CN101051566A - 超级电容器用炭气凝胶电极材料的常压快速制备方法 - Google Patents

超级电容器用炭气凝胶电极材料的常压快速制备方法 Download PDF

Info

Publication number
CN101051566A
CN101051566A CNA200710022251XA CN200710022251A CN101051566A CN 101051566 A CN101051566 A CN 101051566A CN A200710022251X A CNA200710022251X A CN A200710022251XA CN 200710022251 A CN200710022251 A CN 200710022251A CN 101051566 A CN101051566 A CN 101051566A
Authority
CN
China
Prior art keywords
resorcinol
electrode material
additive
polyacid
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200710022251XA
Other languages
English (en)
Other versions
CN100565736C (zh
Inventor
李学良
韩昌隆
史成武
苏涛
陈祥迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Hefei Polytechnic University
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CNB200710022251XA priority Critical patent/CN100565736C/zh
Publication of CN101051566A publication Critical patent/CN101051566A/zh
Application granted granted Critical
Publication of CN100565736C publication Critical patent/CN100565736C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

超级电容器用炭气凝胶电极材料的常压快速制备方法,其特征是以间苯二酚和甲醛为反应物,以脂肪族多元酸或脂肪族多元酸的羟基或氨基取代衍生物或上述物质的混合物为添加剂,经凝胶过程制得RF水凝胶,再在氨气或氮气作用下常压干燥和炭化,获得超电容器电极材料炭气凝胶。本发明方法降低了炭气凝胶制备的后处理要求和条件,免除溶剂置换步骤和超临界干燥,缩短凝胶时间,从根本上简化制备过程和制备方法,实现炭气凝胶的快速高效制备,获得高性能的电极材料。

Description

超级电容器用炭气凝胶电极材料的常压快速制备方法
                                技术领域
本发明涉及超级电容器电极材料的制备方法,更具体地说是炭气凝胶超级电容电极材料的制备方法。
                                发明背景
超级电容器是一种新型的功率型电子元器件。它克服了普通电容器比能量低的缺点,同时也克服了电池比功率低、不能大电流放电的缺点,安全可靠、适用范围宽,并且绿色环保、不产生污染,是一种很有发展前景的电子元器件。近年来,超级电容器发展迅速,在信息技术、电动汽车、航空航天和国防科技等多个领域具有极其重要和广阔的应用前景。
电极材料为超级电容器的关键。电极材料的比电容大小决定了超级电容器的性能。炭气凝胶是一种优良的电极材料,具有发达的中孔结构,高的比表面积,以及良好的导电能力。
目前制备炭气凝胶主要采用有机溶剂置换和超临界干燥的方法,申请号为01126015.7、01126016.5、200610116392.3的三个专利文献中所记载的技术方案都是使用有机溶剂置换湿凝胶中的水,并且使用超临界干燥。但是,超临界干燥所需的条件苛刻,对设备要求高,大大增加制备的困难。同时在超临界处理之前,还要进行长时间的溶剂置换过程,使得制备过程复杂,周期长。
申请号为03139852.9、200410027355.6的两个专利文献对炭气凝胶的制备方法做了改进,前者使用了六次甲基四胺为添加剂,后者使用十六烷基三甲基溴化铵、十二烷基磺酸钠或四丁基溴化铵为添加剂,免去了溶剂交换,实现了常压干燥。但是,形成凝胶的时间长,干燥时间也长。
超级电容器电极材料对炭气凝胶具有特殊要求,上述文献中并没有针对超级电容器的研究,更没有给出作为超级电容器重要参数的比电容的数值。
                                发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种超级电容器用炭气凝胶电极材料的常压快速制备方法,以炭气凝胶高的比电容为导向,从前期的聚合反应过程入手,对制备路线进行改进,通过选用新的添加剂,获得合适的前聚体,降低炭气凝胶制备的后处理所需要求和特殊条件,制备中免除溶剂置换步骤和超临界干燥,缩短凝胶时间,从根本上简化制备过程和制备方法,实现炭气凝胶的快速高效制备,获得高性能的电极材料。
本发明解决技术问题所采用的技术方案是:
本发明超级电容器用炭气凝胶电极材料的常压快速制备方法的特征是以间苯二酚和甲醛为反应物,以脂肪族多元酸或脂肪族多元酸的羟基或氨基取代衍生物或上述物质的混合物为添加剂,经凝胶过程制得RF水凝胶,再在氨气或氮气作用下常压干燥和炭化,获得超电容器电极材料炭气凝胶,其中:
间苯二酚(R)与甲醛(F)的摩尔比R/F为0.3~1.2、
间苯二酚(R)与添加剂(C)的摩尔比R/C为0.2~1300、
间苯二酚与加入的去离子水的质量比为0.05~0.4。
本发明制备方法的特点也在于按如下步骤操作:
a、间苯二酚溶于去离子水,然后加入添加剂,再加入甲醛溶液,混合均匀,置于密封反应器中经凝胶过程制得RF水凝胶,所述凝胶过程中温度为40℃至100℃、时间为0.5小时~150小时;
b、在氨气或氮气作用下,采用常压干燥和炭化,获得超电容器电极材料炭气凝胶;所述常压下的干燥与炭化温度为600℃~1200℃,时间为0.5小时~3小时。
本发明制备方法的特点还在于所使用的添加剂为:
烷基脂肪族多元酸,其碳原子数为2~10;
或含羟基脂肪族多元酸,其碳原子数为2~10;
或含氨基脂肪族多元酸,其碳原子数为2~10。
本发明方法中所使用的间苯二酚为工业级纯度,甲醛溶液浓度为37~40wt%,
与已有技术相比,本发明方法的有益效果体现在:
1、本发明方法通过对前期反应中添加剂适当的选择,获得网络互连结构的前聚体,并在后续炭化过程产生了超级电容器所需的合适孔径分布的多孔结构,保证了高比电容炭气凝胶的形成。
2、本发明通过适当的添加剂的使用,缩短了凝胶时间,缩短了制备周期,实现了炭气凝胶的快速简单制备。
3、本发明通过适当的添加剂的使用,省去了超临界干燥和溶剂交换处理步骤,从根本上简化处理过程,降低了成本。
4、本发明方法将干燥与炭化两步合二为一,简化了操作步骤。
5、本发明方法所获得的炭气凝胶压实密度大,并且比电容高,可达417F/g。
以下通过具体实施方式,对本发明作进一步描述:
                                附图说明
图1为以本发明所制备的放大倍数为10000倍的炭气凝胶结构场效应扫描电镜(FESEM)图。
图2为以本发明所制备的放大倍数为200000倍的炭气凝胶结构场效应扫描电镜图。
                                具体实施方式
以下各实施例中,间苯二酚的纯度为99.5wt%,甲醛溶液浓度为37wt%。
实施例1:
按照间苯二酚与甲醛的摩尔比R/F为0.5、间苯二酚与作为添加剂的乳酸的摩尔比R/C为0.2、间苯二酚与去离子水的质量比为0.2进行配比,取间苯二酚溶于去离子水,然后加入添加剂乳酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为90℃,0.5小时完成凝胶化过程,成为水凝胶。在氨气作用下,升温至850℃,恒温1.5小时,完成炭气凝胶的制备。
制备的炭气凝胶的形貌如图1、图2所示。图1为放大倍数为10000倍的炭气凝胶结构场效应扫描电镜(FESEM)图,从中看出分布均匀的互连的微球和大量孔洞,提供了供电解液进出的通道。图2为放大倍数为200000倍的炭气凝胶结构场效应扫描电镜图,从图中可以看出分布均匀的颗粒与丰富孔隙。更进一步的孔结构是由所提供的比表面积和电化学电容数值说明。
经测,所制备的炭气凝胶的压实密度为0.39g/cm3,90%的孔在6nm以下,平均孔径为3.1nm,比表面积为795m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为208F/g,2mv/s扫描速度的循环伏安测试比电容为304F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为330F/g。
实施例2:
按照间苯二酚与甲醛的摩尔比R/F为0.5,间苯二酚与作为添加剂的丙二酸的摩尔比R/C为10,间苯二酚与去离子水的质量比为0.2的配比,取间苯二酚溶于去离子水,然后加入添加剂丙二酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为90℃,3小时完成凝胶化过程,成为水凝胶。在氨气作用下,升温至900℃,恒温1.5小时。
经测,制备的炭气凝胶的压实密度为0.51g/cm3,90%的孔在5nm以下,平均孔径为2.5nm,比表面积为971m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为246F/g,2mv/s扫描速度的循环伏安测试比电容为406F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为417F/g。
实施例3:
按照间苯二酚与甲醛的摩尔比R/F为0.3,间苯二酚与作为添加剂的枸橼酸哌嗪的质量比R/C为400,间苯二酚与去离子水的质量比为0.2的配比,取间苯二酚溶于去离子水,然后加入添加剂枸橼酸哌嗪,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为85℃,4小时完成凝胶化过程,成为水凝胶。在氨气作用下,升温至1100℃,恒温1小时。
经测,制备的炭气凝胶的压实密度为0.35g/cm3,比表面积为767m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为196F/g,2mv/s扫描速度的循环伏安测试比电容为295F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为314F/g。
实施例4:
按照间苯二酚与甲醛的摩尔比R/F为0.5,间苯二酚与添加剂(丁二酸与氨基丁二酸的混合物,丁二酸与氨基丁二酸的摩尔比为1∶1)的摩尔比R/C为50,间苯二酚与去离子水的质量比为0.2的配比,取间苯二酚溶于去离子水,然后加入添加剂,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为85℃,10小时完成凝胶化过程,成为水凝胶。在氨气作用下,升温至900℃,恒温1.5小时。
经测,制备的炭气凝胶的压实密度为0.80g/cm3,比表面积为790m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为216F/g,2mv/s扫描速度的循环伏安测试比电容为308F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为321F/g。
实施例5:
按照间苯二酚与甲醛的摩尔比R/F为1.2,间苯二酚与作为添加剂的酒石酸的摩尔比R/C为50,间苯二酚与去离子水的质量比为0.05的配比,取间苯二酚溶于去离子水,然后加入添加剂酒石酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为80℃,17小时完成凝胶化过程,成为水凝胶。在氨气作用下,升温至900℃,恒温1小时。
制备的炭气凝胶的压实密度为0.57g/cm3,比表面积为728m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为173F/g,2mv/s扫描速度的循环伏安测试比电容为241F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为260F/g。
实施例6:
按照间苯二酚与甲醛的摩尔比R/F为0.5,间苯二酚与作为添加剂的柠檬酸的摩尔比R/C为1300,间苯二酚与去离子水的质量比为0.4的配比,取间苯二酚溶于去离子水,然后加入添加剂柠檬酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为70℃,47小时完成凝胶化过程,成为水凝胶。在氮气气氛下,升温至1000℃,恒温1小时。
经测,制备的炭气凝胶的压实密度为0.38g/cm3,比表面积为780m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为195F/g,2mv/s扫描速度的循环伏安测试比电容为293F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为310F/g。
实施例7:
按照间苯二酚与甲醛的摩尔比R/F为0.8,间苯二酚与作为添加剂的苹果酸的摩尔比R/C为150,间苯二酚与去离子水的质量比为0.3的配比,取间苯二酚溶于去离子水,然后加入添加剂苹果酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为75℃,24小时完成凝胶化过程,成为水凝胶。在氮气气氛下,升温至900℃,恒温1.5小时。
经测,制备的炭气凝胶的压实密度为0.47g/cm3,比表面积为779m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为203F/g,2mv/s扫描速度的循环伏安测试比电容为291F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为305F/g。
实施例8:
按照间苯二酚与甲醛的摩尔比R/F为0.5,间苯二酚与作为添加剂的乙醇酸的摩尔比R/C为70,间苯二酚与去离子水的质量比为0.2的配比,取间苯二酚溶于去离子水,然后加入添加剂乙醇酸,再加入甲醛溶液,混合均匀。置于密封反应器中,恒定温度为75℃,5小时完成凝胶化过程,成为水凝胶。在氮气气氛下,升温至1100℃,恒温1小时。
经测,制备的炭气凝胶的压实密度为0.53g/cm3,90%的孔在6nm以下,平均孔径为2.9nm,比表面积为850m2/g,在1mol/L的H2SO4电解液中,50mv/s扫描速度的循环伏安测试比电容为194F/g,2mv/s扫描速度的循环伏安测试比电容为326F/g。在1mol/L的KOH电解液中,2mv/s扫描速度的循环伏安测试比电容为346F/g。

Claims (3)

1、超级电容器用炭气凝胶电极材料的常压快速制备方法,其特征是以间苯二酚和甲醛为反应物,以脂肪族多元酸或脂肪族多元酸的羟基或氨基取代衍生物或上述物质的混合物为添加剂,经凝胶过程制得RF水凝胶,再在氨气或氮气作用下常压干燥和炭化,获得超电容器电极材料炭气凝胶,其中:
间苯二酚(R)与甲醛(F)的摩尔比R/F为0.3~1.2、
间苯二酚(R)与添加剂(C)的摩尔比R/C为0.2~1300、
间苯二酚与加入的去离子水的质量比为0.05~0.4。
2、根据权利要求1所述的超级电容器用炭气凝胶电极材料的常压快速制备方法,其特征是按如下步骤操作:
a、间苯二酚溶于去离子水,然后加入添加剂,再加入甲醛溶液,混合均匀,置于密封反应器中经凝胶过程制得RF水凝胶,所述凝胶过程中温度为40℃至100℃、时间为0.5小时~150小时;
b、在氨气或氮气作用下,采用常压干燥和炭化,获得超电容器电极材料炭气凝胶;所述常压下的干燥与炭化温度为600℃~1200℃,时间为0.5小时~3小时。
3、根据权利要求1所述的超级电容器用炭气凝胶电极材料的常压快速制备方法,其特征是所使用的添加剂为:
烷基脂肪族多元酸,其碳原子数为2~10;
或含羟基脂肪族多元酸,其碳原子数为2~10;
或含氨基脂肪族多元酸,其碳原子数为2~10。
CNB200710022251XA 2007-05-11 2007-05-11 超级电容器用炭气凝胶电极材料的常压快速制备方法 Expired - Fee Related CN100565736C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200710022251XA CN100565736C (zh) 2007-05-11 2007-05-11 超级电容器用炭气凝胶电极材料的常压快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200710022251XA CN100565736C (zh) 2007-05-11 2007-05-11 超级电容器用炭气凝胶电极材料的常压快速制备方法

Publications (2)

Publication Number Publication Date
CN101051566A true CN101051566A (zh) 2007-10-10
CN100565736C CN100565736C (zh) 2009-12-02

Family

ID=38782891

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200710022251XA Expired - Fee Related CN100565736C (zh) 2007-05-11 2007-05-11 超级电容器用炭气凝胶电极材料的常压快速制备方法

Country Status (1)

Country Link
CN (1) CN100565736C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723352B (zh) * 2009-11-20 2011-09-28 上海奥威科技开发有限公司 高比容量有机混合型超级电容器负极材料及其制备方法
CN102709017A (zh) * 2012-06-11 2012-10-03 合肥工业大学 一种炭气凝胶基球状耐腐蚀磁性材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723352B (zh) * 2009-11-20 2011-09-28 上海奥威科技开发有限公司 高比容量有机混合型超级电容器负极材料及其制备方法
CN102709017A (zh) * 2012-06-11 2012-10-03 合肥工业大学 一种炭气凝胶基球状耐腐蚀磁性材料的制备方法
CN102709017B (zh) * 2012-06-11 2015-07-01 合肥工业大学 一种炭气凝胶基球状耐腐蚀磁性材料的制备方法

Also Published As

Publication number Publication date
CN100565736C (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
CN109485029B (zh) 一种木质素多孔碳纳米片及其制备方法和在超级电容器电极材料中的应用
Liu et al. Interfacial‐Catalysis‐Enabled Layered and Inorganic‐Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium‐Ion Batteries
Feng et al. Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials
Li et al. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor
CN110015660B (zh) 一种银掺杂木质素多孔碳纳米片及其制备方法和在超级电容器电极材料中的应用
Chang et al. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes
CN107804833B (zh) 一种三维网状氮磷硫共掺杂多孔碳材料及制备方法与用途
CN111320172B (zh) 一种含微孔-介孔孔道的生物质活性炭基电极材料的定向合成方法及其应用
CN105111507A (zh) 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
CN103680995A (zh) 用于超级电容器的介孔碳/RuO2复合材料及制备方法
CN113517143B (zh) 一种复合电极材料及其制备方法与用途
Liu et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors
Wu et al. Self-assembly of biomass-based hybrid hydrogel electrode for an additive-free flexible supercapacitor
CN107331537A (zh) 一种三维石墨烯/石墨相碳化氮的制备方法及应用
CN102616766A (zh) 一种高比电容含杂原子有序中孔炭的制备方法
CN1778675A (zh) 一种双电层电容器电极用的活性碳材料的制备方法
Yang et al. Renewable lignin and its macromolecule derivatives: an emerging platform toward sustainable electrochemical energy storage
Zhou et al. Cross-linking and self-assembly synthesis of tannin-based carbon frameworks cathode for Zn-ion hybrid supercapacitors
Li et al. Nitrogen/sulfur-codoped carbon materials from chitosan for supercapacitors
Liu et al. Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage
CN101051566A (zh) 超级电容器用炭气凝胶电极材料的常压快速制备方法
CN113403629A (zh) 一种电解水制氢系统用催化剂及其制备方法
Song et al. The influence of formaldehyde/phenol molar ratio on microstructure of B-OMCs
CN110867325A (zh) 一种富氮氧硫共掺杂微介孔互通碳微球及制备方法与应用
CN111430153A (zh) 一种用于全固态超级电容器的碳纳米气凝胶材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20180511

CF01 Termination of patent right due to non-payment of annual fee