CN1010331B - 具有冷却剂通道和全覆盖薄膜冷却槽的翼片 - Google Patents

具有冷却剂通道和全覆盖薄膜冷却槽的翼片

Info

Publication number
CN1010331B
CN1010331B CN86108818A CN86108818A CN1010331B CN 1010331 B CN1010331 B CN 1010331B CN 86108818 A CN86108818 A CN 86108818A CN 86108818 A CN86108818 A CN 86108818A CN 1010331 B CN1010331 B CN 1010331B
Authority
CN
China
Prior art keywords
mentioned
fin
passage
wall
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86108818A
Other languages
English (en)
Other versions
CN86108818A (zh
Inventor
托马斯·A·奥克西尔
利昂·理查德·安德森
小爱德华·克拉伦斯希尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Craft Co
Original Assignee
United Craft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Craft Co filed Critical United Craft Co
Publication of CN86108818A publication Critical patent/CN86108818A/zh
Publication of CN1010331B publication Critical patent/CN1010331B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

中空翼片的壁,外表面内有纵向延伸的槽,在槽底部。被纵向延伸的一排冷却通道相交,各通道内端有调节部分,和翼片内腔室连通。各通道有一对是调节部分下游的壁面,沿纵向相互扩张,和槽底部相交,形威通道出口,相邻通道扩张的壁,实质上相交于横底部,从通道调节部分来的冷却剂,向前面流动时沿纵向漫射,并进入槽内,注满整个槽,同时在槽下游和沿整个槽长度,形成薄的、连续的冷却剂薄膜,覆盖翼片外表面。

Description

本发明涉及薄膜冷却,尤其是涉及薄膜冷却翼片。
大家已经熟悉,翼片的外表面可被冷却,借助于导引的冷却空气,从内部腔室经过许多小通道,引导至外表面。所盼望的是,空气吹出通道,使在通道的尽可能的长度距离内的下游内,仍保持拖带于在翼片外表面上的附面层内,在热的主流气体和翼片表面之间,提供冷却空气保护膜。通道的轴线和翼片表面形成的角度,以及它对流过翼片表面通道涌出口热气流的方向的关系都是重要因素,影响气膜冷却的效率。气膜冷却的效率,被定义为主气流温度(Tg)和位于通道出口的下游气流其距离为X的冷却薄膜的温度(Tf)的差值,除于主气流温度和在通道出口处(即位于X=0)冷却空气温度(Te)差值,则E=(Tg-Tf)/(Tg-Te)。气膜冷却的效率,随着从通道出口处的距离X迅速减小。在尽可能长的距离并覆盖尽可能大的表面区域,同时维持高的薄膜冷却效率,是翼片气膜冷却的主要目标。
已为众所周知的技术中,发动机的翼片必须使用最小量的冷却空气来冷却,这是由于冷却空气是 从压缩机抽取的工作流体,同时气体流动通路的损失迅速地降低发动机的效率。翼片的设计人员都面临着使用特定的、最大的冷却流体流动速度,来冷却全部发动机翼片的问题。从内腔流经各个分别的冷却通道,进入气体通路的流量,借助冷却通道的最小横切面区域(调节区域)而加于控制。调节区域典型地位于通道与内空腔相交处。全部冷却通道的总的调节区域,和由翼片引出的喷气口,控制来自翼片冷却气体的流速,假定的内部的和外部的压力范围都预先确定的,而且通常是设计人员不能加予控制的。设计人员的任务是规定通道的尺寸和通道之间的间隔,同时包括通道的形状和向位,这样来使翼片全部区域保持低于临界的设计温度,该温度限制决定于翼片材料的性能、最大应力值和适宜的寿命要求。
最理想是希望翼片表面百分之百地浸入冷却空气薄膜内;然而,离开通道出口的空气通常是形成一个冷却薄膜带,不宽于或难宽于垂直于气流的通道出口的大小。冷却通道的数目、大小和间隔的限制,结果在保护薄膜中形成空隙,和/或低薄膜冷却效率的区域,这会出现局部性的热点。翼片热点是限制发动机运行温度的一个因素。
霍华德的美国专利3,527,543号采用了将圆形剖面的通道变成扩张的锥形,来增加从一给定通道的冷却空气拖带于附面层内。通道也最好是定向在沿纵向方向延伸的平面上,或者偏的朝向气体流动方向,从通道当它吹向下游时,依据其出口纵向地吹散冷却空气。任凭有这些特点,由烟流可视觉的试验已确定,以及发动机附件的检测,都说明从椭圆形的通道的发生(即霍华德那种),冷却空气在翼片表面被排出后,冷却气体薄膜其纵向的宽度连续按纵向扩大,它也只是大约是通道最大的短径。这事实上,结合通道之间是三至六个直径典型的纵向间隔,导致翼片表面纵向间隔开通道之间和下游的区域,未收到从上述通道排列吹出的冷却流体。锥形的、有角度的通道,如霍华德3,527,543号专利所介绍者,提供最好的而不超过70%的覆盖率(即相邻涌出孔的被冷却空气所覆盖的中心之间距离所占的百分比)。
离开冷却通道空气的速度依赖于它在通道进口的压力与在通道出口流出气体的压力之比率。通常,压力比率越大,流出速度越大。流出速度太大,致使冷却空气穿透燃气流和被带跑,而无提供薄膜冷却的作用。太低的压力比率,将致使燃气流吸入至冷却通道,造成局部翼片完全失去冷却保护。翼片冷却总损失,通常会有灾难性结果,鉴于此安全系数通常被保留。事关安全系数的特大压力,驱使设计方向朝着更高的压力比率。高压力比率的公差是薄膜冷却设计时所希求的性能。依靠通道的偏置,冷却气流漫射,正如上述讨论过的霍华德的专利中,提供这压力比率公差是有益的,但其中谈到的狭窄漫射角(最大包括12°的角度)要求有长的通道,因而,厚的翼片壁得到流出速度降低,常常被认为是最理想的,以降低薄膜冷却的设计相对于压力比率的灵敏度。相同的限制也存在于相关的梯形漫射通道,被介绍于西登斯蒂美国专利4,197,443号中。谈及在两个互相垂直的平面包含的最大漫射角度分别为7°和14°,以保证从斜壁流出的冷却流体的分离不会发生,并且冷却流体当它流出进入热的燃气流时,它整体地充满通道。漫射角度的这种限制,只有更厚的翼片壁和按翼片展向的方向通道转个角度,才可以产生更宽的通道出口和按纵向方向通道之间更小的间隙。最好是采用宽的漫射角度,但是采用现有技术不能作到。
日本专利55-114806所示,其图2和图3(在此再现于现有技术图9和图10),中空的翼片有圆柱形通道,以纵排按置并流入一个纵向伸展的、在翼片外表面形成的槽内。虽然专利发表指出,从相邻通道冷却流体的流动,混合形成厚度均匀的冷却流体薄膜,在冷却流体流出槽和到达翼片表面时,覆盖着槽的全长,我们的实验经验标明,从圆柱形通道来的冷却剂流体,移向下游时,好似一基本上宽度不变的带子,它实质上就是通道的宽度。任何漫射,它沿着远至整个下游部分促使造成相邻的冷却剂流体带出现混合时,就这一点看来薄膜冷却效率肯定低于大多数翼片设计的要求。
比尔等人的美国专利3,515,499号专利描述了由一叠蚀刻薄板制成的翼片。做成的翼片包含一些区域,有许多纵向间隔开的通道,从内空腔引导至公共的、纵向延伸的槽,从该槽上述冷却空气流出形成冷却空气薄膜,覆盖翼片的外表面。图1中各个通道显然是从进口收敛到一个最小横切面区域,在那儿与槽相交。相反在图9的另一实施例 中,通道是小的、尺寸不变的,其出口进入至相当地更宽的槽内。这两种结构相似地有相同的缩回现象,这在上述日本专利中单独讨论过;这意味着冷却流体进入主气流前,不能均匀地注满槽内,并且相似地在槽的下游薄膜覆盖率相当大地小于100%。
其他涉及翼片外表面薄膜冷却的出版物有:美国专利2,149,510号;2,220,420号;2,489,683号;《飞行和飞机发动机》2460号,69卷,56年3月16日,292-295页,全都显示了纵向地延伸槽的使用,用于冷却翼片前缘,或者压缩和吸气侧的叶片表面。在那里显示的槽,完全穿透叶片壁地伸展,直接地连通至内空腔。从结构强度观点来看,这种是不适宜的,并且它们要求非常大的流速。
美国专利4,303,374号中显示了一种结构,用于冷却暴露的叶片后缘的背表面。该结构包括许多在后缘内纵向间隔隔开、扩大的通道。相邻通道在它们出口的端部相交,以形成连续的冷却空气薄膜,覆盖着背表面。
一些出版物中,由欧文和哈特尼特编辑的、1971年在纽约学会出版社出版的“热交换的进展”第七卷中,在321-379页包括了理查德·J·戈尔茨坦题为“薄膜冷却”的专题论文,它提供了关于薄膜冷却技术的评述。该评述介绍了完整穿透被冷却壁而伸展的不同形状的加长槽,也有穿透壁的圆形横切面的通道。
本发明的目的在于提供一种改进的具有冷却通道和全覆盖薄膜冷却槽的翼片,它的薄膜冷却结构能够形成纵向延伸的冷却剂连续薄膜覆盖翼片的外表面,并能减少个别的冷却剂通道堵塞的可能性。
依照本发明,中空翼片的壁在其外表面有纵向延伸的槽,和纵向排列的一组冷却剂通道,穿过每一个通道,在其内端有调节部分,而在其外端有漫射部分,漫射部分壁表面朝着翼片出口表面、按着纵向方向扩展,相邻通道的扩展壁面,实质上在低于翼片外表面的槽的根部处,相互会合,借助这样的通道,冷却剂流进和注满槽内,冷却剂离开槽时,作为连续的纵向延伸薄膜,覆盖槽下游的翼片外表面。
通道和槽的表面都转个角度,来导引冷却剂,沿下游方向的速度分量,以及相对外表面是小的角度,这样在离开槽时,冷却剂保留附着在翼片的外表面,好似附面层内一薄膜。借助沿纵向扩大的冷却剂通道,并借助将通道在一纵向排列安置的足够紧凑,致使相邻通道出口之间只有小的或者无间隔,在那里它们和槽的底部相交,这样造成冷却剂在进入热的气流之前,进一步漫射于和完全地充满纵向延伸的槽内。以这种结构,小量的冷却剂可以被散开,好似一张连续的薄片,基本上覆盖全部纵向延伸的翼片。
本发明进一步优点是,气路中的有机物残渣,很可能会堵塞经过个别的冷却剂通道的流动。如果冷却剂通道开通于翼片的外表面,好似一个小的、分开的出口,那么有机物残渣会在那出口处沉积,堵塞通道。采用本发明,有机物残渣很可能沉积于槽的侧壁之间,而不会堵塞个别的通道出口(即冷却剂可从通道绕开残渣流动)。
本发明前面已提到的和其他的目的、性能和优点,将在下面伴有附图说明的实例的详尽描述中,显示得更为清楚。
附图说明:
图1具有本发明特点的汽轮机叶片局部剖开的正视图;
图2沿图1剖线2-2剖开的剖视图;
图3图2中3-3部位的放大图;
图4沿图3剖线4-4剖开的剖视图;
图5沿图3中5-5视向的左视图;
图6图1中6-6部位的放大图;
图7与图4相似的本发明另一实例剖视图;
图8可用于制造本发明的冷却剂通道和流出槽的电极的示意立体图;
图9和图10现有技术日本专利55-114806号中图2和图3的复制图:
作为本发明的一实施例,考虑图1中汽轮机叶片,以参考标号10表示。参照图1和图2,叶片10包括中空的翼片12,它沿从根部14开始展向的或纵向的方向伸展,它与根部14是一个整体。一个平台16被安置在翼片12的底部。翼片12包括壁18,它有外表面20和内表面22。内表面22限定了一个纵向伸展的内腔,它被分为几个相邻的纵向伸展的内腔室24、26、28,由纵向伸展的翼肋30、32分开。根部14内的通道34和腔室24连通;而根部14内的通道36和两个腔室26和28 连通。当翼片10在其预计环境下使用时,例如作为汽轮发动机涡轮部分时,冷却剂从适当的来源,例如压缩机流出的空气,提供进入通道34、36,使腔室24、26和28加压。
通过图中箭头40表示热的燃气流动方向(即气流线)覆盖着翼片。为了本发明描述的目的,热燃气流过翼片加压一侧或者抽吸一侧的翼片表面时的流动方向,被认为是按着朝下游的方向。这样,在加压或者抽吸一侧的翼片表面的任一点,朝下游的方向在该点是相切于翼片的;同时,除了也许靠近翼片顶尖或翼片底接近平台处有典型的流动发生外,下流方向基本上是垂直于翼片展开的方向。
依照本发明,腔室24、26、28内的加压冷却剂,经通道穿过壁18流出翼片,例如通道41,或者经流出槽42,它由通道44供气,通道44将在后面更详细地叙述。在典型的汽轮机叶片的翼片上,可以有许多排的通道,例如通道41,将位于翼片加压和抽吸侧两面,同时也有位于翼片前缘的附近。为了清楚和简化的目的,在图中只表示少量几排通道。这样,图中的翼片仅仅便于解释,而非受限仅仅是如此。
参考图1至图6,依据本发明在翼片外表面20内的纵向伸展的流出槽,包括有一个壁面48,间隔分离和面对一个壁面50,壁面48、50和流出槽的底部52连接。两个壁面48和50,基本上平行于纵向方向。往后,壁面48、50分别称为前壁面和后壁面48、50,这是据于他们相对下游方向40的位置。那是,为使用的目的,壁面50是壁面48的下游,而因此认为它是后壁面。前壁面48相交外表面20,形成了流出槽42的上游边缘54;同时后壁面50相交外表面20,形成流出槽42的下游边缘56。两个壁面48和壁面50最好和表面20相交成小于45°的小角度。
通道44基本上沿槽42的长度的纵向方向排列。每个通道44在其内端有调节部分58,而在其外端有漫射部分60,是串连流通的。在本实例中,调节部分58是直的,并且对应于通道44的中心轴线62有不变的一般长方形横截面的调节空间,其轴线正好穿过调节空间的几何中心。调节部分58相交内壁22,限定了通道的进口64。调节部分的出口66和漫射部分60进口相吻合。
最好可在图4中看到,漫射部分60包括一对间隔开的、相面对的端壁平面68、70,他们从调节部分的出口66至槽的底部52,按纵向方向是扩张的,槽的底部52是由这两平面相交形成。
再参阅图3,每个通道44包括有一对间隔开的、相面对的侧壁平面72、74,他们按自身长度连接端壁平面68、70,同时也分别地与流出槽的前、后壁面48、50相连接。侧壁平面72、74基本上平行于纵向方向。在这实例中,侧壁平面74和流出槽前壁面48是相互延长的,并且平行于中心轴线62。中心轴线62和表面20之间形成角度P最好小于45°,尤其最好是25至40°之间。侧壁平面72和流出槽后壁面50是相互延长的,并且最好往下游方向,相对中心轴线62和侧壁74,以字母R标注的角度扩张,最好扩张的角度是大约5至10°之间。后壁面50相对中心轴线62的扩张,减少了角度S,该角度是后壁面50和流出槽的下游翼片外表面20形成的。这样造成冷却剂更容易被拖带在流出槽的下游附面层内。已经考虑到角度R可以是零度值,并仍然属于本发明的范围内。
参阅图4,端面68、70各自以字母T标注的角度,由中心轴线62扩张。这样,端面68、70相互彼此以角度2T扩张。
相邻通道之间的间距或节距P和角度T是这样选择的,相邻通道的相邻端面68、70实质上是相互相交于流出槽的底部52。这样最大强化了冷却剂流出通道完全地充满流出槽的能力。为了减少通道的数目,希望角度T最小大约是10°;然而,如果角度T太大,从调节部分冷却剂的流出,将不能达到端面68、70。在那情况下,冷却剂未能充满漫射部位,在流出槽内也不会有有效的漫射;并且沿着流出槽长度也不能形成连续的冷却剂薄膜。
图7与图4相似,但显示了本发明的另一实例。图7中,端壁面68′、70′以两阶段相应中心轴62′被扩张,形成扩张有效角度T′,该角度的形成是从端壁面68′开始至端壁面70′为止,而端壁面68′、70′各视为单平面延伸的。扩张的有效角度T′至少是10°。
本发明的冷却剂通道和流出槽,可由合适的装置制作出来。最好的方法是采用众所周知的电火花加工工艺,使用的电极具有要制作的通道和流出槽 的形状。一组的多个通道可以同时加工,采用如图8所示的组合电极,它是简单的电极,包括了多个的相邻齿牙80,各有通道44形状。齿牙由公共底座82连结在一起。电极被移动进入工件,其距离超过齿牙80的长度,如达到图中的参考线84。这样底座82位于线条84和齿牙80根部之间的部分。形成了工件表面内的流出槽42。底座82在那部分是适当地逐渐变薄,以得到合适的流出槽形状。
虽然本发明相对于最优实施例作了介绍和说明,对于熟悉本技术的专业人员不难理解到,对有关本发明形式和细节的改变和删节,并不脱离本发明的范围和实质。

Claims (8)

1、一种用于燃气轮机的具有冷却剂通道和全覆盖薄膜冷却槽的翼片,上述翼片(12)用于安装在往下游方向流动的热燃气流中,它包括限定一个上述热燃气流沿上述下游方向流经其上的上述翼片(12)的外压力表面和外吸入表面(20)的一个外壁(18),上述外壁(18)也有一个限定在上述翼片内纵向延伸部分用于容纳冷却空气的空腔部分(26)的内表面(22),上述外壁(18)包括多个纵向间隔开的冷却空气通道(47),每个通道(44)具有一个靠里部分(58)与上述冷却空腔(26)流通连接,从其按受冷却剂流体,并调节流过上述通道(44)的冷却剂流量,上述靠里部分(58)之后紧接一个与其串联流通的靠外部分(60),上述靠外部分(60)包括互相间隔开,并沿纵向扩张的面对的端壁面(68,70),每个通道靠外部分(60)还包括有一对互间隔开,面对的侧壁面(72,74),它们平行于上述纵向方向并连接上述扩张的端壁面(68,70)
其特征在于,
上述外壁(18)包括有一个沿纵向延伸的在其外表面之一(20)上形成的槽(42),上述槽(42)具有一个前壁(48),一个面对上述前壁面(48)的后壁面(50)和一个底部(52),上述底部(52)在上述前壁面(48)和上述后壁面(50)之间延伸并位于上述外壁(18)内,上述前后壁面(48,50)是相互扩张的,并且每个都以小的角度与上述翼片外壁(18)的上述一个外表面(20)相交以引导冷却液体沿下游流经上述一个外表面(20),并分别限定沿纵向延伸的上述槽的一个出口的上游边缘(54)和下游边缘(56),上述扩张的端壁面(68,70)与上述槽底(52)相交并沿纵向朝上述槽底(52)扩张,相邻通道(44)的相邻端壁面(68,70)大致在所述槽底(52)相交,在上述槽底(52),上述一对侧壁面(72,74)之第一个和上述槽前壁面(48)连接,上述一对侧壁面(72,74)之另一个和上述槽后壁面(50)连接。
2、根据权利要求1的翼片,其特征是,上述第一侧壁面和上述槽前壁面是相互延长的,而上述另一侧壁面和上述槽后壁面是相互延长的。
3、根据权利要求2的翼片,其特征是,上述前壁面和后壁面的相互扩张角度为5°至10°之间。
4、根据权利要求2的翼片,其特征是,上述靠里部分包括一直形部分,它有横切面不变的调节空间,上述靠里部分有中心轴线,穿过上述调节空间的几何中心,并和上述翼片的上述外表面以小于45°的角度相交。
5、根据权利要求4的翼片,其特征是,上述前壁面平行于上述中心轴线。
6、根据权利要求5的翼片,其特征是,上述各端壁面,以至少是10°的有效角度,从各自通道的中心轴线扩张。
7、根据权利要求6的翼片,其特征是,上述靠里部分相交于上述翼片外壁的上述内表面,限定了上述通道的进口。
8、根据权利要求6的翼片,其特征是,上述靠里部分有个出口,而上述靠外部分的上述端壁面,由上述出口至上述槽底部进行扩张。
CN86108818A 1985-12-23 1986-12-23 具有冷却剂通道和全覆盖薄膜冷却槽的翼片 Expired CN1010331B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/812,103 US4664597A (en) 1985-12-23 1985-12-23 Coolant passages with full coverage film cooling slot
US812,103 1985-12-23

Publications (2)

Publication Number Publication Date
CN86108818A CN86108818A (zh) 1987-07-08
CN1010331B true CN1010331B (zh) 1990-11-07

Family

ID=25208510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86108818A Expired CN1010331B (zh) 1985-12-23 1986-12-23 具有冷却剂通道和全覆盖薄膜冷却槽的翼片

Country Status (8)

Country Link
US (1) US4664597A (zh)
EP (1) EP0227577B1 (zh)
JP (1) JPH07103802B2 (zh)
CN (1) CN1010331B (zh)
AU (1) AU594106B2 (zh)
CA (1) CA1273583A (zh)
DE (2) DE227577T1 (zh)
IL (1) IL81031A (zh)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669957A (en) * 1985-12-23 1987-06-02 United Technologies Corporation Film coolant passage with swirl diffuser
US4762464A (en) * 1986-11-13 1988-08-09 Chromalloy Gas Turbine Corporation Airfoil with diffused cooling holes and method and apparatus for making the same
US4808785A (en) * 1986-11-13 1989-02-28 Chromalloy Gas Turbine Corporation Method and apparatus for making diffused cooling holes in an airfoil
US6139258A (en) * 1987-03-30 2000-10-31 United Technologies Corporation Airfoils with leading edge pockets for reduced heat transfer
US4819325A (en) * 1987-06-01 1989-04-11 Technical Manufacturing Systems, Inc. Method of forming electro-discharge machining electrode
US4922076A (en) * 1987-06-01 1990-05-01 Technical Manufacturing Systems, Inc. Electro-discharge machining electrode
US4827587A (en) * 1988-01-25 1989-05-09 United Technologies Corporation Method of fabricating an air cooled turbine blade
US4923371A (en) * 1988-04-01 1990-05-08 General Electric Company Wall having cooling passage
GB2227965B (en) * 1988-10-12 1993-02-10 Rolls Royce Plc Apparatus for drilling a shaped hole in a workpiece
US5233828A (en) * 1990-11-15 1993-08-10 General Electric Company Combustor liner with circumferentially angled film cooling holes
CA2056592A1 (en) * 1990-12-21 1992-06-22 Phillip D. Napoli Multi-hole film cooled combustor liner with slotted film starter
US5326224A (en) * 1991-03-01 1994-07-05 General Electric Company Cooling hole arrangements in jet engine components exposed to hot gas flow
GB9127505D0 (en) * 1991-03-11 2013-12-25 Gen Electric Multi-hole film cooled afterburner combustor liner
US5241827A (en) * 1991-05-03 1993-09-07 General Electric Company Multi-hole film cooled combuster linear with differential cooling
US5720434A (en) * 1991-11-05 1998-02-24 General Electric Company Cooling apparatus for aircraft gas turbine engine exhaust nozzles
US5651662A (en) * 1992-10-29 1997-07-29 General Electric Company Film cooled wall
US5419681A (en) * 1993-01-25 1995-05-30 General Electric Company Film cooled wall
US5382133A (en) * 1993-10-15 1995-01-17 United Technologies Corporation High coverage shaped diffuser film hole for thin walls
US5688104A (en) * 1993-11-24 1997-11-18 United Technologies Corporation Airfoil having expanded wall portions to accommodate film cooling holes
US5418345A (en) * 1994-02-28 1995-05-23 United Technologies Corporation Method for forming shaped passages
US5458461A (en) * 1994-12-12 1995-10-17 General Electric Company Film cooled slotted wall
US6009301A (en) * 1997-07-28 1999-12-28 Eastman Kodak Company Cleaning brush having insulated fibers with conductive cores and a conductive backing and method apparatus of cleaning with such brush
US6287075B1 (en) 1997-10-22 2001-09-11 General Electric Company Spanwise fan diffusion hole airfoil
US6050777A (en) * 1997-12-17 2000-04-18 United Technologies Corporation Apparatus and method for cooling an airfoil for a gas turbine engine
US6099251A (en) * 1998-07-06 2000-08-08 United Technologies Corporation Coolable airfoil for a gas turbine engine
GB9821639D0 (en) * 1998-10-06 1998-11-25 Rolls Royce Plc Coolant passages for gas turbine components
US6247896B1 (en) 1999-06-23 2001-06-19 United Technologies Corporation Method and apparatus for cooling an airfoil
US6280140B1 (en) 1999-11-18 2001-08-28 United Technologies Corporation Method and apparatus for cooling an airfoil
US6602052B2 (en) * 2001-06-20 2003-08-05 Alstom (Switzerland) Ltd Airfoil tip squealer cooling construction
US7137776B2 (en) * 2002-06-19 2006-11-21 United Technologies Corporation Film cooling for microcircuits
US7008186B2 (en) * 2003-09-17 2006-03-07 General Electric Company Teardrop film cooled blade
JP3997986B2 (ja) * 2003-12-19 2007-10-24 株式会社Ihi 冷却タービン部品、及び冷却タービン翼
US7223072B2 (en) * 2004-01-27 2007-05-29 Honeywell International, Inc. Gas turbine engine including airfoils having an improved airfoil film cooling configuration and method therefor
US7165940B2 (en) * 2004-06-10 2007-01-23 General Electric Company Method and apparatus for cooling gas turbine rotor blades
US7328580B2 (en) * 2004-06-23 2008-02-12 General Electric Company Chevron film cooled wall
US7255534B2 (en) * 2004-07-02 2007-08-14 Siemens Power Generation, Inc. Gas turbine vane with integral cooling system
US7246999B2 (en) * 2004-10-06 2007-07-24 General Electric Company Stepped outlet turbine airfoil
US7374401B2 (en) 2005-03-01 2008-05-20 General Electric Company Bell-shaped fan cooling holes for turbine airfoil
JP4931507B2 (ja) * 2005-07-26 2012-05-16 スネクマ 壁内に形成された冷却流路
US7249934B2 (en) 2005-08-31 2007-07-31 General Electric Company Pattern cooled turbine airfoil
US7563073B1 (en) 2006-10-10 2009-07-21 Florida Turbine Technologies, Inc. Turbine blade with film cooling slot
US7887294B1 (en) 2006-10-13 2011-02-15 Florida Turbine Technologies, Inc. Turbine airfoil with continuous curved diffusion film holes
US7798776B1 (en) * 2007-06-21 2010-09-21 Florida Turbine Technologies, Inc. Turbine blade with showerhead film cooling
US8066484B1 (en) 2007-11-19 2011-11-29 Florida Turbine Technologies, Inc. Film cooling hole for a turbine airfoil
US10286407B2 (en) 2007-11-29 2019-05-14 General Electric Company Inertial separator
US8079810B2 (en) * 2008-09-16 2011-12-20 Siemens Energy, Inc. Turbine airfoil cooling system with divergent film cooling hole
US8057179B1 (en) * 2008-10-16 2011-11-15 Florida Turbine Technologies, Inc. Film cooling hole for turbine airfoil
US8245519B1 (en) 2008-11-25 2012-08-21 Florida Turbine Technologies, Inc. Laser shaped film cooling hole
US8168912B1 (en) * 2009-02-19 2012-05-01 Florida Turbine Technologies, Inc. Electrode for shaped film cooling hole
US8371814B2 (en) * 2009-06-24 2013-02-12 Honeywell International Inc. Turbine engine components
US8529193B2 (en) * 2009-11-25 2013-09-10 Honeywell International Inc. Gas turbine engine components with improved film cooling
US8742279B2 (en) * 2010-02-01 2014-06-03 United Technologies Corporation Method of creating an airfoil trench and a plurality of cooling holes within the trench
US8777570B1 (en) * 2010-04-09 2014-07-15 Florida Turbine Technologies, Inc. Turbine vane with film cooling slots
US8905713B2 (en) 2010-05-28 2014-12-09 General Electric Company Articles which include chevron film cooling holes, and related processes
US8628293B2 (en) 2010-06-17 2014-01-14 Honeywell International Inc. Gas turbine engine components with cooling hole trenches
US8672613B2 (en) 2010-08-31 2014-03-18 General Electric Company Components with conformal curved film holes and methods of manufacture
US20120301319A1 (en) * 2011-05-24 2012-11-29 General Electric Company Curved Passages for a Turbine Component
US8522558B1 (en) 2012-02-15 2013-09-03 United Technologies Corporation Multi-lobed cooling hole array
US9650900B2 (en) 2012-05-07 2017-05-16 Honeywell International Inc. Gas turbine engine components with film cooling holes having cylindrical to multi-lobe configurations
WO2013188645A2 (en) 2012-06-13 2013-12-19 General Electric Company Gas turbine engine wall
US10107107B2 (en) 2012-06-28 2018-10-23 United Technologies Corporation Gas turbine engine component with discharge slot having oval geometry
US10113433B2 (en) 2012-10-04 2018-10-30 Honeywell International Inc. Gas turbine engine components with lateral and forward sweep film cooling holes
WO2014186006A2 (en) * 2013-02-15 2014-11-20 United Technologies Corporation Cooling hole for a gas turbine engine component
US9394796B2 (en) 2013-07-12 2016-07-19 General Electric Company Turbine component and methods of assembling the same
EP3149310A2 (en) 2014-05-29 2017-04-05 General Electric Company Turbine engine, components, and methods of cooling same
CA2949547A1 (en) 2014-05-29 2016-02-18 General Electric Company Turbine engine and particle separators therefore
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
US9915176B2 (en) 2014-05-29 2018-03-13 General Electric Company Shroud assembly for turbine engine
US10436113B2 (en) 2014-09-19 2019-10-08 United Technologies Corporation Plate for metering flow
US20160090843A1 (en) * 2014-09-30 2016-03-31 General Electric Company Turbine components with stepped apertures
US10036319B2 (en) 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10167725B2 (en) 2014-10-31 2019-01-01 General Electric Company Engine component for a turbine engine
US20160169004A1 (en) 2014-12-15 2016-06-16 United Technologies Corporation Cooling passages for gas turbine engine component
US10641113B2 (en) * 2015-04-08 2020-05-05 United Technologies Corporation Airfoils
US20160298462A1 (en) * 2015-04-09 2016-10-13 United Technologies Corporation Cooling passages for a gas turbine engine component
US9752440B2 (en) 2015-05-29 2017-09-05 General Electric Company Turbine component having surface cooling channels and method of forming same
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US9988936B2 (en) 2015-10-15 2018-06-05 General Electric Company Shroud assembly for a gas turbine engine
US10428664B2 (en) 2015-10-15 2019-10-01 General Electric Company Nozzle for a gas turbine engine
US11021965B2 (en) 2016-05-19 2021-06-01 Honeywell International Inc. Engine components with cooling holes having tailored metering and diffuser portions
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
FR3070714B1 (fr) * 2017-09-01 2020-09-18 Safran Aircraft Engines Aube de turbomachine a trous de refroidissement ameliores
US10626735B2 (en) 2017-12-05 2020-04-21 United Technologies Corporation Double wall turbine gas turbine engine blade cooling configuration
FR3137716B1 (fr) * 2022-07-06 2024-05-31 Safran Aircraft Engines Distributeur de turbine pour une turbomachine d’aéronef

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1857509A (en) * 1928-10-12 1932-05-10 Holmstrom Axel Propeller or turbine for water, air, and gases
US2149510A (en) * 1934-01-29 1939-03-07 Cem Comp Electro Mec Method and means for preventing deterioration of turbo-machines
BE432599A (zh) * 1938-02-08
US2236426A (en) * 1938-07-27 1941-03-25 Bbc Brown Boveri & Cie Turbine blade
US2489683A (en) * 1943-11-19 1949-11-29 Edward A Stalker Turbine
US2477583A (en) * 1946-07-25 1949-08-02 Westinghouse Electric Corp Combustion chamber construction
GB665155A (en) * 1949-03-30 1952-01-16 Lucas Ltd Joseph Improvements relating to combustion chambers for prime movers
US2930580A (en) * 1953-03-12 1960-03-29 Gen Motors Corp Two-piece turbine bucket
NL249220A (zh) * 1959-03-09
GB1055234A (en) * 1963-04-30 1967-01-18 Hitachi Ltd Ultra-high temperature combustion chambers
GB1078116A (en) * 1963-07-18 1967-08-02 Bristol Siddeley Engines Ltd Stator blades for combustion turbines
US3527543A (en) * 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
FR1520428A (fr) * 1966-12-08 1968-04-12 Snecma Elément de paroi d'une chambre de combustion
US3515499A (en) * 1968-04-22 1970-06-02 Aerojet General Co Blades and blade assemblies for turbine engines,compressors and the like
US3778183A (en) * 1968-04-22 1973-12-11 Aerojet General Co Cooling passages wafer blade assemblies for turbine engines, compressors and the like
GB1209692A (en) * 1968-05-14 1970-10-21 Rolls Royce Method and apparatus for the spark-machining of workpieces and a spark-machining electrode for use therein
BE754171A (fr) * 1969-10-18 1970-12-31 Glanzstoff Ag Procede pour la fabrication d'electrodes pour l'obtention electroerosive de perforations profilees de filage
US3619076A (en) * 1970-02-02 1971-11-09 Gen Electric Liquid-cooled turbine bucket
US3635586A (en) * 1970-04-06 1972-01-18 Rolls Royce Method and apparatus for turbine blade cooling
GB1355558A (en) * 1971-07-02 1974-06-05 Rolls Royce Cooled vane or blade for a gas turbine engine
GB1381481A (en) * 1971-08-26 1975-01-22 Rolls Royce Aerofoil-shaped blades
US3844677A (en) * 1971-11-01 1974-10-29 Gen Electric Blunted leading edge fan blade for noise reduction
GB1560683A (en) * 1972-11-28 1980-02-06 Rolls Royce Turbine blade
US3830450A (en) * 1972-12-15 1974-08-20 Us Navy Dual purpose circulation control airfoil
US3889903A (en) * 1973-03-09 1975-06-17 Boeing Co Airfoil leading edge structure with boundary layer control
US3915106A (en) * 1973-07-02 1975-10-28 Supramar Ag Hydrofoil with lift control by airfreed for watercraft
US4162136A (en) * 1974-04-05 1979-07-24 Rolls-Royce Limited Cooled blade for a gas turbine engine
US4214722A (en) * 1974-12-13 1980-07-29 Tamura Raymond M Pollution reducing aircraft propulsion
US3995422A (en) * 1975-05-21 1976-12-07 General Electric Company Combustor liner structure
GB1565361A (en) * 1976-01-29 1980-04-16 Rolls Royce Blade or vane for a gas turbine engien
US4142824A (en) * 1977-09-02 1979-03-06 General Electric Company Tip cooling for turbine blades
US4197443A (en) * 1977-09-19 1980-04-08 General Electric Company Method and apparatus for forming diffused cooling holes in an airfoil
CH634128A5 (de) * 1978-06-13 1983-01-14 Bbc Brown Boveri & Cie Kuehlvorrichtung an einer wand.
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine
US4303374A (en) * 1978-12-15 1981-12-01 General Electric Company Film cooled airfoil body
JPS55114806A (en) * 1979-02-27 1980-09-04 Hitachi Ltd Gas turbine blade
GB2066372A (en) * 1979-12-26 1981-07-08 United Technologies Corp Coolable wall element
US4384823A (en) * 1980-10-27 1983-05-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Curved film cooling admission tube
US4565490A (en) * 1981-06-17 1986-01-21 Rice Ivan G Integrated gas/steam nozzle

Also Published As

Publication number Publication date
IL81031A (en) 1990-11-05
CA1273583A (en) 1990-09-04
AU6656186A (en) 1987-06-25
EP0227577B1 (en) 1992-01-29
JPS62165501A (ja) 1987-07-22
AU594106B2 (en) 1990-03-01
IL81031A0 (en) 1987-03-31
EP0227577A2 (en) 1987-07-01
DE3683741D1 (de) 1992-03-12
US4664597A (en) 1987-05-12
JPH07103802B2 (ja) 1995-11-08
CN86108818A (zh) 1987-07-08
EP0227577A3 (en) 1989-04-12
DE227577T1 (de) 1987-12-17

Similar Documents

Publication Publication Date Title
CN1010331B (zh) 具有冷却剂通道和全覆盖薄膜冷却槽的翼片
CN86108817A (zh) 中空铸造翼片薄膜冷却剂通道
CN1008292B (zh) 经改善的具有圆角的气膜冷却通道的叶片
EP0648918B1 (en) Film cooling passages for thin walls
EP0230204B1 (en) Convergent-divergent film coolant passage
DE69507782T2 (de) Luftauslass-Schlitze für die Hinterkante einer Turbinenschaufel mit Filmkühlung
DE69828757T2 (de) Kühlung der Anströmkante einer Gasturbinenschaufel
US4669957A (en) Film coolant passage with swirl diffuser
US5246341A (en) Turbine blade trailing edge cooling construction
DE60031077T2 (de) Turbinenschaufel mit unterschiedlich geneigten Filmkühlungsöffnungen
CN86108718A (zh) 带配量气流的薄膜冷却槽
CA1261005A (en) Electrode for machining film cooling passages
US5326224A (en) Cooling hole arrangements in jet engine components exposed to hot gas flow
EP0810349B1 (en) Cooling of a turbine blade
DE69923914T2 (de) Strömungsmaschinenschaufel mit aparter Kühlung der Anströmkante
US4827587A (en) Method of fabricating an air cooled turbine blade
EP0227582A2 (en) Improved film cooling passages with step diffuser
EP0774047A1 (en) Turbine airfoil with diffusing pedestals in its trailing edge
DE3248163A1 (de) Kuehlbare schaufel
JP2001507773A (ja) エアフォイル前縁のための冷却通路
EP0473991A2 (en) Gas turbine with cooled rotor blades
DE69821443T2 (de) Kühlung der Austrittskante bei Gasturbinenschaufeln
DE768055C (de) Strahltriebwerk zum Vortrieb von Luftfahrzeugen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee