CN1010331B - 具有冷却剂通道和全覆盖薄膜冷却槽的翼片 - Google Patents
具有冷却剂通道和全覆盖薄膜冷却槽的翼片Info
- Publication number
- CN1010331B CN1010331B CN86108818A CN86108818A CN1010331B CN 1010331 B CN1010331 B CN 1010331B CN 86108818 A CN86108818 A CN 86108818A CN 86108818 A CN86108818 A CN 86108818A CN 1010331 B CN1010331 B CN 1010331B
- Authority
- CN
- China
- Prior art keywords
- mentioned
- fin
- passage
- wall
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 22
- 238000001816 cooling Methods 0.000 title claims description 47
- 239000012530 fluid Substances 0.000 claims abstract description 5
- 230000008676 import Effects 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 14
- 239000000659 freezing mixture Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 239000012809 cooling fluid Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
- B23H9/10—Working turbine blades or nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
中空翼片的壁,外表面内有纵向延伸的槽,在槽底部。被纵向延伸的一排冷却通道相交,各通道内端有调节部分,和翼片内腔室连通。各通道有一对是调节部分下游的壁面,沿纵向相互扩张,和槽底部相交,形威通道出口,相邻通道扩张的壁,实质上相交于横底部,从通道调节部分来的冷却剂,向前面流动时沿纵向漫射,并进入槽内,注满整个槽,同时在槽下游和沿整个槽长度,形成薄的、连续的冷却剂薄膜,覆盖翼片外表面。
Description
本发明涉及薄膜冷却,尤其是涉及薄膜冷却翼片。
大家已经熟悉,翼片的外表面可被冷却,借助于导引的冷却空气,从内部腔室经过许多小通道,引导至外表面。所盼望的是,空气吹出通道,使在通道的尽可能的长度距离内的下游内,仍保持拖带于在翼片外表面上的附面层内,在热的主流气体和翼片表面之间,提供冷却空气保护膜。通道的轴线和翼片表面形成的角度,以及它对流过翼片表面通道涌出口热气流的方向的关系都是重要因素,影响气膜冷却的效率。气膜冷却的效率,被定义为主气流温度(Tg)和位于通道出口的下游气流其距离为X的冷却薄膜的温度(Tf)的差值,除于主气流温度和在通道出口处(即位于X=0)冷却空气温度(Te)差值,则E=(Tg-Tf)/(Tg-Te)。气膜冷却的效率,随着从通道出口处的距离X迅速减小。在尽可能长的距离并覆盖尽可能大的表面区域,同时维持高的薄膜冷却效率,是翼片气膜冷却的主要目标。
已为众所周知的技术中,发动机的翼片必须使用最小量的冷却空气来冷却,这是由于冷却空气是
从压缩机抽取的工作流体,同时气体流动通路的损失迅速地降低发动机的效率。翼片的设计人员都面临着使用特定的、最大的冷却流体流动速度,来冷却全部发动机翼片的问题。从内腔流经各个分别的冷却通道,进入气体通路的流量,借助冷却通道的最小横切面区域(调节区域)而加于控制。调节区域典型地位于通道与内空腔相交处。全部冷却通道的总的调节区域,和由翼片引出的喷气口,控制来自翼片冷却气体的流速,假定的内部的和外部的压力范围都预先确定的,而且通常是设计人员不能加予控制的。设计人员的任务是规定通道的尺寸和通道之间的间隔,同时包括通道的形状和向位,这样来使翼片全部区域保持低于临界的设计温度,该温度限制决定于翼片材料的性能、最大应力值和适宜的寿命要求。
最理想是希望翼片表面百分之百地浸入冷却空气薄膜内;然而,离开通道出口的空气通常是形成一个冷却薄膜带,不宽于或难宽于垂直于气流的通道出口的大小。冷却通道的数目、大小和间隔的限制,结果在保护薄膜中形成空隙,和/或低薄膜冷却效率的区域,这会出现局部性的热点。翼片热点是限制发动机运行温度的一个因素。
霍华德的美国专利3,527,543号采用了将圆形剖面的通道变成扩张的锥形,来增加从一给定通道的冷却空气拖带于附面层内。通道也最好是定向在沿纵向方向延伸的平面上,或者偏的朝向气体流动方向,从通道当它吹向下游时,依据其出口纵向地吹散冷却空气。任凭有这些特点,由烟流可视觉的试验已确定,以及发动机附件的检测,都说明从椭圆形的通道的发生(即霍华德那种),冷却空气在翼片表面被排出后,冷却气体薄膜其纵向的宽度连续按纵向扩大,它也只是大约是通道最大的短径。这事实上,结合通道之间是三至六个直径典型的纵向间隔,导致翼片表面纵向间隔开通道之间和下游的区域,未收到从上述通道排列吹出的冷却流体。锥形的、有角度的通道,如霍华德3,527,543号专利所介绍者,提供最好的而不超过70%的覆盖率(即相邻涌出孔的被冷却空气所覆盖的中心之间距离所占的百分比)。
离开冷却通道空气的速度依赖于它在通道进口的压力与在通道出口流出气体的压力之比率。通常,压力比率越大,流出速度越大。流出速度太大,致使冷却空气穿透燃气流和被带跑,而无提供薄膜冷却的作用。太低的压力比率,将致使燃气流吸入至冷却通道,造成局部翼片完全失去冷却保护。翼片冷却总损失,通常会有灾难性结果,鉴于此安全系数通常被保留。事关安全系数的特大压力,驱使设计方向朝着更高的压力比率。高压力比率的公差是薄膜冷却设计时所希求的性能。依靠通道的偏置,冷却气流漫射,正如上述讨论过的霍华德的专利中,提供这压力比率公差是有益的,但其中谈到的狭窄漫射角(最大包括12°的角度)要求有长的通道,因而,厚的翼片壁得到流出速度降低,常常被认为是最理想的,以降低薄膜冷却的设计相对于压力比率的灵敏度。相同的限制也存在于相关的梯形漫射通道,被介绍于西登斯蒂美国专利4,197,443号中。谈及在两个互相垂直的平面包含的最大漫射角度分别为7°和14°,以保证从斜壁流出的冷却流体的分离不会发生,并且冷却流体当它流出进入热的燃气流时,它整体地充满通道。漫射角度的这种限制,只有更厚的翼片壁和按翼片展向的方向通道转个角度,才可以产生更宽的通道出口和按纵向方向通道之间更小的间隙。最好是采用宽的漫射角度,但是采用现有技术不能作到。
日本专利55-114806所示,其图2和图3(在此再现于现有技术图9和图10),中空的翼片有圆柱形通道,以纵排按置并流入一个纵向伸展的、在翼片外表面形成的槽内。虽然专利发表指出,从相邻通道冷却流体的流动,混合形成厚度均匀的冷却流体薄膜,在冷却流体流出槽和到达翼片表面时,覆盖着槽的全长,我们的实验经验标明,从圆柱形通道来的冷却剂流体,移向下游时,好似一基本上宽度不变的带子,它实质上就是通道的宽度。任何漫射,它沿着远至整个下游部分促使造成相邻的冷却剂流体带出现混合时,就这一点看来薄膜冷却效率肯定低于大多数翼片设计的要求。
比尔等人的美国专利3,515,499号专利描述了由一叠蚀刻薄板制成的翼片。做成的翼片包含一些区域,有许多纵向间隔开的通道,从内空腔引导至公共的、纵向延伸的槽,从该槽上述冷却空气流出形成冷却空气薄膜,覆盖翼片的外表面。图1中各个通道显然是从进口收敛到一个最小横切面区域,在那儿与槽相交。相反在图9的另一实施例
中,通道是小的、尺寸不变的,其出口进入至相当地更宽的槽内。这两种结构相似地有相同的缩回现象,这在上述日本专利中单独讨论过;这意味着冷却流体进入主气流前,不能均匀地注满槽内,并且相似地在槽的下游薄膜覆盖率相当大地小于100%。
其他涉及翼片外表面薄膜冷却的出版物有:美国专利2,149,510号;2,220,420号;2,489,683号;《飞行和飞机发动机》2460号,69卷,56年3月16日,292-295页,全都显示了纵向地延伸槽的使用,用于冷却翼片前缘,或者压缩和吸气侧的叶片表面。在那里显示的槽,完全穿透叶片壁地伸展,直接地连通至内空腔。从结构强度观点来看,这种是不适宜的,并且它们要求非常大的流速。
美国专利4,303,374号中显示了一种结构,用于冷却暴露的叶片后缘的背表面。该结构包括许多在后缘内纵向间隔隔开、扩大的通道。相邻通道在它们出口的端部相交,以形成连续的冷却空气薄膜,覆盖着背表面。
一些出版物中,由欧文和哈特尼特编辑的、1971年在纽约学会出版社出版的“热交换的进展”第七卷中,在321-379页包括了理查德·J·戈尔茨坦题为“薄膜冷却”的专题论文,它提供了关于薄膜冷却技术的评述。该评述介绍了完整穿透被冷却壁而伸展的不同形状的加长槽,也有穿透壁的圆形横切面的通道。
本发明的目的在于提供一种改进的具有冷却通道和全覆盖薄膜冷却槽的翼片,它的薄膜冷却结构能够形成纵向延伸的冷却剂连续薄膜覆盖翼片的外表面,并能减少个别的冷却剂通道堵塞的可能性。
依照本发明,中空翼片的壁在其外表面有纵向延伸的槽,和纵向排列的一组冷却剂通道,穿过每一个通道,在其内端有调节部分,而在其外端有漫射部分,漫射部分壁表面朝着翼片出口表面、按着纵向方向扩展,相邻通道的扩展壁面,实质上在低于翼片外表面的槽的根部处,相互会合,借助这样的通道,冷却剂流进和注满槽内,冷却剂离开槽时,作为连续的纵向延伸薄膜,覆盖槽下游的翼片外表面。
通道和槽的表面都转个角度,来导引冷却剂,沿下游方向的速度分量,以及相对外表面是小的角度,这样在离开槽时,冷却剂保留附着在翼片的外表面,好似附面层内一薄膜。借助沿纵向扩大的冷却剂通道,并借助将通道在一纵向排列安置的足够紧凑,致使相邻通道出口之间只有小的或者无间隔,在那里它们和槽的底部相交,这样造成冷却剂在进入热的气流之前,进一步漫射于和完全地充满纵向延伸的槽内。以这种结构,小量的冷却剂可以被散开,好似一张连续的薄片,基本上覆盖全部纵向延伸的翼片。
本发明进一步优点是,气路中的有机物残渣,很可能会堵塞经过个别的冷却剂通道的流动。如果冷却剂通道开通于翼片的外表面,好似一个小的、分开的出口,那么有机物残渣会在那出口处沉积,堵塞通道。采用本发明,有机物残渣很可能沉积于槽的侧壁之间,而不会堵塞个别的通道出口(即冷却剂可从通道绕开残渣流动)。
本发明前面已提到的和其他的目的、性能和优点,将在下面伴有附图说明的实例的详尽描述中,显示得更为清楚。
附图说明:
图1具有本发明特点的汽轮机叶片局部剖开的正视图;
图2沿图1剖线2-2剖开的剖视图;
图3图2中3-3部位的放大图;
图4沿图3剖线4-4剖开的剖视图;
图5沿图3中5-5视向的左视图;
图6图1中6-6部位的放大图;
图7与图4相似的本发明另一实例剖视图;
图8可用于制造本发明的冷却剂通道和流出槽的电极的示意立体图;
图9和图10现有技术日本专利55-114806号中图2和图3的复制图:
作为本发明的一实施例,考虑图1中汽轮机叶片,以参考标号10表示。参照图1和图2,叶片10包括中空的翼片12,它沿从根部14开始展向的或纵向的方向伸展,它与根部14是一个整体。一个平台16被安置在翼片12的底部。翼片12包括壁18,它有外表面20和内表面22。内表面22限定了一个纵向伸展的内腔,它被分为几个相邻的纵向伸展的内腔室24、26、28,由纵向伸展的翼肋30、32分开。根部14内的通道34和腔室24连通;而根部14内的通道36和两个腔室26和28
连通。当翼片10在其预计环境下使用时,例如作为汽轮发动机涡轮部分时,冷却剂从适当的来源,例如压缩机流出的空气,提供进入通道34、36,使腔室24、26和28加压。
通过图中箭头40表示热的燃气流动方向(即气流线)覆盖着翼片。为了本发明描述的目的,热燃气流过翼片加压一侧或者抽吸一侧的翼片表面时的流动方向,被认为是按着朝下游的方向。这样,在加压或者抽吸一侧的翼片表面的任一点,朝下游的方向在该点是相切于翼片的;同时,除了也许靠近翼片顶尖或翼片底接近平台处有典型的流动发生外,下流方向基本上是垂直于翼片展开的方向。
依照本发明,腔室24、26、28内的加压冷却剂,经通道穿过壁18流出翼片,例如通道41,或者经流出槽42,它由通道44供气,通道44将在后面更详细地叙述。在典型的汽轮机叶片的翼片上,可以有许多排的通道,例如通道41,将位于翼片加压和抽吸侧两面,同时也有位于翼片前缘的附近。为了清楚和简化的目的,在图中只表示少量几排通道。这样,图中的翼片仅仅便于解释,而非受限仅仅是如此。
参考图1至图6,依据本发明在翼片外表面20内的纵向伸展的流出槽,包括有一个壁面48,间隔分离和面对一个壁面50,壁面48、50和流出槽的底部52连接。两个壁面48和50,基本上平行于纵向方向。往后,壁面48、50分别称为前壁面和后壁面48、50,这是据于他们相对下游方向40的位置。那是,为使用的目的,壁面50是壁面48的下游,而因此认为它是后壁面。前壁面48相交外表面20,形成了流出槽42的上游边缘54;同时后壁面50相交外表面20,形成流出槽42的下游边缘56。两个壁面48和壁面50最好和表面20相交成小于45°的小角度。
通道44基本上沿槽42的长度的纵向方向排列。每个通道44在其内端有调节部分58,而在其外端有漫射部分60,是串连流通的。在本实例中,调节部分58是直的,并且对应于通道44的中心轴线62有不变的一般长方形横截面的调节空间,其轴线正好穿过调节空间的几何中心。调节部分58相交内壁22,限定了通道的进口64。调节部分的出口66和漫射部分60进口相吻合。
最好可在图4中看到,漫射部分60包括一对间隔开的、相面对的端壁平面68、70,他们从调节部分的出口66至槽的底部52,按纵向方向是扩张的,槽的底部52是由这两平面相交形成。
再参阅图3,每个通道44包括有一对间隔开的、相面对的侧壁平面72、74,他们按自身长度连接端壁平面68、70,同时也分别地与流出槽的前、后壁面48、50相连接。侧壁平面72、74基本上平行于纵向方向。在这实例中,侧壁平面74和流出槽前壁面48是相互延长的,并且平行于中心轴线62。中心轴线62和表面20之间形成角度P最好小于45°,尤其最好是25至40°之间。侧壁平面72和流出槽后壁面50是相互延长的,并且最好往下游方向,相对中心轴线62和侧壁74,以字母R标注的角度扩张,最好扩张的角度是大约5至10°之间。后壁面50相对中心轴线62的扩张,减少了角度S,该角度是后壁面50和流出槽的下游翼片外表面20形成的。这样造成冷却剂更容易被拖带在流出槽的下游附面层内。已经考虑到角度R可以是零度值,并仍然属于本发明的范围内。
参阅图4,端面68、70各自以字母T标注的角度,由中心轴线62扩张。这样,端面68、70相互彼此以角度2T扩张。
相邻通道之间的间距或节距P和角度T是这样选择的,相邻通道的相邻端面68、70实质上是相互相交于流出槽的底部52。这样最大强化了冷却剂流出通道完全地充满流出槽的能力。为了减少通道的数目,希望角度T最小大约是10°;然而,如果角度T太大,从调节部分冷却剂的流出,将不能达到端面68、70。在那情况下,冷却剂未能充满漫射部位,在流出槽内也不会有有效的漫射;并且沿着流出槽长度也不能形成连续的冷却剂薄膜。
图7与图4相似,但显示了本发明的另一实例。图7中,端壁面68′、70′以两阶段相应中心轴62′被扩张,形成扩张有效角度T′,该角度的形成是从端壁面68′开始至端壁面70′为止,而端壁面68′、70′各视为单平面延伸的。扩张的有效角度T′至少是10°。
本发明的冷却剂通道和流出槽,可由合适的装置制作出来。最好的方法是采用众所周知的电火花加工工艺,使用的电极具有要制作的通道和流出槽
的形状。一组的多个通道可以同时加工,采用如图8所示的组合电极,它是简单的电极,包括了多个的相邻齿牙80,各有通道44形状。齿牙由公共底座82连结在一起。电极被移动进入工件,其距离超过齿牙80的长度,如达到图中的参考线84。这样底座82位于线条84和齿牙80根部之间的部分。形成了工件表面内的流出槽42。底座82在那部分是适当地逐渐变薄,以得到合适的流出槽形状。
虽然本发明相对于最优实施例作了介绍和说明,对于熟悉本技术的专业人员不难理解到,对有关本发明形式和细节的改变和删节,并不脱离本发明的范围和实质。
Claims (8)
1、一种用于燃气轮机的具有冷却剂通道和全覆盖薄膜冷却槽的翼片,上述翼片(12)用于安装在往下游方向流动的热燃气流中,它包括限定一个上述热燃气流沿上述下游方向流经其上的上述翼片(12)的外压力表面和外吸入表面(20)的一个外壁(18),上述外壁(18)也有一个限定在上述翼片内纵向延伸部分用于容纳冷却空气的空腔部分(26)的内表面(22),上述外壁(18)包括多个纵向间隔开的冷却空气通道(47),每个通道(44)具有一个靠里部分(58)与上述冷却空腔(26)流通连接,从其按受冷却剂流体,并调节流过上述通道(44)的冷却剂流量,上述靠里部分(58)之后紧接一个与其串联流通的靠外部分(60),上述靠外部分(60)包括互相间隔开,并沿纵向扩张的面对的端壁面(68,70),每个通道靠外部分(60)还包括有一对互间隔开,面对的侧壁面(72,74),它们平行于上述纵向方向并连接上述扩张的端壁面(68,70)
其特征在于,
上述外壁(18)包括有一个沿纵向延伸的在其外表面之一(20)上形成的槽(42),上述槽(42)具有一个前壁(48),一个面对上述前壁面(48)的后壁面(50)和一个底部(52),上述底部(52)在上述前壁面(48)和上述后壁面(50)之间延伸并位于上述外壁(18)内,上述前后壁面(48,50)是相互扩张的,并且每个都以小的角度与上述翼片外壁(18)的上述一个外表面(20)相交以引导冷却液体沿下游流经上述一个外表面(20),并分别限定沿纵向延伸的上述槽的一个出口的上游边缘(54)和下游边缘(56),上述扩张的端壁面(68,70)与上述槽底(52)相交并沿纵向朝上述槽底(52)扩张,相邻通道(44)的相邻端壁面(68,70)大致在所述槽底(52)相交,在上述槽底(52),上述一对侧壁面(72,74)之第一个和上述槽前壁面(48)连接,上述一对侧壁面(72,74)之另一个和上述槽后壁面(50)连接。
2、根据权利要求1的翼片,其特征是,上述第一侧壁面和上述槽前壁面是相互延长的,而上述另一侧壁面和上述槽后壁面是相互延长的。
3、根据权利要求2的翼片,其特征是,上述前壁面和后壁面的相互扩张角度为5°至10°之间。
4、根据权利要求2的翼片,其特征是,上述靠里部分包括一直形部分,它有横切面不变的调节空间,上述靠里部分有中心轴线,穿过上述调节空间的几何中心,并和上述翼片的上述外表面以小于45°的角度相交。
5、根据权利要求4的翼片,其特征是,上述前壁面平行于上述中心轴线。
6、根据权利要求5的翼片,其特征是,上述各端壁面,以至少是10°的有效角度,从各自通道的中心轴线扩张。
7、根据权利要求6的翼片,其特征是,上述靠里部分相交于上述翼片外壁的上述内表面,限定了上述通道的进口。
8、根据权利要求6的翼片,其特征是,上述靠里部分有个出口,而上述靠外部分的上述端壁面,由上述出口至上述槽底部进行扩张。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/812,103 US4664597A (en) | 1985-12-23 | 1985-12-23 | Coolant passages with full coverage film cooling slot |
US812,103 | 1985-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN86108818A CN86108818A (zh) | 1987-07-08 |
CN1010331B true CN1010331B (zh) | 1990-11-07 |
Family
ID=25208510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN86108818A Expired CN1010331B (zh) | 1985-12-23 | 1986-12-23 | 具有冷却剂通道和全覆盖薄膜冷却槽的翼片 |
Country Status (8)
Country | Link |
---|---|
US (1) | US4664597A (zh) |
EP (1) | EP0227577B1 (zh) |
JP (1) | JPH07103802B2 (zh) |
CN (1) | CN1010331B (zh) |
AU (1) | AU594106B2 (zh) |
CA (1) | CA1273583A (zh) |
DE (2) | DE227577T1 (zh) |
IL (1) | IL81031A (zh) |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4669957A (en) * | 1985-12-23 | 1987-06-02 | United Technologies Corporation | Film coolant passage with swirl diffuser |
US4762464A (en) * | 1986-11-13 | 1988-08-09 | Chromalloy Gas Turbine Corporation | Airfoil with diffused cooling holes and method and apparatus for making the same |
US4808785A (en) * | 1986-11-13 | 1989-02-28 | Chromalloy Gas Turbine Corporation | Method and apparatus for making diffused cooling holes in an airfoil |
US6139258A (en) * | 1987-03-30 | 2000-10-31 | United Technologies Corporation | Airfoils with leading edge pockets for reduced heat transfer |
US4819325A (en) * | 1987-06-01 | 1989-04-11 | Technical Manufacturing Systems, Inc. | Method of forming electro-discharge machining electrode |
US4922076A (en) * | 1987-06-01 | 1990-05-01 | Technical Manufacturing Systems, Inc. | Electro-discharge machining electrode |
US4827587A (en) * | 1988-01-25 | 1989-05-09 | United Technologies Corporation | Method of fabricating an air cooled turbine blade |
US4923371A (en) * | 1988-04-01 | 1990-05-08 | General Electric Company | Wall having cooling passage |
GB2227965B (en) * | 1988-10-12 | 1993-02-10 | Rolls Royce Plc | Apparatus for drilling a shaped hole in a workpiece |
US5233828A (en) * | 1990-11-15 | 1993-08-10 | General Electric Company | Combustor liner with circumferentially angled film cooling holes |
CA2056592A1 (en) * | 1990-12-21 | 1992-06-22 | Phillip D. Napoli | Multi-hole film cooled combustor liner with slotted film starter |
US5326224A (en) * | 1991-03-01 | 1994-07-05 | General Electric Company | Cooling hole arrangements in jet engine components exposed to hot gas flow |
GB9127505D0 (en) * | 1991-03-11 | 2013-12-25 | Gen Electric | Multi-hole film cooled afterburner combustor liner |
US5241827A (en) * | 1991-05-03 | 1993-09-07 | General Electric Company | Multi-hole film cooled combuster linear with differential cooling |
US5720434A (en) * | 1991-11-05 | 1998-02-24 | General Electric Company | Cooling apparatus for aircraft gas turbine engine exhaust nozzles |
US5651662A (en) * | 1992-10-29 | 1997-07-29 | General Electric Company | Film cooled wall |
US5419681A (en) * | 1993-01-25 | 1995-05-30 | General Electric Company | Film cooled wall |
US5382133A (en) * | 1993-10-15 | 1995-01-17 | United Technologies Corporation | High coverage shaped diffuser film hole for thin walls |
US5688104A (en) * | 1993-11-24 | 1997-11-18 | United Technologies Corporation | Airfoil having expanded wall portions to accommodate film cooling holes |
US5418345A (en) * | 1994-02-28 | 1995-05-23 | United Technologies Corporation | Method for forming shaped passages |
US5458461A (en) * | 1994-12-12 | 1995-10-17 | General Electric Company | Film cooled slotted wall |
US6009301A (en) * | 1997-07-28 | 1999-12-28 | Eastman Kodak Company | Cleaning brush having insulated fibers with conductive cores and a conductive backing and method apparatus of cleaning with such brush |
US6287075B1 (en) | 1997-10-22 | 2001-09-11 | General Electric Company | Spanwise fan diffusion hole airfoil |
US6050777A (en) * | 1997-12-17 | 2000-04-18 | United Technologies Corporation | Apparatus and method for cooling an airfoil for a gas turbine engine |
US6099251A (en) * | 1998-07-06 | 2000-08-08 | United Technologies Corporation | Coolable airfoil for a gas turbine engine |
GB9821639D0 (en) * | 1998-10-06 | 1998-11-25 | Rolls Royce Plc | Coolant passages for gas turbine components |
US6247896B1 (en) | 1999-06-23 | 2001-06-19 | United Technologies Corporation | Method and apparatus for cooling an airfoil |
US6280140B1 (en) | 1999-11-18 | 2001-08-28 | United Technologies Corporation | Method and apparatus for cooling an airfoil |
US6602052B2 (en) * | 2001-06-20 | 2003-08-05 | Alstom (Switzerland) Ltd | Airfoil tip squealer cooling construction |
US7137776B2 (en) * | 2002-06-19 | 2006-11-21 | United Technologies Corporation | Film cooling for microcircuits |
US7008186B2 (en) * | 2003-09-17 | 2006-03-07 | General Electric Company | Teardrop film cooled blade |
JP3997986B2 (ja) * | 2003-12-19 | 2007-10-24 | 株式会社Ihi | 冷却タービン部品、及び冷却タービン翼 |
US7223072B2 (en) * | 2004-01-27 | 2007-05-29 | Honeywell International, Inc. | Gas turbine engine including airfoils having an improved airfoil film cooling configuration and method therefor |
US7165940B2 (en) * | 2004-06-10 | 2007-01-23 | General Electric Company | Method and apparatus for cooling gas turbine rotor blades |
US7328580B2 (en) * | 2004-06-23 | 2008-02-12 | General Electric Company | Chevron film cooled wall |
US7255534B2 (en) * | 2004-07-02 | 2007-08-14 | Siemens Power Generation, Inc. | Gas turbine vane with integral cooling system |
US7246999B2 (en) * | 2004-10-06 | 2007-07-24 | General Electric Company | Stepped outlet turbine airfoil |
US7374401B2 (en) | 2005-03-01 | 2008-05-20 | General Electric Company | Bell-shaped fan cooling holes for turbine airfoil |
JP4931507B2 (ja) * | 2005-07-26 | 2012-05-16 | スネクマ | 壁内に形成された冷却流路 |
US7249934B2 (en) | 2005-08-31 | 2007-07-31 | General Electric Company | Pattern cooled turbine airfoil |
US7563073B1 (en) | 2006-10-10 | 2009-07-21 | Florida Turbine Technologies, Inc. | Turbine blade with film cooling slot |
US7887294B1 (en) | 2006-10-13 | 2011-02-15 | Florida Turbine Technologies, Inc. | Turbine airfoil with continuous curved diffusion film holes |
US7798776B1 (en) * | 2007-06-21 | 2010-09-21 | Florida Turbine Technologies, Inc. | Turbine blade with showerhead film cooling |
US8066484B1 (en) | 2007-11-19 | 2011-11-29 | Florida Turbine Technologies, Inc. | Film cooling hole for a turbine airfoil |
US10286407B2 (en) | 2007-11-29 | 2019-05-14 | General Electric Company | Inertial separator |
US8079810B2 (en) * | 2008-09-16 | 2011-12-20 | Siemens Energy, Inc. | Turbine airfoil cooling system with divergent film cooling hole |
US8057179B1 (en) * | 2008-10-16 | 2011-11-15 | Florida Turbine Technologies, Inc. | Film cooling hole for turbine airfoil |
US8245519B1 (en) | 2008-11-25 | 2012-08-21 | Florida Turbine Technologies, Inc. | Laser shaped film cooling hole |
US8168912B1 (en) * | 2009-02-19 | 2012-05-01 | Florida Turbine Technologies, Inc. | Electrode for shaped film cooling hole |
US8371814B2 (en) * | 2009-06-24 | 2013-02-12 | Honeywell International Inc. | Turbine engine components |
US8529193B2 (en) * | 2009-11-25 | 2013-09-10 | Honeywell International Inc. | Gas turbine engine components with improved film cooling |
US8742279B2 (en) * | 2010-02-01 | 2014-06-03 | United Technologies Corporation | Method of creating an airfoil trench and a plurality of cooling holes within the trench |
US8777570B1 (en) * | 2010-04-09 | 2014-07-15 | Florida Turbine Technologies, Inc. | Turbine vane with film cooling slots |
US8905713B2 (en) | 2010-05-28 | 2014-12-09 | General Electric Company | Articles which include chevron film cooling holes, and related processes |
US8628293B2 (en) | 2010-06-17 | 2014-01-14 | Honeywell International Inc. | Gas turbine engine components with cooling hole trenches |
US8672613B2 (en) | 2010-08-31 | 2014-03-18 | General Electric Company | Components with conformal curved film holes and methods of manufacture |
US20120301319A1 (en) * | 2011-05-24 | 2012-11-29 | General Electric Company | Curved Passages for a Turbine Component |
US8522558B1 (en) | 2012-02-15 | 2013-09-03 | United Technologies Corporation | Multi-lobed cooling hole array |
US9650900B2 (en) | 2012-05-07 | 2017-05-16 | Honeywell International Inc. | Gas turbine engine components with film cooling holes having cylindrical to multi-lobe configurations |
WO2013188645A2 (en) | 2012-06-13 | 2013-12-19 | General Electric Company | Gas turbine engine wall |
US10107107B2 (en) | 2012-06-28 | 2018-10-23 | United Technologies Corporation | Gas turbine engine component with discharge slot having oval geometry |
US10113433B2 (en) | 2012-10-04 | 2018-10-30 | Honeywell International Inc. | Gas turbine engine components with lateral and forward sweep film cooling holes |
WO2014186006A2 (en) * | 2013-02-15 | 2014-11-20 | United Technologies Corporation | Cooling hole for a gas turbine engine component |
US9394796B2 (en) | 2013-07-12 | 2016-07-19 | General Electric Company | Turbine component and methods of assembling the same |
EP3149310A2 (en) | 2014-05-29 | 2017-04-05 | General Electric Company | Turbine engine, components, and methods of cooling same |
CA2949547A1 (en) | 2014-05-29 | 2016-02-18 | General Electric Company | Turbine engine and particle separators therefore |
US11033845B2 (en) | 2014-05-29 | 2021-06-15 | General Electric Company | Turbine engine and particle separators therefore |
US9915176B2 (en) | 2014-05-29 | 2018-03-13 | General Electric Company | Shroud assembly for turbine engine |
US10436113B2 (en) | 2014-09-19 | 2019-10-08 | United Technologies Corporation | Plate for metering flow |
US20160090843A1 (en) * | 2014-09-30 | 2016-03-31 | General Electric Company | Turbine components with stepped apertures |
US10036319B2 (en) | 2014-10-31 | 2018-07-31 | General Electric Company | Separator assembly for a gas turbine engine |
US10167725B2 (en) | 2014-10-31 | 2019-01-01 | General Electric Company | Engine component for a turbine engine |
US20160169004A1 (en) | 2014-12-15 | 2016-06-16 | United Technologies Corporation | Cooling passages for gas turbine engine component |
US10641113B2 (en) * | 2015-04-08 | 2020-05-05 | United Technologies Corporation | Airfoils |
US20160298462A1 (en) * | 2015-04-09 | 2016-10-13 | United Technologies Corporation | Cooling passages for a gas turbine engine component |
US9752440B2 (en) | 2015-05-29 | 2017-09-05 | General Electric Company | Turbine component having surface cooling channels and method of forming same |
US10174620B2 (en) | 2015-10-15 | 2019-01-08 | General Electric Company | Turbine blade |
US9988936B2 (en) | 2015-10-15 | 2018-06-05 | General Electric Company | Shroud assembly for a gas turbine engine |
US10428664B2 (en) | 2015-10-15 | 2019-10-01 | General Electric Company | Nozzle for a gas turbine engine |
US11021965B2 (en) | 2016-05-19 | 2021-06-01 | Honeywell International Inc. | Engine components with cooling holes having tailored metering and diffuser portions |
US10704425B2 (en) | 2016-07-14 | 2020-07-07 | General Electric Company | Assembly for a gas turbine engine |
FR3070714B1 (fr) * | 2017-09-01 | 2020-09-18 | Safran Aircraft Engines | Aube de turbomachine a trous de refroidissement ameliores |
US10626735B2 (en) | 2017-12-05 | 2020-04-21 | United Technologies Corporation | Double wall turbine gas turbine engine blade cooling configuration |
FR3137716B1 (fr) * | 2022-07-06 | 2024-05-31 | Safran Aircraft Engines | Distributeur de turbine pour une turbomachine d’aéronef |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1857509A (en) * | 1928-10-12 | 1932-05-10 | Holmstrom Axel | Propeller or turbine for water, air, and gases |
US2149510A (en) * | 1934-01-29 | 1939-03-07 | Cem Comp Electro Mec | Method and means for preventing deterioration of turbo-machines |
BE432599A (zh) * | 1938-02-08 | |||
US2236426A (en) * | 1938-07-27 | 1941-03-25 | Bbc Brown Boveri & Cie | Turbine blade |
US2489683A (en) * | 1943-11-19 | 1949-11-29 | Edward A Stalker | Turbine |
US2477583A (en) * | 1946-07-25 | 1949-08-02 | Westinghouse Electric Corp | Combustion chamber construction |
GB665155A (en) * | 1949-03-30 | 1952-01-16 | Lucas Ltd Joseph | Improvements relating to combustion chambers for prime movers |
US2930580A (en) * | 1953-03-12 | 1960-03-29 | Gen Motors Corp | Two-piece turbine bucket |
NL249220A (zh) * | 1959-03-09 | |||
GB1055234A (en) * | 1963-04-30 | 1967-01-18 | Hitachi Ltd | Ultra-high temperature combustion chambers |
GB1078116A (en) * | 1963-07-18 | 1967-08-02 | Bristol Siddeley Engines Ltd | Stator blades for combustion turbines |
US3527543A (en) * | 1965-08-26 | 1970-09-08 | Gen Electric | Cooling of structural members particularly for gas turbine engines |
FR1520428A (fr) * | 1966-12-08 | 1968-04-12 | Snecma | Elément de paroi d'une chambre de combustion |
US3515499A (en) * | 1968-04-22 | 1970-06-02 | Aerojet General Co | Blades and blade assemblies for turbine engines,compressors and the like |
US3778183A (en) * | 1968-04-22 | 1973-12-11 | Aerojet General Co | Cooling passages wafer blade assemblies for turbine engines, compressors and the like |
GB1209692A (en) * | 1968-05-14 | 1970-10-21 | Rolls Royce | Method and apparatus for the spark-machining of workpieces and a spark-machining electrode for use therein |
BE754171A (fr) * | 1969-10-18 | 1970-12-31 | Glanzstoff Ag | Procede pour la fabrication d'electrodes pour l'obtention electroerosive de perforations profilees de filage |
US3619076A (en) * | 1970-02-02 | 1971-11-09 | Gen Electric | Liquid-cooled turbine bucket |
US3635586A (en) * | 1970-04-06 | 1972-01-18 | Rolls Royce | Method and apparatus for turbine blade cooling |
GB1355558A (en) * | 1971-07-02 | 1974-06-05 | Rolls Royce | Cooled vane or blade for a gas turbine engine |
GB1381481A (en) * | 1971-08-26 | 1975-01-22 | Rolls Royce | Aerofoil-shaped blades |
US3844677A (en) * | 1971-11-01 | 1974-10-29 | Gen Electric | Blunted leading edge fan blade for noise reduction |
GB1560683A (en) * | 1972-11-28 | 1980-02-06 | Rolls Royce | Turbine blade |
US3830450A (en) * | 1972-12-15 | 1974-08-20 | Us Navy | Dual purpose circulation control airfoil |
US3889903A (en) * | 1973-03-09 | 1975-06-17 | Boeing Co | Airfoil leading edge structure with boundary layer control |
US3915106A (en) * | 1973-07-02 | 1975-10-28 | Supramar Ag | Hydrofoil with lift control by airfreed for watercraft |
US4162136A (en) * | 1974-04-05 | 1979-07-24 | Rolls-Royce Limited | Cooled blade for a gas turbine engine |
US4214722A (en) * | 1974-12-13 | 1980-07-29 | Tamura Raymond M | Pollution reducing aircraft propulsion |
US3995422A (en) * | 1975-05-21 | 1976-12-07 | General Electric Company | Combustor liner structure |
GB1565361A (en) * | 1976-01-29 | 1980-04-16 | Rolls Royce | Blade or vane for a gas turbine engien |
US4142824A (en) * | 1977-09-02 | 1979-03-06 | General Electric Company | Tip cooling for turbine blades |
US4197443A (en) * | 1977-09-19 | 1980-04-08 | General Electric Company | Method and apparatus for forming diffused cooling holes in an airfoil |
CH634128A5 (de) * | 1978-06-13 | 1983-01-14 | Bbc Brown Boveri & Cie | Kuehlvorrichtung an einer wand. |
US4314442A (en) * | 1978-10-26 | 1982-02-09 | Rice Ivan G | Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine |
US4303374A (en) * | 1978-12-15 | 1981-12-01 | General Electric Company | Film cooled airfoil body |
JPS55114806A (en) * | 1979-02-27 | 1980-09-04 | Hitachi Ltd | Gas turbine blade |
GB2066372A (en) * | 1979-12-26 | 1981-07-08 | United Technologies Corp | Coolable wall element |
US4384823A (en) * | 1980-10-27 | 1983-05-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Curved film cooling admission tube |
US4565490A (en) * | 1981-06-17 | 1986-01-21 | Rice Ivan G | Integrated gas/steam nozzle |
-
1985
- 1985-12-23 US US06/812,103 patent/US4664597A/en not_active Expired - Lifetime
-
1986
- 1986-12-15 AU AU66561/86A patent/AU594106B2/en not_active Ceased
- 1986-12-18 DE DE198686630192T patent/DE227577T1/de active Pending
- 1986-12-18 DE DE8686630192T patent/DE3683741D1/de not_active Expired - Lifetime
- 1986-12-18 IL IL81031A patent/IL81031A/xx not_active IP Right Cessation
- 1986-12-18 EP EP86630192A patent/EP0227577B1/en not_active Expired - Lifetime
- 1986-12-22 CA CA000526009A patent/CA1273583A/en not_active Expired - Lifetime
- 1986-12-23 CN CN86108818A patent/CN1010331B/zh not_active Expired
- 1986-12-23 JP JP61307573A patent/JPH07103802B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
IL81031A (en) | 1990-11-05 |
CA1273583A (en) | 1990-09-04 |
AU6656186A (en) | 1987-06-25 |
EP0227577B1 (en) | 1992-01-29 |
JPS62165501A (ja) | 1987-07-22 |
AU594106B2 (en) | 1990-03-01 |
IL81031A0 (en) | 1987-03-31 |
EP0227577A2 (en) | 1987-07-01 |
DE3683741D1 (de) | 1992-03-12 |
US4664597A (en) | 1987-05-12 |
JPH07103802B2 (ja) | 1995-11-08 |
CN86108818A (zh) | 1987-07-08 |
EP0227577A3 (en) | 1989-04-12 |
DE227577T1 (de) | 1987-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1010331B (zh) | 具有冷却剂通道和全覆盖薄膜冷却槽的翼片 | |
CN86108817A (zh) | 中空铸造翼片薄膜冷却剂通道 | |
CN1008292B (zh) | 经改善的具有圆角的气膜冷却通道的叶片 | |
EP0648918B1 (en) | Film cooling passages for thin walls | |
EP0230204B1 (en) | Convergent-divergent film coolant passage | |
DE69507782T2 (de) | Luftauslass-Schlitze für die Hinterkante einer Turbinenschaufel mit Filmkühlung | |
DE69828757T2 (de) | Kühlung der Anströmkante einer Gasturbinenschaufel | |
US4669957A (en) | Film coolant passage with swirl diffuser | |
US5246341A (en) | Turbine blade trailing edge cooling construction | |
DE60031077T2 (de) | Turbinenschaufel mit unterschiedlich geneigten Filmkühlungsöffnungen | |
CN86108718A (zh) | 带配量气流的薄膜冷却槽 | |
CA1261005A (en) | Electrode for machining film cooling passages | |
US5326224A (en) | Cooling hole arrangements in jet engine components exposed to hot gas flow | |
EP0810349B1 (en) | Cooling of a turbine blade | |
DE69923914T2 (de) | Strömungsmaschinenschaufel mit aparter Kühlung der Anströmkante | |
US4827587A (en) | Method of fabricating an air cooled turbine blade | |
EP0227582A2 (en) | Improved film cooling passages with step diffuser | |
EP0774047A1 (en) | Turbine airfoil with diffusing pedestals in its trailing edge | |
DE3248163A1 (de) | Kuehlbare schaufel | |
JP2001507773A (ja) | エアフォイル前縁のための冷却通路 | |
EP0473991A2 (en) | Gas turbine with cooled rotor blades | |
DE69821443T2 (de) | Kühlung der Austrittskante bei Gasturbinenschaufeln | |
DE768055C (de) | Strahltriebwerk zum Vortrieb von Luftfahrzeugen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |