CN101027122A - 接触气相反应用多管式反应装置 - Google Patents

接触气相反应用多管式反应装置 Download PDF

Info

Publication number
CN101027122A
CN101027122A CNA2005800325182A CN200580032518A CN101027122A CN 101027122 A CN101027122 A CN 101027122A CN A2005800325182 A CNA2005800325182 A CN A2005800325182A CN 200580032518 A CN200580032518 A CN 200580032518A CN 101027122 A CN101027122 A CN 101027122A
Authority
CN
China
Prior art keywords
reaction
reaction tube
mentioned
barrier plate
thermal medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800325182A
Other languages
English (en)
Other versions
CN100574860C (zh
Inventor
铃田哲也
森康彦
田中孝明
阿部忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN101027122A publication Critical patent/CN101027122A/zh
Application granted granted Critical
Publication of CN100574860C publication Critical patent/CN100574860C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/0023Plates; Jackets; Cylinders with some catalyst tubes being empty, e.g. dummy tubes or flow-adjusting rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种接触气相反应用多管式反应装置,其包括:多个反应管,平行地排列;阻挡板,能够将导入到反应器壳体中的催化剂的移动方向改变为与该反应管的纵长方向垂直的方向;空间部,设置在热介质在该阻挡板的面方向上流动的部分中的一部分上,未排列有该反应管;整流棒组,设置在该空间部与该反应管之间,具有与该反应管相同的纵长方向。优选地,整流棒组在空间部与反应管之间以1~10列的范围排列。优选地,排列未在该反应管中填充催化剂的虚设管来作为整流棒组。本发明的接触气相反应用多管式反应装置特别优选用于氯气的制造。

Description

接触气相反应用多管式反应装置
技术领域
本发明涉及适于在氯气的制造中使用的接触气相反应用多管式反应装置。
背景技术
以往,在制造由接触气相反应生成的氯气、丙烯醛等工业用气体时,为了有效地除去由放热反应产生的热,一般使用多管式反应装置。多管式反应装置在反应器壳体内具有填充了催化剂的多个反应管,通过使热交换介质(热介质)在该反应器壳体内循环来冷却反应管而除去反应热。
在使用多管式反应装置的放热反应中,有时会在由于热介质流动的偏流而使反应热的除去效率变差的部位或者催化剂浓度高而使反应速度较大的部位上产生所谓的热区。在热区中由于过度的温度上升,容易产生催化剂的劣化或反应生成物的纯度降低。
在供给热介质进行反应器的除热时,主要由水平方向(横向)、即与反应管的纵长方向垂直的方向上的热介质流动影响反应器的除热效率。由此,为了抑制热区的生成,有效的方法是进行控制以使反应器壳体内的热介质的横向流动均匀。
作为抑制热区的生成的方法,在美国专利第3871445号说明书中,公开了一种反应装置,是具有热介质的循环装置的多管式反应装置,在反应器壳体内配置有阻挡板。通过该阻挡板的存在,在由该阻挡板区分的一区域中的热介质的横向流动、即相对于反应管的纵长方向为垂直方向的流动速度保持大致恒定,该一区域中的热移动恒定。但是在美国专利第3871445号说明书记载的方法中,与横向流动相比,纵向流动、即沿着反应管的方向上的流动产生的除热效果很差,不能说一区域中的热移动是足够恒定的。
在欧洲专利申请公开第1080780号说明书中,公开了在具有圆板型阻挡板的多管式反应器中,在反应器壳体中央部设置未配置反应管的空间部,由此减轻由纵向流动使除热性降低的影响。但是,在这样的情况下,有时在阻挡板端部处热介质流动反转的部位,在一部分的反应管中仍残留有除热性较差的部分,成为产生热区的原因。
在欧洲专利申请公开第1466883号说明书中,记载有在由固定基底式多管热交换型反应器进行气相接触氧化的方法中,为了防止因反应器壳体内的热介质流动的不均匀而产生热区,预测反应管内部的反应状态,根据该预测结果来改变反应管中的催化剂的填充规格,以使反应管间的反应状态的不均匀性减少。但在该情况下,产生了催化剂填充方法过于复杂的问题。
发明内容
本发明目的在于,解决上述问题,提供一种特别适于在氯气的制造中使用的接触气相反应用多管式反应装置,能够正常地保持反应管与热介质之间的传热,抑制过度的热区的生成并维持催化剂的寿命,可防止高温造成的反应管腐蚀或破损,且不需要复杂的规格。
本发明涉及一种接触气相反应用多管式反应装置,包括:多个反应管,平行地排列;阻挡板,能够将导入到反应器壳体中的催化剂的移动方向改变为与该反应管的纵长方向垂直的方向;空间部,设置在包括该热介质在该阻挡板的面方向上流动的部分中的一部分的区域上,未配置有该反应管;整流棒组,设置在该空间部与该反应管之间并具有与该反应管相同的纵长方向。
在本发明中,优选地,整流棒组在空间部与反应管之间以1~10列的范围排列。
此外,优选地,在反应管中填充催化剂,作为整流棒组排列有未在该反应管中填充催化剂的虚设管。
作为本发明的阻挡板,优选使用圆板型阻挡板以及开孔圆板型阻挡板。在该情况下,热介质导入部以及热介质排出部优选形成为环状导管。
此外,作为本发明的阻挡板,也优选使用缺圆型阻挡板。在该情况下,热介质导入部以及热介质排出部优选形成为分割管。在阻挡板为缺圆型阻挡板时,优选在缺圆部设置空间部。
在本发明中,优选地,在反应管中填充催化剂,通过改变催化剂的种类和/或量而将该反应管的内部分割为多个分区。
本发明的接触气相反应用多管式反应装置特别优选在氯气的制造中使用。
根据本发明,通过在未配置反应管的空间部与反应管之间设置整流棒组,使与反应管接触的热介质的流动均匀,使反应管与热介质之间的传热保持正常。由此能抑制过度的热区的生成,维持催化剂寿命,且防止反应管的腐蚀或破损。此外,本发明的多管式反应装置通过配置整流棒组而将反应管与热介质之间的传热保持为正常,所以具有不需要复杂的运转条件控制这一优点。
附图说明
图1是表示本发明的接触气相反应用多管式反应装置的一例的剖视图。
图2是表示本发明的接触气相反应用多管式反应装置的其它例的剖视图。
图3是表示图1所示的接触气相反应用多管式反应装置中排列的阻挡板的形状的图。
图4是表示图2所示的接触气相反应用多管式反应装置中排列的阻挡板的形状的图。
图5是表示本实施例的模拟中采用的缓冲器(阻挡板)的形状的图。
附图标记说明
1、2多管式反应装置
101、201上部管板
102、202下部管板
103、203热介质导入部
104、204热介质排出部
105、106、205、206、3、4、5阻挡板
107、207、52反应管
108、208、53整流棒组
109、209反应器壳体
110、111、210、211空间部
31、33、41、43边界
51缺口部
具体实施方式
本发明的接触气相反应用多管式反应装置包括:多个反应管,平行地排列;阻挡板,能够将导入到反应器壳体中的催化剂的移动方向改变为与该反应管的纵长方向垂直的方向;空间部,设置在该热介质在该阻挡板的面方向上流动的部分中的一部分的区域上,未排列有该反应管;整流棒组,设置在该空间部与该反应管之间,具有与该反应管相同的纵长方向。
图1是表示本发明的接触气相反应用多管式反应装置的一例的剖视图。多管式反应装置1包括上部管板101、下部管板102、热介质导入部103、热介质排出部104、阻挡板105、106、反应管107、整流棒组1 08。热介质利用例如轴流泵、离心泵等的泵(未图示)等从热介质导入部103经由分割管导入到反应器壳体109的内部,沿箭头的方向流动并从热介质排出部104排出。另外,图1所示的多管式反应装置的阻挡板105、106是缺圆型阻挡板,阻挡板105、106在反应管的纵长方向上交替配置。另外,阻挡板106和105之间的间隔没有特定的限制,可根据目的配置为使得例如热介质与反应管之间以1000W/m2以上的传热系数进行传热。
在设有阻挡板的反应器壳体中,在热介质的移动方向发生改变的部位热介质流动的线速度降低或发生紊流,所以该部位的除热效率有降低的趋势。此外,例如在反应器壳体中存在热膨胀件的情况下,热介质流动集中在热膨胀件高度处,有在热膨胀件上下的阻挡板附近热介质流动的线速度降低的情况。另外,所谓热膨胀件是指用于吸收因反应管组与反应器壳体之间的热膨胀引起的伸缩的差的伸缩接头。
在本发明中,在反应器壳体109中,在包括热介质在阻挡板105、106的面方向上流动的部分中的一部分的区域中,设置作为不排列反应管107的空间部110、111。即、在易于因热介质流动的紊乱而使除热性变差的部分并不排列反应管107,由此均匀地进行反应管107的除热,抑制过度的热区的形成。但是,在设置空间部110、111时,若仅仅依靠不在该空间部排列反应管,则有时会因为在排列有反应管的部位与该空间部之间热介质流动发生变化而使空间部附近的反应管的除热性不充分。由此,本发明的多管式反应装置,在该空间部110、111与反应管107之间设置纵长方向与该反应管相同的整流棒组108。虽然由于热介质的移动方向的变更而使空间部处的热介质流动产生紊乱,但是通过将热介质的流路设计成,使得热介质经排列有整流棒组108的部位到达排列反应管107的部分,能基本上消除与反应管107接触的热介质的流动中的紊乱。由此,多个反应管107的除热性均匀,并且该除热性被保持在所期望的程度,抑制热区的生成。
另外,在图1的多管式反应装置中,示出了热介质流动为向上流动的情况,但是本发明不限于此,可以采用向上流动、向下流动中的任一种。此外,供给到反应管107中的接触气相反应的原料也可以用向上流动、向下流动中的任一种方式供给。即、原料与热介质的流路并行流动或逆向流动均可,根据目的适当选择即可。
另外,在本发明的接触气相反应用多管式反应装置中,优选设置循环机构,使得从热介质排出部104排出的热介质被冷却后,再次从热介质导入部103供给到反应器壳体内。
图2是表示本发明的接触气相反应用多管式反应装置的其他例子的剖视图。多管式反应装置2包括上部管板201、下部管板202、热介质导入部203、热介质排出部204、阻挡板205、106、反应管207、整流棒组208。热介质利用例如轴流泵、离心泵等的泵(未图示)等从热介质导入部203经由环状导管导入到反应器壳体209的内部,沿箭头的方向流动并从热介质排出部204排出。另外,图2所示的多管式反应装置的阻挡板205是开孔圆板型阻挡板,阻挡板206是圆板型阻挡板,阻挡板205、206在反应管的纵长方向上交替配置。另外,阻挡板206和205之间的间隔没有特定的限制,可根据目的适当设计,例如排列为使得热介质与反应管之间以1000W/m2以上的传热系数进行传热。
在图2的多管式反应装置中利用环状导管供给热介质。环状导管的热介质导入部203以及热介质排出部204排列为包围该多管式反应装置的全周。优选地,在环状导管中,在多管式反应装置的全周范围内间歇地设置开口部,从该开口部导入或排出热介质。
另外,在图2的多管式反应装置中,与图1的多管式反应装置相同地,接触气相反应的原料可以用向上流动、向下流动中的任一种方式供给,热介质流动也可以采用向上流动、向下流动中的任一种。即、原料与热介质的流路并行流动或逆向流动均可,根据目的适当选择即可。
图3是表示图1所示的接触气相用多管式反应装置中排列的阻挡板的形状的图。在阻挡板3中,反应管107及整流棒组108贯通除空间部110、111之外的部分,利用阻挡板3来保持反应管107及整流棒组108。由分割管形成的热介质的流动方向如箭头所示。另外,图1中的阻挡板105具有以空间部110作为缺圆部的不完整形状,阻挡板106具有以空间部111作为缺圆部的不完整形状。阻挡板105与阻挡板106交替配置,阻挡板105中的空间部110和阻挡板106中的空间部111成为热介质的流路。在图3中,整流棒组108沿着空间部110、111与排列反应管107的部位之间的边界31、33排列为1列,但是也可以排列为2列以上,反应管107以及整流棒组108的根数以及排列并不限定于此。
图4是表示图2所示的接触气相用多管式反应装置中排列的阻挡板的形状的图。在阻挡板4中,反应管107及整流棒组108贯通除空间部210、211之外的部分,利用阻挡板4来保持反应管207及整流棒组208。由环状导管形成的热介质的流动方向如箭头所示。另外,阻挡板205具有以空间部210作为开孔部的不完整形状,阻挡板206具有以空间部111作为欠缺部的形状。阻挡板205与阻挡板206交替配置,阻挡板205中的空间部210和阻挡板206中的空间部211成为热介质的流路。在图4中,整流棒组208沿着空间部210、211与排列反应管的部位之间的边界41、43排列为1列,但是也可以排列为2列以上,反应管207以及整流棒组208的根数以及排列并不限定于此。
在图1~图4中,示出了在空间部与反应管之间各排列一列整流棒组108、208的情况,但本发明不限于此,优选地,整流棒组在空间部与反应管之间沿着空间部与反应管的边界线在1~10列的范围内排列。通过将整流棒组排列为1列以上,得到使与反应管接触的热介质的流动近似于平流的效果,若排列在10列以内,则可以防止因减少反应管的排列根数而造成的制造效率降低,并且防止因反应装置大型化而造成的制造成本上升。整流棒组优选地排列在1~5列、特别是1~3的范围内。
作为整流棒组的形状,优选采用圆柱、四棱柱、三棱柱等的形状,但该形状不限于此,只要是与不排列该整流棒组时相比可使与多个反应管接触的热介质的流动均匀的形状就可以。因为通常在接触气相反应中催化剂填充在反应管中,所以作为整流棒组,优选地排列在该反应管中未填充催化剂的虚设管。在该情况下,反应管与整流棒组可以由不同的材质形成,也可以由相同的材质形成。在反应管与整流棒组由相同材质形成的情况下,因为该反应管与该整流棒组之间的热传导动作几乎没有差异,所以装置的设计和热介质的供给条件的控制可以变得简化。
作为本发明的多管式反应装置中的反应管的优选材质,可举出例如金属、玻璃、陶瓷等。作为金属材料,例如Ni、SUS316L、SUS310、SUS304、哈氏合金S、哈氏合金C以及镍铬铁合金等,但其中Ni为优选,特别是碳含有量为0.02质量%以下的Ni为优选。
作为整流棒组的材质,与上述的反应管同样地,优选使用例如金属、玻璃、陶瓷等。作为金属材料,优选使用例如Ni、SUS316L、SUS310、SUS304、哈氏合金S、哈氏合金C以及镍铬铁合金等材质,例如,优选采用反应管为Ni、整流棒组为铁的组合,或者采用反应管为Ni、整流棒组为Ni的组合。
作为在本发明的多管式反应装置中优选使用的热介质,可以使用作为接触气相反应的热介质所通常采用的热介质,例如可举出熔融盐、有机热介质或熔融金属等,但从热稳定性或处理容易的方面出发优选为熔融盐。作为熔融盐的组成,可以是硝酸钾50质量%与亚硝酸钠50质量%的混合物,硝酸钾53质量%、亚硝酸钠40质量%与硝酸钠7质量%的混合物等。
作为本发明中的阻挡板,优选使用圆板型阻挡板、开孔圆板型阻挡板、缺圆型阻挡板等已有的阻挡板。在使用例如图3所示的缺圆型阻挡板的情况下,热介质导入部及排出部优选为分割管。此外,在使用例如图4所示的圆板型阻挡板以及开孔圆板型阻挡板的情况下,热介质的导入部及排出部优选为环状导管。
在例如排列图3所示的缺圆型阻挡板作为阻挡板的情况下,设于缺圆部的空间部110、111成为热介质的流路,优选地在该空间部110、111与反应管107之间排列整流棒组108。该情况下,能够在该空间部110、111以外的部位高效地布置反应管,得到良好的制造效率。
此外,作为阻挡板,在例如图4所示的圆板型阻挡板以及开口圆板型阻挡板交替配置的情况下,设于该开口圆板型阻挡板的开孔部的空间部210、以及设于该圆板型阻挡板的周缘与反应器壳体的侧壁之间的空间部211成为热介质的流路,优选地在该空间部210、211与反应管207之间排列整流棒组208。该情况下,能够在该空间部210、211以外的部分高效地布置反应管207,得到良好的制造效率。
在本发明中,优选地所有反应管都贯通阻挡板并由其保持。在该情况下,在阻挡板的面方向上流动的热介质与反应管选择性地接触,所以除热性良好。特别优选地,所有反应管与整流棒组都贯通阻挡板并由其支承。
在本发明中,反应管的尺寸并没有特别限定,可以使用在气相接触反应中通常使用的反应管。例如,从反应效率以及除热效率的方面出发,优选采用的反应管尺寸为:内径10~70mm、外径13~80mm、管长1000~10000mm左右。
本发明的多管式反应装置中的反应管的布局没有特别限定,但是优选地使各反应管的中心的间隔在反应管外径的1.1~1.6倍的范围内,更优选在1.15~1.4倍的范围内。若各反应管的中心的间隔在反应管外径的1.1倍以上,则可充分确保热介质的流路而使除去反应热的性能良好,若在1.6倍以下,则能防止因反应装置大型化而导致的制造成本上升,并且防止因热介质的线速度降低和/或偏流而导致的除热性降低。
在本发明中设置缺圆型阻挡板的情况下,优选地,空间部在反应器壳体的径向上的截面积为该方向上的反应器壳体的截面积的5~30%的范围内,更优选在5~20%的范围内。若空间部的上述截面积在反应器壳体的上述截面积的5%以上,则可充分确保热介质的流路而使除去反应热的性能良好,若在30%以下,则能防止因反应装置大型化而导致的制造成本上升,并且防止因热介质的线速度降低和/或偏流而导致的除热性降低。
在使用开孔圆板型阻挡板作为本发明的阻挡板时,优选地,该开孔圆板型阻挡板的孔截面积在反应器壳体内的截面积的2~40%的范围内,更优选在5~20%的范围内。若该开孔圆板型阻挡板的孔截面积在2%以上,则能防止热介质流动失速而导致的除热性降低,若在40%以下,则能确保除热性均匀的区域在一定程度以上,可以充分增多排列的反应管的根数,制造效率良好。
在接触气相反应中,通常在反应管中填充催化剂。在该情况下,优选地通过改变催化剂的种类和/或量而将该反应管的内部分割为多个分区。在向填充了催化剂的反应管中供给原料时,反应管入口即原料供给口附近的反应速度快,而随着距反应管入口的距离的变长,原料浓度降低,反应速度变慢。因此,有时在放热反应中,特别在反应管入口附近的放热量过大而生成热区。在反应管改变催化剂的种类和/或量而分割为多个分区时,例如在反应管入口附近填充催化剂活性较低的催化剂或减少催化剂量,从而防止失控反应,随着距反应管入口的距离变长,可以填充催化剂活性较高的催化剂、或增大催化剂的量来进行填充。此时,反应管内部的反应速度的离散变少,可以抑制过度的热区的生成,并且能使放热反应均匀进行而提高原料的转化率。此外,也可以将反应器壳体侧分割,使不同温度的热介质在各自的区域独立地循环来进行温度控制。
本发明适于用作在氧化反应等放热反应中使用的反应装置,例如可在以氯化氢气体和氧气作为原料生成氯气的接触气相氧化反应;或者以丙烯或异丁烯与氧气作为原料生成(甲基)丙烯醛、进而生成(甲基)丙烯酸的接触气相氧化反应等中采用,但特别优选在氯气的制造中使用。此外,本发明的接触气相反应用多管式反应装置可有效地用于反应器尺寸大且易于产生热介质的流动不均的系统中。
氯气可以通过以下方式制造:在填充了催化剂的反应管中导入作为原料的氯化氢气体和氧气,通过接触气相反应制造出氯气。氯化氢气体可以以在例如氯化合物的热分解反应或燃烧反应、有机化合物的光气化反应或氯化反应、焚烧炉的燃烧等中产生的含有氯化氢的气体的形式被供给。此时,含有氯化氢的气体中的氯化氢气体的浓度从制造效率的观点出发例如可为10体积%以上、进而50体积%以上、80体积%以上。
关于氧气,可以仅单独供给氧气,也可以例如以空气等形式供给,只要是作为含有氧的气体供给即可。含有氧的气体中的氧的浓度从制造效率的观点出发例如可为80体积%以上、进而90体积%以上。氧浓度为80体积%以上的含氧气体可以利用例如空气的压力振动法或深冷分离等通常的工业方法得到。
作为催化剂,优选使用含有钌和/或钌化合物的催化剂。此时,无需防止由催化剂成分的挥发或飞散而堵塞配管等的故障,并且无需对挥发或飞散的催化剂成分进行处理的工序。进而,从化学平衡的观点出发可在更有利的温度下制造氯,所以干燥工序、精制工序、吸收工序等后续工序简化,可以将设备成本及运转成本抑制得较低。特别是,优选使用含有氧化钌的催化剂。在使用了含有氧化钌的催化剂的情况下,具有氯化氢的转化率显著提高的优点。催化剂中的氧化钌的含有量从催化剂活性与催化剂价格实现平衡的观点出发优选地在1~20质量%的范围内。催化剂可以载持在二氧化硅、石墨、金红石型或锐钛型的二氧化钛、二氧化锆、氧化铝等的载体上加以使用。
在反应管中设置改变了催化剂的种类和/或量的多个分区的情况下,可优选采用以下方案:在反应器的入口侧填充氧化钌含有量少的催化剂,在出口侧填充氧化钌含有量多的催化剂。此时,具有以下优点:可抑制失控反应,使反应管中的反应速度分布比较均匀,由此抑制过度的热区的生成。
实施例
以下,根据实施例对本发明进行更详细的说明,但本发明并不限于这些实施例。
(1)热介质流量的模拟
对图1所示的多管式反应装置1中的反应器壳体109内的热介质流量进行模拟。图5是表示在本实施例的模拟中采用的缓冲器(阻挡板)的形状的图。设置反应管52以及整流棒组53,使其贯通设有缺口部51的阻挡板5。另外,在本实施例中,整流棒组53在空间部与反应管52之间设有1列。
从缓冲器的缺口部51朝向中心线,求出到缓冲器面上50mm为止的区域中流过的热介质流量的水平分量(即缓冲器的面方向分量),分析缓冲器的上下的热介质的流动。这是因为认为垂直分量沿着反应管流动而几乎不对冷却发挥作用。热介质的流量的水平分量越大,冷却效率越好,越难生成热区。此外,若热介质从中心线朝向缺口部51逆流,则会产生热介质流动的涡旋,冷却效率降低。模拟模型的参数如下所示。
(反应容器)
内径:450mm
缓冲器(阻挡板)间隔:277mm
(缓冲器(阻挡板))
主体内径W1:450mm
缓冲器边缘长度W2:306mm
从反应容器的中心线到缓冲器的缺口部的距离W3:165mm
厚度:6mm
(反应管)
外径21.4mm
间距W4:29mm
排列:正三角形排列
根数:158根
(整流棒组)
外径:22mm
间距W5:29mm
排列:沿着缺口部排列1列
根数:11根/1列
(热介质)
种类:HTS
流量:18m3/h
另外,作为模拟分析软件,采用“Fluent”(美国Fluent Inc公司制)。
(2)模拟结果
以上述参数进行模拟的结果如表1所示。根据表1的结果,在排列整流棒组53的部位热介质流量为负,所以表示在该部位热介质从中心线向缺口部51逆流。另一方面,在第2列反应管的部位热介质流量的水平分量足够大,表示热介质正常流动。根据这样的结果可知,通过在反应管52与缺口部51之间设置整流棒组53,可只在热介质流动正常的部位排列反应管52。因为热区主要在热介质流动异常的部分产生,所以在通过反应管的热介质流动被正常化的本发明的多管式反应装置中,认为可以抑制过度的热区的生成。
表1
实施例 第1列(整流棒组)处的热介质流量 -0.04m3/h
第3列(第2列反应管)处的热介质流量 +0.05m3/h
本次公开的实施方式以及实施例仅为例示,不应理解为对本发明的限制。本发明的范围不是由上述说明示出而是由权利要求书示出,包括与权利要求的范围均等的方案以及范围内的所有变更。
工业实用性
本发明的多管式反应器通过正常地保持反应管与热介质之间的传热、抑制过度的热区的生成,特别适于用作由含有氯化氢的气体与含氧气体的反应来制造氯的多管式反应装置。

Claims (10)

1.一种接触气相反应用多管式反应装置,包括:
多个反应管,平行地排列;
阻挡板,能够将导入到反应器壳体中的催化剂的移动方向改变为与上述反应管的纵长方向垂直的方向;
空间部,设置在包括上述热介质在上述阻挡板的面方向上流动的部分中的一部分的区域中,未排列有上述反应管;
整流棒组,设置在上述空间部与上述反应管之间,具有与上述反应管相同的纵长方向。
2.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,上述整流棒组在上述空间部与上述反应管之间以1~10列的范围排列。
3.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,在上述反应管中填充催化剂,并排列未在上述反应管中填充催化剂的虚设管来作为上述整流棒组。
4.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,作为上述阻挡板,配置有圆板型阻挡板以及开孔圆板型阻挡板。
5.如权利要求4所述的接触气相反应用多管式反应装置,其特征在于,热介质导入部以及热介质排出部形成为环状导管。
6.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,作为上述阻挡板,配置有缺圆型阻挡板。
7.如权利要求6所述的接触气相反应用多管式反应装置,其特征在于,热介质导入部以及热介质排出部形成为分割管。
8.如权利要求6所述的接触气相反应用多管式反应装置,其特征在于,在上述缺圆型阻挡板的缺圆部设置上述空间部。
9.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,在上述反应管中填充催化剂,通过改变上述催化剂的种类和/或量而将上述反应管的内部分割为多个分区。
10.如权利要求1所述的接触气相反应用多管式反应装置,其特征在于,用于氯气的制造。
CN200580032518A 2004-09-27 2005-09-26 接触气相反应用多管式反应装置 Active CN100574860C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004278758A JP4205035B2 (ja) 2004-09-27 2004-09-27 接触気相反応用多管式反応装置
JP278758/2004 2004-09-27

Publications (2)

Publication Number Publication Date
CN101027122A true CN101027122A (zh) 2007-08-29
CN100574860C CN100574860C (zh) 2009-12-30

Family

ID=35329109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580032518A Active CN100574860C (zh) 2004-09-27 2005-09-26 接触气相反应用多管式反应装置

Country Status (6)

Country Link
US (1) US7771674B2 (zh)
EP (1) EP1813346B1 (zh)
JP (1) JP4205035B2 (zh)
KR (1) KR101184235B1 (zh)
CN (1) CN100574860C (zh)
WO (1) WO2006035951A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316971A (zh) * 2008-12-16 2012-01-11 巴斯夫欧洲公司 制备光气的反应器和方法
CN102316970A (zh) * 2008-12-16 2012-01-11 巴斯夫欧洲公司 制备光气的反应器和方法
CN105526812A (zh) * 2015-12-23 2016-04-27 山东大学 一种催化氧化换热器及其工作方法
CN105561893A (zh) * 2016-01-26 2016-05-11 浙江工业大学 一种油脂环氧化反应装置
CN105980346A (zh) * 2014-02-04 2016-09-28 沙特基础工业全球技术有限公司 生产碳酸酯的方法
CN106767085A (zh) * 2016-12-14 2017-05-31 天长市康宁甘油科技有限公司 一种甘油高效快速冷却装置
CN109225095A (zh) * 2018-11-28 2019-01-18 内蒙古三爱富万豪氟化工有限公司 光氯化反应器和制备二氟一氯乙烷的方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036192B2 (ja) * 2006-02-09 2012-09-26 住友化学株式会社 触媒の充填方法
JP2006212629A (ja) * 2006-02-21 2006-08-17 Sumitomo Chemical Co Ltd 多管式固定床反応装置
US8716689B2 (en) * 2009-04-21 2014-05-06 Duke University Thermal diode device and methods
US8034308B2 (en) * 2009-06-09 2011-10-11 Honeywell International, Inc. Multi-stage multi-tube shell-and-tube reactor
CN101929808B (zh) * 2010-05-30 2012-05-23 大连海新工程技术有限公司 一种箱式多管程换热器
JP2012016670A (ja) * 2010-07-09 2012-01-26 Ihi Corp 多管式反応装置及び該多管式反応装置における邪魔板の設置位置設定方法
WO2012061755A1 (en) * 2010-11-05 2012-05-10 Fluor Technologies Corporation Flue gas diffuser objects
US9534779B2 (en) * 2011-04-04 2017-01-03 Westinghouse Electric Company Llc Steam generator tube lane flow buffer
JP4860008B1 (ja) * 2011-06-02 2012-01-25 株式会社アサカ理研 過酸化水素分解装置及び過酸化水素の分解方法
KR101422630B1 (ko) * 2011-12-30 2014-07-23 두산중공업 주식회사 열교환형 선개질기
JP6156860B2 (ja) 2012-04-04 2017-07-05 住友化学株式会社 多管式反応器および多管式反応器の設計方法
CN105408249A (zh) 2013-07-26 2016-03-16 沙特基础全球技术有限公司 用于生产高纯光气的方法和装置
CN105408250B (zh) 2013-07-26 2018-08-07 沙特基础全球技术有限公司 用于生产高纯光气的方法和装置
KR101737670B1 (ko) * 2013-11-21 2017-05-18 주식회사 엘지화학 다관식 반응기
RU2539984C1 (ru) * 2013-12-24 2015-01-27 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") Реактор со стационарным слоем катализатора
CN105960389A (zh) 2014-02-04 2016-09-21 沙特基础工业全球技术有限公司 用于生产碳酸酯的方法
EP3405731A4 (en) * 2016-01-22 2019-11-06 Fulton Group N.A., Inc. PIPE CONFIGURATION FOR A HEAT EXCHANGER, HEAT EXCHANGER WITH THE PIPE CONFIGURATION, LIQUID HEATING SYSTEM THEREWITH AND METHOD FOR THE PRODUCTION THEREOF
CN110088555B (zh) * 2016-07-19 2021-10-12 鲁姆斯科技公司 进料流出物热交换器
US20180372417A1 (en) * 2017-06-26 2018-12-27 Solex Thermal Science Inc. Heat exchanger for heating or cooling bulk solids
CN108680047B (zh) * 2018-03-21 2020-03-20 无锡宝丰石化装备有限公司 一种防冲击的管式换热器
GB2621960A (en) * 2021-06-30 2024-02-28 Resonac Corp Method for producing alcohols

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793928A (fr) * 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau Appareil pour la mise en oeuvre de processus chimiques exothermiques et endothermiques
DE3006900C2 (de) * 1980-02-23 1982-07-01 Davy McKee AG, 6000 Frankfurt Vorrichtung zur Durchführung der katalytischen Oxidation gasförmiger Schwefelverbindungen zu Schwefeltrioxid
JPS5883193A (ja) 1981-11-13 1983-05-18 Hitachi Ltd 熱交換器
JPH03156289A (ja) 1989-11-15 1991-07-04 Mitsubishi Heavy Ind Ltd 多管式伝熱装置
DE69003404T3 (de) 1989-02-10 1997-05-15 Mitsubishi Heavy Ind Ltd Mehrrohrtypwärmetauscher.
US5196632A (en) * 1990-08-09 1993-03-23 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US6167951B1 (en) * 1999-01-26 2001-01-02 Harold Thompson Couch Heat exchanger and method of purifying and detoxifying water
DE60035746T2 (de) 1999-08-31 2008-04-30 Nippon Shokubai Co., Ltd. Reaktor zur katalytischen Gasphasenoxidation
JP3732080B2 (ja) * 1999-08-31 2006-01-05 株式会社日本触媒 接触気相酸化反応器
JP3570322B2 (ja) 2000-01-13 2004-09-29 住友化学工業株式会社 塩素の製造方法
DE10127374A1 (de) * 2001-06-06 2002-12-12 Basf Ag Reaktor zum Testen von Katalysatorsystemen
CN100378050C (zh) 2001-12-28 2008-04-02 三菱化学株式会社 汽相催化氧化方法
CN1330618C (zh) * 2002-03-11 2007-08-08 三菱化学株式会社 催化气相氧化法
DE10258153A1 (de) * 2002-12-12 2004-06-24 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316971A (zh) * 2008-12-16 2012-01-11 巴斯夫欧洲公司 制备光气的反应器和方法
CN102316970A (zh) * 2008-12-16 2012-01-11 巴斯夫欧洲公司 制备光气的反应器和方法
CN102316971B (zh) * 2008-12-16 2014-05-21 巴斯夫欧洲公司 制备光气的反应器和方法
CN102316970B (zh) * 2008-12-16 2014-08-20 巴斯夫欧洲公司 制备光气的反应器和方法
CN105980346A (zh) * 2014-02-04 2016-09-28 沙特基础工业全球技术有限公司 生产碳酸酯的方法
CN105980346B (zh) * 2014-02-04 2018-05-18 沙特基础工业全球技术有限公司 生产碳酸酯的方法
CN105526812A (zh) * 2015-12-23 2016-04-27 山东大学 一种催化氧化换热器及其工作方法
CN105561893A (zh) * 2016-01-26 2016-05-11 浙江工业大学 一种油脂环氧化反应装置
CN105561893B (zh) * 2016-01-26 2018-05-29 浙江工业大学 一种油脂环氧化反应装置
CN106767085A (zh) * 2016-12-14 2017-05-31 天长市康宁甘油科技有限公司 一种甘油高效快速冷却装置
CN106767085B (zh) * 2016-12-14 2019-06-04 天长市康宁甘油科技有限公司 一种甘油高效快速冷却装置
CN109225095A (zh) * 2018-11-28 2019-01-18 内蒙古三爱富万豪氟化工有限公司 光氯化反应器和制备二氟一氯乙烷的方法

Also Published As

Publication number Publication date
US7771674B2 (en) 2010-08-10
KR20070059178A (ko) 2007-06-11
US20070297959A1 (en) 2007-12-27
WO2006035951A1 (ja) 2006-04-06
JP2005296921A (ja) 2005-10-27
JP4205035B2 (ja) 2009-01-07
EP1813346A4 (en) 2008-10-22
CN100574860C (zh) 2009-12-30
KR101184235B1 (ko) 2012-09-21
EP1813346B1 (en) 2011-05-18
EP1813346A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
CN100574860C (zh) 接触气相反应用多管式反应装置
JP4212888B2 (ja) プレート型触媒反応器
CN1064666C (zh) 丙烯催化气相氧化制丙烯醛
CN1170624C (zh) 催化汽相氧化方法及管壳式反应器
EP1767266B1 (en) Heat exchange reactor
CN1302842C (zh) 用于生产光气的反应器和方法
EP1080780B1 (en) Reactor for catalytic gas phase oxidation
CN101274245B (zh) 环隙气升式气固环流反应器
JP2009013180A (ja) プレート型触媒反応方法及び装置
EP3490962B1 (en) Oxidative dehydrogenation (odh) of ethane
RU2331628C2 (ru) Способ каталитического окисления в паровой фазе, осуществляемый в многотрубном реакторе
KR100450234B1 (ko) 개선된 열교환 시스템을 갖는 촉매 산화 반응기
CN1096878C (zh) 催化气相氧化方法
JP4295462B2 (ja) 気相接触酸化方法
CN102964246A (zh) 草酸二烷基酯或/和碳酸二烷基酯的制造方法及制造装置
CN105776141A (zh) 一种氯化氢催化氧化制氯气新型固定床反应器
CN214261817U (zh) 一种列片式固定床反应器
JP2006212629A (ja) 多管式固定床反応装置
RU2292946C2 (ru) Система для проведения экзотермических реакций
CN104437269A (zh) 用于生产醋酸乙烯的列管式反应器和醋酸乙烯的生产方法
CN214438883U (zh) 一种列管式热反应器构件
JP2013100294A (ja) プロピレンオキサイドの製造方法
JPH0676366B2 (ja) α,β―不飽和ニトリルの製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant