510961
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/702,684 Ceased US5773921A (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US09/504,635 Expired - Lifetime USRE38223E1 (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
US10/409,363 Abandoned US20040036402A1 (en) | 1994-02-23 | 2003-04-08 | Field emission cathode using carbon fibers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/702,684 Ceased US5773921A (en) | 1994-02-23 | 1995-02-22 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/409,363 Abandoned US20040036402A1 (en) | 1994-02-23 | 2003-04-08 | Field emission cathode using carbon fibers |
Country Status (5)
Country | Link |
---|---|
US (3) | US5773921A (en) |
EP (1) | EP0801805B1 (en) |
AT (1) | ATE186422T1 (en) |
DE (2) | DE4405768A1 (en) |
WO (1) | WO1995023424A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020094064A1 (en) * | 2000-10-06 | 2002-07-18 | Zhou Otto Z. | Large-area individually addressable multi-beam x-ray system and method of forming same |
US20030002627A1 (en) * | 2000-09-28 | 2003-01-02 | Oxford Instruments, Inc. | Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter |
US20030142790A1 (en) * | 2000-10-06 | 2003-07-31 | Zhou Otto Z. | X-ray generating mechanism using electron field emission cathode |
US20040106220A1 (en) * | 2001-02-27 | 2004-06-03 | Merkulov Vladimir I. | Carbon tips with expanded bases |
US20050064167A1 (en) * | 2003-09-12 | 2005-03-24 | Nano-Proprietary, Inc. | Carbon nanotubes |
US20050136788A1 (en) * | 2003-12-18 | 2005-06-23 | Nano-Proprietary, Inc. | Bead blast activation of carbon nanotube cathode |
US20050281379A1 (en) * | 2000-10-06 | 2005-12-22 | Xintek, Inc. | Devices and methods for producing multiple x-ray beams from multiple locations |
US20060008047A1 (en) * | 2000-10-06 | 2006-01-12 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US20060274889A1 (en) * | 2000-10-06 | 2006-12-07 | University Of North Carolina At Chapel Hill | Method and apparatus for controlling electron beam current |
US20070053489A1 (en) * | 2005-04-25 | 2007-03-08 | The University Of North Carolina At Chapel Hill | X-ray imaging systems and methods using temporal digital signal processing for reducing noise and for obtaining multiple images simultaneously |
US7227924B2 (en) | 2000-10-06 | 2007-06-05 | The University Of North Carolina At Chapel Hill | Computed tomography scanning system and method using a field emission x-ray source |
US20070227700A1 (en) * | 2006-03-29 | 2007-10-04 | Dimitrakopoulos Christos D | VLSI chip hot-spot minimization using nanotubes |
US20070278925A1 (en) * | 2004-09-10 | 2007-12-06 | Nano-Proprietary, Inc. | Enhanced electron field emission from carbon nanotubes without activation |
US20080012461A1 (en) * | 2004-11-09 | 2008-01-17 | Nano-Proprietary, Inc. | Carbon nanotube cold cathode |
US20080220181A1 (en) * | 2006-08-25 | 2008-09-11 | Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine | Method of loading a nanotube structure and loaded nanotube structure |
US20090022264A1 (en) * | 2007-07-19 | 2009-01-22 | Zhou Otto Z | Stationary x-ray digital breast tomosynthesis systems and related methods |
US20090102046A1 (en) * | 2007-10-18 | 2009-04-23 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US7796999B1 (en) | 2006-04-03 | 2010-09-14 | Sprint Spectrum L.P. | Method and system for network-directed media buffer-size setting based on device features |
US20100239064A1 (en) * | 2005-04-25 | 2010-09-23 | Unc-Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
CN101051596B (en) * | 2006-04-07 | 2010-09-29 | 清华大学 | Carbon nano tube field transmitting electronic source and its producing method |
US20100329413A1 (en) * | 2009-01-16 | 2010-12-30 | Zhou Otto Z | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8189893B2 (en) | 2006-05-19 | 2012-05-29 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer program products for binary multiplexing x-ray radiography |
US8358739B2 (en) | 2010-09-03 | 2013-01-22 | The University Of North Carolina At Chapel Hill | Systems and methods for temporal multiplexing X-ray imaging |
US8866068B2 (en) | 2012-12-27 | 2014-10-21 | Schlumberger Technology Corporation | Ion source with cathode having an array of nano-sized projections |
US9782136B2 (en) | 2014-06-17 | 2017-10-10 | The University Of North Carolina At Chapel Hill | Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging |
US9916960B2 (en) | 2014-12-22 | 2018-03-13 | Siemens Aktiengesellschaft | Device for producing an electron beam |
US10980494B2 (en) | 2014-10-20 | 2021-04-20 | The University Of North Carolina At Chapel Hill | Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging |
US11231651B2 (en) | 2017-04-13 | 2022-01-25 | SCREEN Holdings Co., Ltd. | Peripheral processing apparatus and peripheral processing method |
US11778717B2 (en) | 2020-06-30 | 2023-10-03 | VEC Imaging GmbH & Co. KG | X-ray source with multiple grids |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5777096A (en) * | 1995-06-12 | 1997-01-09 | Ecole Polytechnique Federale De Lausanne | Electron source and applications of the same |
AU6626096A (en) * | 1995-08-04 | 1997-03-05 | Printable Field Emitters Limited | Field electron emission materials and devices |
CA2234429A1 (en) | 1995-11-15 | 1997-05-22 | E.I. Du Pont De Nemours And Company | Annealed carbon soot field emitters and field emitter cathodes made therefrom |
US5872422A (en) * | 1995-12-20 | 1999-02-16 | Advanced Technology Materials, Inc. | Carbon fiber-based field emission devices |
US6445006B1 (en) | 1995-12-20 | 2002-09-03 | Advanced Technology Materials, Inc. | Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same |
KR100365444B1 (en) * | 1996-09-18 | 2004-01-24 | 가부시끼가이샤 도시바 | Vacuum micro device and image display device using the same |
EP1361592B1 (en) * | 1997-09-30 | 2006-05-24 | Noritake Co., Ltd. | Method of manufacturing an electron-emitting source |
JP3740295B2 (en) | 1997-10-30 | 2006-02-01 | キヤノン株式会社 | Carbon nanotube device, manufacturing method thereof, and electron-emitting device |
US6525461B1 (en) * | 1997-10-30 | 2003-02-25 | Canon Kabushiki Kaisha | Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device |
JP3441396B2 (en) | 1998-12-03 | 2003-09-02 | 喜萬 中山 | Probe for surface signal operation of electronic device and method of manufacturing the same |
JP3441397B2 (en) | 1998-12-31 | 2003-09-02 | 喜萬 中山 | Fusion probe for surface signal operation of electronic device and method of manufacturing the same |
JPH11273551A (en) * | 1998-03-23 | 1999-10-08 | Nec Corp | Electron emitting element employing boron nitride and its manufacture |
US6630772B1 (en) | 1998-09-21 | 2003-10-07 | Agere Systems Inc. | Device comprising carbon nanotube field emitter structure and process for forming device |
US6146227A (en) * | 1998-09-28 | 2000-11-14 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
US6597090B1 (en) | 1998-09-28 | 2003-07-22 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
JP2002526354A (en) * | 1998-09-28 | 2002-08-20 | ザイデックス コーポレイション | Method for producing carbon nanotubes as a functional element of a MEMS device |
US6232706B1 (en) * | 1998-11-12 | 2001-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Self-oriented bundles of carbon nanotubes and method of making same |
US6250984B1 (en) * | 1999-01-25 | 2001-06-26 | Agere Systems Guardian Corp. | Article comprising enhanced nanotube emitter structure and process for fabricating article |
US6283812B1 (en) * | 1999-01-25 | 2001-09-04 | Agere Systems Guardian Corp. | Process for fabricating article comprising aligned truncated carbon nanotubes |
KR20000074609A (en) * | 1999-05-24 | 2000-12-15 | 김순택 | Carbon nano tube field emission array and fabricating method thereof |
EP1061554A1 (en) * | 1999-06-15 | 2000-12-20 | Iljin Nanotech Co., Ltd. | White light source using carbon nanotubes and fabrication method thereof |
US6648711B1 (en) | 1999-06-16 | 2003-11-18 | Iljin Nanotech Co., Ltd. | Field emitter having carbon nanotube film, method of fabricating the same, and field emission display device using the field emitter |
JP2001052652A (en) * | 1999-06-18 | 2001-02-23 | Cheol Jin Lee | White light source and its manufacture |
US6538367B1 (en) | 1999-07-15 | 2003-03-25 | Agere Systems Inc. | Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same |
US6504292B1 (en) | 1999-07-15 | 2003-01-07 | Agere Systems Inc. | Field emitting device comprising metallized nanostructures and method for making the same |
US6312303B1 (en) * | 1999-07-19 | 2001-11-06 | Si Diamond Technology, Inc. | Alignment of carbon nanotubes |
US6277318B1 (en) * | 1999-08-18 | 2001-08-21 | Agere Systems Guardian Corp. | Method for fabrication of patterned carbon nanotube films |
US6741019B1 (en) | 1999-10-18 | 2004-05-25 | Agere Systems, Inc. | Article comprising aligned nanowires |
JP3483526B2 (en) * | 1999-10-21 | 2004-01-06 | シャープ株式会社 | Image forming device |
US6401526B1 (en) | 1999-12-10 | 2002-06-11 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor |
US6989631B2 (en) * | 2001-06-08 | 2006-01-24 | Sony Corporation | Carbon cathode of a field emission display with in-laid isolation barrier and support |
DE10005057C2 (en) * | 2000-02-04 | 2002-10-31 | Jisoon Ihm | Field emission tips |
KR100499120B1 (en) * | 2000-02-25 | 2005-07-04 | 삼성에스디아이 주식회사 | Triode structure field emission display using carbon nanotube |
US6456691B2 (en) * | 2000-03-06 | 2002-09-24 | Rigaku Corporation | X-ray generator |
DE60042679D1 (en) * | 2000-03-16 | 2009-09-17 | Hitachi Ltd | Device for generating a stream of charge carriers |
US6512235B1 (en) * | 2000-05-01 | 2003-01-28 | El-Mul Technologies Ltd. | Nanotube-based electron emission device and systems using the same |
JP3658342B2 (en) | 2000-05-30 | 2005-06-08 | キヤノン株式会社 | Electron emitting device, electron source, image forming apparatus, and television broadcast display apparatus |
US6586889B1 (en) | 2000-06-21 | 2003-07-01 | Si Diamond Technology, Inc. | MEMS field emission device |
US6819034B1 (en) | 2000-08-21 | 2004-11-16 | Si Diamond Technology, Inc. | Carbon flake cold cathode |
US6692324B2 (en) * | 2000-08-29 | 2004-02-17 | Ut-Battelle, Llc | Single self-aligned carbon containing tips |
JP3610325B2 (en) * | 2000-09-01 | 2005-01-12 | キヤノン株式会社 | Electron emitting device, electron source, and method of manufacturing image forming apparatus |
JP3639809B2 (en) * | 2000-09-01 | 2005-04-20 | キヤノン株式会社 | ELECTRON EMITTING ELEMENT, ELECTRON EMITTING DEVICE, LIGHT EMITTING DEVICE, AND IMAGE DISPLAY DEVICE |
JP3639808B2 (en) * | 2000-09-01 | 2005-04-20 | キヤノン株式会社 | Electron emitting device, electron source, image forming apparatus, and method of manufacturing electron emitting device |
JP3658346B2 (en) * | 2000-09-01 | 2005-06-08 | キヤノン株式会社 | Electron emitting device, electron source and image forming apparatus, and method for manufacturing electron emitting device |
US6664728B2 (en) | 2000-09-22 | 2003-12-16 | Nano-Proprietary, Inc. | Carbon nanotubes with nitrogen content |
JP3634781B2 (en) | 2000-09-22 | 2005-03-30 | キヤノン株式会社 | Electron emission device, electron source, image forming device, and television broadcast display device |
US20040240616A1 (en) * | 2003-05-30 | 2004-12-02 | Applied Nanotechnologies, Inc. | Devices and methods for producing multiple X-ray beams from multiple locations |
US6885022B2 (en) * | 2000-12-08 | 2005-04-26 | Si Diamond Technology, Inc. | Low work function material |
US20050200261A1 (en) * | 2000-12-08 | 2005-09-15 | Nano-Proprietary, Inc. | Low work function cathode |
JP2002179418A (en) * | 2000-12-13 | 2002-06-26 | Tohoku Techno Arch Co Ltd | Method for forming carbon nanotube |
US7306674B2 (en) * | 2001-01-19 | 2007-12-11 | Chevron U.S.A. Inc. | Nucleation of diamond films using higher diamondoids |
US7276222B2 (en) * | 2001-01-19 | 2007-10-02 | Chevron U.S.A. Inc. | Diamondoid-containing thermally conductive materials |
US6783589B2 (en) * | 2001-01-19 | 2004-08-31 | Chevron U.S.A. Inc. | Diamondoid-containing materials in microelectronics |
JP3768908B2 (en) * | 2001-03-27 | 2006-04-19 | キヤノン株式会社 | Electron emitting device, electron source, image forming apparatus |
GB0109546D0 (en) * | 2001-04-18 | 2001-06-06 | Va Tech Transmission & Distrib | Vacuum power switches |
US6739932B2 (en) * | 2001-06-07 | 2004-05-25 | Si Diamond Technology, Inc. | Field emission display using carbon nanotubes and methods of making the same |
US7002290B2 (en) * | 2001-06-08 | 2006-02-21 | Sony Corporation | Carbon cathode of a field emission display with integrated isolation barrier and support on substrate |
US6682382B2 (en) * | 2001-06-08 | 2004-01-27 | Sony Corporation | Method for making wires with a specific cross section for a field emission display |
US6756730B2 (en) * | 2001-06-08 | 2004-06-29 | Sony Corporation | Field emission display utilizing a cathode frame-type gate and anode with alignment method |
US6700454B2 (en) | 2001-06-29 | 2004-03-02 | Zvi Yaniv | Integrated RF array using carbon nanotube cathodes |
JP3774682B2 (en) * | 2001-06-29 | 2006-05-17 | キヤノン株式会社 | Electron emitting device, electron source, and image forming apparatus |
US6897603B2 (en) * | 2001-08-24 | 2005-05-24 | Si Diamond Technology, Inc. | Catalyst for carbon nanotube growth |
US6890230B2 (en) * | 2001-08-28 | 2005-05-10 | Motorola, Inc. | Method for activating nanotubes as field emission sources |
US7070472B2 (en) * | 2001-08-29 | 2006-07-04 | Motorola, Inc. | Field emission display and methods of forming a field emission display |
US6891319B2 (en) * | 2001-08-29 | 2005-05-10 | Motorola, Inc. | Field emission display and methods of forming a field emission display |
JP3703415B2 (en) * | 2001-09-07 | 2005-10-05 | キヤノン株式会社 | ELECTRON EMITTING ELEMENT, ELECTRON SOURCE, IMAGE FORMING APPARATUS, AND METHOD FOR MANUFACTURING ELECTRON EMITTING ELEMENT AND ELECTRON SOURCE |
JP3605105B2 (en) * | 2001-09-10 | 2004-12-22 | キヤノン株式会社 | Electron emitting element, electron source, light emitting device, image forming apparatus, and method of manufacturing each substrate |
US6902658B2 (en) * | 2001-12-18 | 2005-06-07 | Motorola, Inc. | FED cathode structure using electrophoretic deposition and method of fabrication |
CN1599939B (en) * | 2002-01-15 | 2010-08-11 | 国际商业机器公司 | Microstructures |
AU2003224723A1 (en) * | 2002-03-20 | 2003-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Molybdenum-based electrode with carbon nanotube growth |
US6873118B2 (en) * | 2002-04-16 | 2005-03-29 | Sony Corporation | Field emission cathode structure using perforated gate |
US6747416B2 (en) * | 2002-04-16 | 2004-06-08 | Sony Corporation | Field emission display with deflecting MEMS electrodes |
US6791278B2 (en) * | 2002-04-16 | 2004-09-14 | Sony Corporation | Field emission display using line cathode structure |
US6979947B2 (en) * | 2002-07-09 | 2005-12-27 | Si Diamond Technology, Inc. | Nanotriode utilizing carbon nanotubes and fibers |
US6798127B2 (en) * | 2002-10-09 | 2004-09-28 | Nano-Proprietary, Inc. | Enhanced field emission from carbon nanotubes mixed with particles |
US7012582B2 (en) * | 2002-11-27 | 2006-03-14 | Sony Corporation | Spacer-less field emission display |
US6958475B1 (en) | 2003-01-09 | 2005-10-25 | Colby Steven M | Electron source |
US20040145299A1 (en) * | 2003-01-24 | 2004-07-29 | Sony Corporation | Line patterned gate structure for a field emission display |
JP3907626B2 (en) * | 2003-01-28 | 2007-04-18 | キヤノン株式会社 | Manufacturing method of electron source, manufacturing method of image display device, manufacturing method of electron-emitting device, image display device, characteristic adjustment method, and characteristic adjustment method of image display device |
US6764874B1 (en) | 2003-01-30 | 2004-07-20 | Motorola, Inc. | Method for chemical vapor deposition of single walled carbon nanotubes |
JP4004973B2 (en) * | 2003-02-19 | 2007-11-07 | 双葉電子工業株式会社 | Carbon material, method for producing the same, electron-emitting device, and composite material |
WO2004088701A2 (en) * | 2003-03-26 | 2004-10-14 | Xoft Microtube, Inc. | Miniature x-ray tube with micro cathode |
US6987835B2 (en) * | 2003-03-26 | 2006-01-17 | Xoft Microtube, Inc. | Miniature x-ray tube with micro cathode |
US7071629B2 (en) * | 2003-03-31 | 2006-07-04 | Sony Corporation | Image display device incorporating driver circuits on active substrate and other methods to reduce interconnects |
US20040189552A1 (en) * | 2003-03-31 | 2004-09-30 | Sony Corporation | Image display device incorporating driver circuits on active substrate to reduce interconnects |
US20040245224A1 (en) * | 2003-05-09 | 2004-12-09 | Nano-Proprietary, Inc. | Nanospot welder and method |
US7202596B2 (en) * | 2003-06-06 | 2007-04-10 | Electrovac Ag | Electron emitter and process of fabrication |
US7157848B2 (en) * | 2003-06-06 | 2007-01-02 | Electrovac Fabrikation Elektrotechnischer Spezialartikel Gmbh | Field emission backlight for liquid crystal television |
US20050140261A1 (en) * | 2003-10-23 | 2005-06-30 | Pinchas Gilad | Well structure with axially aligned field emission fiber or carbon nanotube and method for making same |
US7312562B2 (en) * | 2004-02-04 | 2007-12-25 | Chevron U.S.A. Inc. | Heterodiamondoid-containing field emission devices |
FR2872826B1 (en) * | 2004-07-07 | 2006-09-15 | Commissariat Energie Atomique | LOW-TEMPERATURE GROWTH OF CARBON NANOTUBES ORIENTED |
US20070158768A1 (en) * | 2006-01-06 | 2007-07-12 | Honeywell International, Inc. | Electrical contacts formed of carbon nanotubes |
WO2008054451A2 (en) * | 2006-02-06 | 2008-05-08 | The University Of North Carolina At Chapel Hill | Synthesis and processing of rare-earth boride nanowires as electron emitters |
DE102006054206A1 (en) * | 2006-11-15 | 2008-05-21 | Till Keesmann | Field emission device |
DE102007010463B4 (en) * | 2007-03-01 | 2010-08-26 | Sellmair, Josef, Dr. | Device for field emission of particles |
DE102008049654B4 (en) | 2008-09-30 | 2024-08-01 | Carl Zeiss Microscopy Gmbh | Electron beam source, electron beam system with the same, method for producing the electron beam source and its use |
FR2946456A1 (en) * | 2009-06-05 | 2010-12-10 | Thales Sa | COLLIMATE ELECTRONIC BEAM SOURCE WITH COLD CATHODE |
CZ305429B6 (en) * | 2009-07-01 | 2015-09-16 | Technická univerzita v Liberci | X-ray radiator and/or accelerator of electrically charged particles |
US8536773B2 (en) | 2011-03-30 | 2013-09-17 | Carl Zeiss Microscopy Gmbh | Electron beam source and method of manufacturing the same |
US8810161B2 (en) | 2011-12-29 | 2014-08-19 | Elwha Llc | Addressable array of field emission devices |
US8810131B2 (en) | 2011-12-29 | 2014-08-19 | Elwha Llc | Field emission device with AC output |
US9349562B2 (en) | 2011-12-29 | 2016-05-24 | Elwha Llc | Field emission device with AC output |
US8575842B2 (en) | 2011-12-29 | 2013-11-05 | Elwha Llc | Field emission device |
US8970113B2 (en) | 2011-12-29 | 2015-03-03 | Elwha Llc | Time-varying field emission device |
US9018861B2 (en) | 2011-12-29 | 2015-04-28 | Elwha Llc | Performance optimization of a field emission device |
US9171690B2 (en) | 2011-12-29 | 2015-10-27 | Elwha Llc | Variable field emission device |
US9646798B2 (en) | 2011-12-29 | 2017-05-09 | Elwha Llc | Electronic device graphene grid |
US8928228B2 (en) | 2011-12-29 | 2015-01-06 | Elwha Llc | Embodiments of a field emission device |
US8946992B2 (en) | 2011-12-29 | 2015-02-03 | Elwha Llc | Anode with suppressor grid |
US8692226B2 (en) | 2011-12-29 | 2014-04-08 | Elwha Llc | Materials and configurations of a field emission device |
WO2013163439A1 (en) * | 2012-04-26 | 2013-10-31 | Elwha Llc | Variable field emission device |
US9659734B2 (en) | 2012-09-12 | 2017-05-23 | Elwha Llc | Electronic device multi-layer graphene grid |
US9659735B2 (en) | 2012-09-12 | 2017-05-23 | Elwha Llc | Applications of graphene grids in vacuum electronics |
US9362078B2 (en) | 2012-12-27 | 2016-06-07 | Schlumberger Technology Corporation | Ion source using field emitter array cathode and electromagnetic confinement |
US20140183349A1 (en) * | 2012-12-27 | 2014-07-03 | Schlumberger Technology Corporation | Ion source using spindt cathode and electromagnetic confinement |
KR20140112270A (en) * | 2013-03-13 | 2014-09-23 | 삼성전자주식회사 | X-ray generator including heat sink block |
WO2015079393A1 (en) * | 2013-11-27 | 2015-06-04 | Nanox Imaging Plc | Electron emitting construct configured with ion bombardment resistant |
CN105374654B (en) * | 2014-08-25 | 2018-11-06 | 同方威视技术股份有限公司 | Electron source, x-ray source, the equipment for having used the x-ray source |
DE102014226814B4 (en) * | 2014-12-22 | 2023-05-11 | Siemens Healthcare Gmbh | metal beam x-ray tube |
US10835199B2 (en) | 2016-02-01 | 2020-11-17 | The University Of North Carolina At Chapel Hill | Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging |
US11810774B2 (en) | 2020-08-26 | 2023-11-07 | Government Of The United States As Represented By The Secretary Of The Air Force | Field emission devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089742A (en) * | 1990-09-28 | 1992-02-18 | The United States Of America As Represented By The Secretary Of The Navy | Electron beam source formed with biologically derived tubule materials |
US5138220A (en) * | 1990-12-05 | 1992-08-11 | Science Applications International Corporation | Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures |
US5449970A (en) * | 1992-03-16 | 1995-09-12 | Microelectronics And Computer Technology Corporation | Diode structure flat panel display |
US5495143A (en) * | 1993-08-12 | 1996-02-27 | Science Applications International Corporation | Gas discharge device having a field emitter array with microscopic emitter elements |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4110612A (en) * | 1977-04-27 | 1978-08-29 | General Electric Company | Mass spectrometer desorption device including field anode eutectic alloy wire and auxiliary electrical resistance heating means |
US5709577A (en) * | 1994-12-22 | 1998-01-20 | Lucent Technologies Inc. | Method of making field emission devices employing ultra-fine diamond particle emitters |
USRE38561E1 (en) * | 1995-02-22 | 2004-08-03 | Till Keesmann | Field emission cathode |
US5872422A (en) * | 1995-12-20 | 1999-02-16 | Advanced Technology Materials, Inc. | Carbon fiber-based field emission devices |
-
1994
- 1994-02-23 DE DE4405768A patent/DE4405768A1/en not_active Withdrawn
-
1995
- 1995-02-22 AT AT95910405T patent/ATE186422T1/en active
- 1995-02-22 DE DE59507196T patent/DE59507196D1/en not_active Expired - Lifetime
- 1995-02-22 EP EP95910405A patent/EP0801805B1/en not_active Expired - Lifetime
- 1995-02-22 US US08/702,684 patent/US5773921A/en not_active Ceased
- 1995-02-22 WO PCT/DE1995/000221 patent/WO1995023424A1/en active IP Right Grant
- 1995-02-22 US US09/504,635 patent/USRE38223E1/en not_active Expired - Lifetime
-
2003
- 2003-04-08 US US10/409,363 patent/US20040036402A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089742A (en) * | 1990-09-28 | 1992-02-18 | The United States Of America As Represented By The Secretary Of The Navy | Electron beam source formed with biologically derived tubule materials |
US5138220A (en) * | 1990-12-05 | 1992-08-11 | Science Applications International Corporation | Field emission cathode of bio-molecular or semiconductor-metal eutectic composite microstructures |
US5449970A (en) * | 1992-03-16 | 1995-09-12 | Microelectronics And Computer Technology Corporation | Diode structure flat panel display |
US5495143A (en) * | 1993-08-12 | 1996-02-27 | Science Applications International Corporation | Gas discharge device having a field emitter array with microscopic emitter elements |
Non-Patent Citations (13)
Title |
---|
Ajayan et al., Nature, 361:333-334, Jan. 1993.* * |
Ge et al., Vapor-Condensation Generation and STM Analysis of Fullerence Tubes, Science 260 (Apr. 23, 1993), pp 515-518.* * |
Heinrich, et al., Energy Distribution of Post-Accelerated Electrons Field-Emitted from Carbon Fibres, Applied Physics 12, pp 197-202 (1977, no month). * |
IBM Technical Disclosure Bulletin, 35:410-411, Dec. 1992.* * |
Iijima et al., Single-Shell Carbon Nanotubes of 1-nm diameter, Nature, 363 (Jun. 17, 1993), pp 603-605.* * |
Iijima, Growth of Carbon Nanotubes, Materials Science and Engineering, (1993), pp. 172-180.* * |
Iijima, Helical Microtubules of Graphite Carbon, Nature, 354 (Nov. 7, 1991), pp 56-58.* * |
Jose-Yacaman et al., Catalytic Growtth of Carbon Microtubules with Fullerene Structure, Applied Physics Letters, 62, No. 6 (Feb. 8, 1993) pp 657-659.* * |
Kirkpatrick et al., Applied Physics Latters, 60:1556-1558, Mar. 1992.* * |
Knife-Edge Thin Film Field Emission Cathodes on (110) Silicon Wafers, PP 644-647, by Elliott et al., Jul. 1993.* * |
Kosakovskaya et al., Nanofilament Carbon Structure, JETP Letters, 56 (Jul.-Dec. 1992), pp 26-30.* * |
Lin et al., Physics Review, 47:7546-7553, Mar. 1993.* * |
Saito et al., Materials Science and Engineering, B19:185-191, 1993. (no month).* * |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030002627A1 (en) * | 2000-09-28 | 2003-01-02 | Oxford Instruments, Inc. | Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter |
US20060274889A1 (en) * | 2000-10-06 | 2006-12-07 | University Of North Carolina At Chapel Hill | Method and apparatus for controlling electron beam current |
US20050281379A1 (en) * | 2000-10-06 | 2005-12-22 | Xintek, Inc. | Devices and methods for producing multiple x-ray beams from multiple locations |
US7359484B2 (en) | 2000-10-06 | 2008-04-15 | Xintek, Inc | Devices and methods for producing multiple x-ray beams from multiple locations |
US20020094064A1 (en) * | 2000-10-06 | 2002-07-18 | Zhou Otto Z. | Large-area individually addressable multi-beam x-ray system and method of forming same |
US7082182B2 (en) | 2000-10-06 | 2006-07-25 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US6876724B2 (en) | 2000-10-06 | 2005-04-05 | The University Of North Carolina - Chapel Hill | Large-area individually addressable multi-beam x-ray system and method of forming same |
US7227924B2 (en) | 2000-10-06 | 2007-06-05 | The University Of North Carolina At Chapel Hill | Computed tomography scanning system and method using a field emission x-ray source |
US20070009081A1 (en) * | 2000-10-06 | 2007-01-11 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US6980627B2 (en) | 2000-10-06 | 2005-12-27 | Xintek, Inc. | Devices and methods for producing multiple x-ray beams from multiple locations |
US20060008047A1 (en) * | 2000-10-06 | 2006-01-12 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US6850595B2 (en) * | 2000-10-06 | 2005-02-01 | The University Of North Carolina At Chapel Hill | X-ray generating mechanism using electron field emission cathode |
US20030142790A1 (en) * | 2000-10-06 | 2003-07-31 | Zhou Otto Z. | X-ray generating mechanism using electron field emission cathode |
US20040106220A1 (en) * | 2001-02-27 | 2004-06-03 | Merkulov Vladimir I. | Carbon tips with expanded bases |
US7109515B2 (en) * | 2001-02-27 | 2006-09-19 | Ut-Battelle Llc | Carbon containing tips with cylindrically symmetrical carbon containing expanded bases |
US20050064167A1 (en) * | 2003-09-12 | 2005-03-24 | Nano-Proprietary, Inc. | Carbon nanotubes |
US7125308B2 (en) | 2003-12-18 | 2006-10-24 | Nano-Proprietary, Inc. | Bead blast activation of carbon nanotube cathode |
US20050136788A1 (en) * | 2003-12-18 | 2005-06-23 | Nano-Proprietary, Inc. | Bead blast activation of carbon nanotube cathode |
US20060096950A1 (en) * | 2003-12-18 | 2006-05-11 | Nano-Proprietary, Inc. | Bead blast activation of carbon nanotube cathode |
US7736209B2 (en) | 2004-09-10 | 2010-06-15 | Applied Nanotech Holdings, Inc. | Enhanced electron field emission from carbon nanotubes without activation |
US20070278925A1 (en) * | 2004-09-10 | 2007-12-06 | Nano-Proprietary, Inc. | Enhanced electron field emission from carbon nanotubes without activation |
US20080012461A1 (en) * | 2004-11-09 | 2008-01-17 | Nano-Proprietary, Inc. | Carbon nanotube cold cathode |
US8155262B2 (en) | 2005-04-25 | 2012-04-10 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
US20070053489A1 (en) * | 2005-04-25 | 2007-03-08 | The University Of North Carolina At Chapel Hill | X-ray imaging systems and methods using temporal digital signal processing for reducing noise and for obtaining multiple images simultaneously |
US7245692B2 (en) | 2005-04-25 | 2007-07-17 | The University Of North Carolina At Chapel Hill | X-ray imaging systems and methods using temporal digital signal processing for reducing noise and for obtaining multiple images simultaneously |
US20100239064A1 (en) * | 2005-04-25 | 2010-09-23 | Unc-Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
US20080316711A1 (en) * | 2006-03-29 | 2008-12-25 | International Business Machines Corporation | Vlsi hot-spot minimization using nanotubes |
US9151550B2 (en) | 2006-03-29 | 2015-10-06 | International Business Machines Corporation | VLSI hot-spot minimization using nanotubes |
US20070227700A1 (en) * | 2006-03-29 | 2007-10-04 | Dimitrakopoulos Christos D | VLSI chip hot-spot minimization using nanotubes |
US7842554B2 (en) | 2006-03-29 | 2010-11-30 | International Business Machines Corporation | VLSI hot-spot minimization using nanotubes |
US7796999B1 (en) | 2006-04-03 | 2010-09-14 | Sprint Spectrum L.P. | Method and system for network-directed media buffer-size setting based on device features |
CN101051596B (en) * | 2006-04-07 | 2010-09-29 | 清华大学 | Carbon nano tube field transmitting electronic source and its producing method |
US8189893B2 (en) | 2006-05-19 | 2012-05-29 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer program products for binary multiplexing x-ray radiography |
US20080220181A1 (en) * | 2006-08-25 | 2008-09-11 | Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine | Method of loading a nanotube structure and loaded nanotube structure |
US20090022264A1 (en) * | 2007-07-19 | 2009-01-22 | Zhou Otto Z | Stationary x-ray digital breast tomosynthesis systems and related methods |
US7751528B2 (en) | 2007-07-19 | 2010-07-06 | The University Of North Carolina | Stationary x-ray digital breast tomosynthesis systems and related methods |
US8063483B2 (en) | 2007-10-18 | 2011-11-22 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US20090102046A1 (en) * | 2007-10-18 | 2009-04-23 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US20100329413A1 (en) * | 2009-01-16 | 2010-12-30 | Zhou Otto Z | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8600003B2 (en) | 2009-01-16 | 2013-12-03 | The University Of North Carolina At Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8995608B2 (en) | 2009-01-16 | 2015-03-31 | The University Of North Carolina At Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8358739B2 (en) | 2010-09-03 | 2013-01-22 | The University Of North Carolina At Chapel Hill | Systems and methods for temporal multiplexing X-ray imaging |
US8866068B2 (en) | 2012-12-27 | 2014-10-21 | Schlumberger Technology Corporation | Ion source with cathode having an array of nano-sized projections |
US9782136B2 (en) | 2014-06-17 | 2017-10-10 | The University Of North Carolina At Chapel Hill | Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging |
US9907520B2 (en) | 2014-06-17 | 2018-03-06 | The University Of North Carolina At Chapel Hill | Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging |
US10980494B2 (en) | 2014-10-20 | 2021-04-20 | The University Of North Carolina At Chapel Hill | Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging |
US9916960B2 (en) | 2014-12-22 | 2018-03-13 | Siemens Aktiengesellschaft | Device for producing an electron beam |
US11231651B2 (en) | 2017-04-13 | 2022-01-25 | SCREEN Holdings Co., Ltd. | Peripheral processing apparatus and peripheral processing method |
US11778717B2 (en) | 2020-06-30 | 2023-10-03 | VEC Imaging GmbH & Co. KG | X-ray source with multiple grids |
Also Published As
Publication number | Publication date |
---|---|
EP0801805A1 (en) | 1997-10-22 |
EP0801805B1 (en) | 1999-11-03 |
US5773921A (en) | 1998-06-30 |
DE4405768A1 (en) | 1995-08-24 |
US20040036402A1 (en) | 2004-02-26 |
WO1995023424A1 (en) | 1995-08-31 |
DE59507196D1 (en) | 1999-12-09 |
ATE186422T1 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE38223E1 (en) | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge | |
USRE38561E1 (en) | Field emission cathode | |
Chernozatonskii et al. | Electron field emission from nanofilament carbon films | |
US6057637A (en) | Field emission electron source | |
Zhu et al. | Large current density from carbon nanotube field emitters | |
US6858521B2 (en) | Method for fabricating spaced-apart nanostructures | |
KR100615103B1 (en) | Nanotubes, field emission cathode and cathode ray tube having nanotubes and method for forming them | |
KR100504971B1 (en) | Electron emissive film and method | |
EP0745265B1 (en) | Diamond or diamond-like or glassy carbon fiber field emitter | |
US6283812B1 (en) | Process for fabricating article comprising aligned truncated carbon nanotubes | |
US7521851B2 (en) | Electron emitting composite based on regulated nano-structures and a cold electron source using the composite | |
US6504292B1 (en) | Field emitting device comprising metallized nanostructures and method for making the same | |
US6087765A (en) | Electron emissive film | |
US7465210B2 (en) | Method of fabricating carbide and nitride nano electron emitters | |
US8604681B2 (en) | Cold cathodes and ion thrusters and methods of making and using same | |
KR19990043770A (en) | Method for manufacturing field emission device using carbon nanotube | |
Thong et al. | Field-emission induced growth of nanowires | |
JP2000208029A (en) | Electron emitting material, electron emitting element and its manufacture | |
US8766522B1 (en) | Carbon nanotube fiber cathode | |
US6441550B1 (en) | Carbon-based field emission electron device for high current density applications | |
EP1623443B1 (en) | A cathode for an electron source | |
Merkulov et al. | Field emission properties of different forms of carbon | |
KR100668332B1 (en) | Fabrication method of device comprising carbide and nitride nano electron emitters | |
US20040026232A1 (en) | Method and apparatus for producing nanostructures | |
Read et al. | Carbon nanotube-based cathodes for microwave tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KEESMANN, TILL, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROSSE-WILDE, HUBERT;REEL/FRAME:010993/0003 Effective date: 20000720 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: NANO-PROPRIETARY, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SI DIAMOND TECHNOLOGY, INC.;REEL/FRAME:021117/0020 Effective date: 20030617 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |