CN101022088B - Method for producing copper-gas dielectric suspension Damscus structure - Google Patents

Method for producing copper-gas dielectric suspension Damscus structure Download PDF

Info

Publication number
CN101022088B
CN101022088B CN 200710037776 CN200710037776A CN101022088B CN 101022088 B CN101022088 B CN 101022088B CN 200710037776 CN200710037776 CN 200710037776 CN 200710037776 A CN200710037776 A CN 200710037776A CN 101022088 B CN101022088 B CN 101022088B
Authority
CN
China
Prior art keywords
copper
layer
organic material
method
silicon carbide
Prior art date
Application number
CN 200710037776
Other languages
Chinese (zh)
Other versions
CN101022088A (en
Inventor
唐逸
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to CN 200710037776 priority Critical patent/CN101022088B/en
Publication of CN101022088A publication Critical patent/CN101022088A/en
Application granted granted Critical
Publication of CN101022088B publication Critical patent/CN101022088B/en

Links

Abstract

This invention relates to a method for preparing copper-gas medium suspended Damascus structure, which applies humid etching and super-critical CO2 method to remove the sacrificial layer material and realizes the copper-air medium Damascus suspended structure, which avoids the conglutination of upper and lower structures caused by surface tensile stress of a liquid during humid etch.

Description

制备铜-气体介质悬空大马士革结构的方法 To prepare a copper - Method gaseous medium is suspended damascene

【技术领域】 TECHNICAL FIELD

[0001] 本发明涉及制造半导体器件的工艺技术领域,尤其涉及在半导体后道工艺中, 制备铜-气体介质悬空大马士革结构的方法。 [0001] Technical Field The present invention relates to a process for manufacturing a semiconductor device, in particular, after a semiconductor process, directed to prepare a copper - Method suspended damascene structure gaseous medium.

【背景技术】 【Background technique】

[0002] 随着半导体器件尺寸的不断缩小,对于集成电路制造技术要求越来越高。 [0002] As the dimensions of semiconductor devices continue to shrink for integrated circuit fabrication techniques have become increasingly demanding. 对于后道集成技术而言,减少互连延迟(RCdelay)成为一个关键性问题,因此人们不断地寻找低介电常数的介质来取代SiO2,以降低互连电容。 For, after integration technology, the interconnect delay reduction (RCdelay) becomes a critical issue, so people are constantly looking for a low dielectric constant medium instead of SiO2, in order to reduce interconnect capacitance. 气体介质的介电常数极低,由理论研究可知,在SiO2淀积过程中形成的金属线间气体缝隙,层内金属线间电容的减小率将高达40%,总体线间电容降低20%。 Low dielectric constant gaseous medium, is clear from theory, between metal lines formed in the SiO2 deposition process gas gap, the interlayer capacitance reduction rate of the metal wire will be up to 40%, between 20% overall capacitance line . 有关气体介质的大马士革金属工艺已是当今研究热 Damascus metal process gas media related research is already hot today

;

[0003] 目前气体介质悬空结构的形成方法可分为两大类:利用化学气相沉积SiO2的固有工艺特点形成空隙,以及去除牺牲层工艺得到气体介质。 [0003] Current methods Suspended forming gaseous medium can be divided into two categories: using a chemical vapor deposition process characteristics inherent void formed of SiO2, and removing the sacrificial layer process results in gaseous medium. 前一种方法的优点是具有较好的机械强度,但形成时要求有一定深宽比的介质或金属支柱,对集成提出了更高的要求。 Advantage of the former method is to have good mechanical strength, but requires a medium or metal post forming the aspect ratio of a higher integration requirements. 而用去除牺牲层工艺得到气体介质相比于前一种方法来说可以制造出更大的气体气隙,虽然机械强度不如前一种结构,但其介电常数也更接近于气体的介电常数1。 And removing the sacrificial layer process using a gaseous medium obtained compared to the former method, it is possible to manufacture a larger gas gap, although not as good as the mechanical strength of the former structure, but its dielectric constant closer to a dielectric gas 1 constant.

[0004] 去除牺牲层的方法可分为干法和湿法两大类,众所周知,干法刻蚀具有较好的各向异性,但在经过等离子轰击后容易造成衬底材料的损伤,随着集成电路尺寸的不断缩小,工艺对材料的任何耗损都会影响其性能。 [0004] The method of removing the sacrificial layer can be divided into two major categories of dry and wet, it is known, has good dry etching anisotropy, but after other easy to damage the substrate material after ion bombardment, with IC dimensions continue to shrink, the process affect the performance of any material will wear.

[0005] 对于湿法刻蚀,根据微机电系统(MEMS)的制造经验,用湿法形成悬空结构时,当两个结构距离太近,由于液体的表面张应力,在干燥过程中,容易将上层结构下拉,造成上层结构与下层结构的粘连。 [0005] For the wet etching, the experience of manufacturing a microelectromechanical system (MEMS), and forming the floating structure by the wet method, a short distance when the two structures, due to the tensile stress of the surface of the liquid, during drying, easy to superstructure drop down, causing adhesions superstructure and the underlying structure. 一旦形成这种粘连,结构将永远无法恢复,这对器件来说是致命的,因此在湿法形成悬空结构时必须防止这一现象发生。 Once the formation of such adhesions, the structure will never be able to recover, which is fatal for the device, it is necessary to prevent this from happening when forming the floating structure in the wet.

[0006] 【发明内容】 [0006] [DISCLOSURE]

[0007] 本发明的目的在于提供一种制备铜_气体介质悬空大马士革结构的方法,克服了现有技术中,用湿法去除牺牲层时,由于液体的表面张应力引起的上层结构与下层结构的粘连。 When [0007] The object of the present invention is to provide a method for preparing a copper _ suspended damascene gaseous medium, overcomes the prior art, the sacrificial layer is removed by a wet, since the tensile stress caused by the upper surface of the liquid and the structure of the underlying structure adhesions.

[0008] 本发明是通过以下技术方案实现的:一种制备铜_气体介质悬空大马士革结构的方法,采用湿法刻蚀并结合超临界二氧化碳法去除牺牲层材料,实现铜-空气介质大马士革悬空结构。 [0008] The present invention is achieved by the following technical solution: A method for copper damascene suspended _ gaseous medium preparation, wet etching and removing the sacrificial layer material and supercritical carbon dioxide process, to achieve a copper - Suspended air medium Damascus .

[0009] 其中具体包括下列步骤:A.在结构的底层上涂一层碳化硅作为刻蚀阻挡层; B.在碳化硅层上旋涂一层有机材料作为牺牲层;C.在所述的有机材料层上淀积一层碳化硅作为刻蚀阻挡层;D.采用标准大马士革工艺形成铜_有机材料互连结构;E.在铜-有机材料互连结构上,沉积一层碳化硅刻蚀阻挡层;F.在有机材料上的碳化硅层上刻蚀去牺牲层孔;G.用有机溶液溶解牺牲层的有机材料,并用去离子水清洗;H.用超临界二氧化碳法进一步清除牺牲层的有机材料,并释放应力,形成铜-气体介质悬空大马士革结构;I.封闭碳化硅层上的去牺牲层孔。 [0009] which comprises the following steps: A underlying structure coated on a silicon carbide layer as an etch barrier; B. spin-coated on the silicon carbide layer is a layer of organic material as a sacrificial layer; in the C. depositing a layer of organic material on the silicon carbide layer as an etch barrier; D standard process for forming a copper damascene interconnect structure of an organic material _;.. E copper - on the interconnect structure of an organic material, depositing a layer of silicon carbide etch barrier layer;. F etching on the silicon carbide layer on the organic material to the sacrificial layer holes; G sacrificial layer is dissolved organic material with an organic solution and washed with deionized water;.. H further remove the sacrificial layer method with supercritical carbon dioxide organic material, and the release of stress, a copper - suspended damascene gaseous medium; hole sacrificial layer to a silicon carbide layer I enclosed.

[0010] 所述的制备铜-气体介质悬空大马士革结构的方法,在完成步骤A后,多次重复步骤B、C、D、E、F,再进行步骤G、H、I,可以形成多层铜-气体介质悬空大马士革结构。 Preparation of the copper [0010] - Method suspended damascene structure gaseous medium, after completion of step A, step repeatedly B, C, D, E, F, and then proceeds to step G, H, I, may be formed in a multilayer copper - suspended damascene gaseous medium.

[0011] 所述的制备铜-气体介质悬空大马士革结构的方法,在D步骤前,还包括在所述的有机材料层及沉积于其上的碳化硅层中嵌入二氧化硅支柱的步骤。 Preparation of the copper [0011] - Method suspended damascene structure gaseous medium, before step D, further comprising the step of silica embedded in the strut of the organic material layer and a silicon carbide layer deposited thereon in.

[0012] 所述的制备铜-气体介质悬空大马士革结构的方法,所述的二氧化硅支柱分布在铜-有机材料互连结构中的铜的周围及相隔特定距离的有机材料中。 Preparation of the copper [0012] - the gaseous medium suspended damascene method, the distribution of silica in the copper pillar - around the copper interconnect structure of an organic material and spaced apart a certain distance in organic materials.

[0013] 所述的制备铜-气体介质悬空大马士革结构的方法,述的二氧化硅支柱分布在铜-有机材料互连结构中的铜的周围时,二氧化硅支柱的宽度应大于铜-有机材料互连结构中的铜的宽度。 Preparation of the copper [0013] - Method suspended damascene structure gaseous medium, said silica pillars distributed in the copper - organic materials in the interconnect structure around the copper pillar should be greater than the width of the silica copper - Organic width of copper interconnect structure material.

[0014] 所述的制备铜-气体介质悬空大马士革结构的方法,在H步骤中,用超临界二氧化碳法清除牺牲层的有机材料时,其处理压力应为1070-3500psi,处理温度应为32-49°C,处理时间应为50-500秒。 Preparation of the copper [0014] - Method suspended damascene gaseous medium, and in step H, the sacrificial layer removing organic material with supercritical carbon dioxide method, the process pressure should 1070-3500psi, the processing temperature should be 32- 49 ° C, the treatment time should be 50 to 500 seconds.

[0015] 所述的铜制备-气体介质悬空大马士革结构的方法,在I步骤中,采用等离子氧化物,封闭碳化硅层上的去牺牲层孔。 [0015] The copper Preparation - Method suspended damascene gaseous medium, and in step I, using plasma oxide hole blocking layer to the sacrificial layer of silicon carbide.

[0016] 所述的铜制备-气体介质悬空大马士革结构的方法,所述的等离子氧化物为等 [0016] The copper Preparation - Method suspended gaseous medium damascene structure, the plasma oxide, etc.

离子二氧化硅。 Silica ions.

[0017] 本发明在形成铜-气体介质悬空大马士革结构时,采用超临界二氧化碳法释放应力。 [0017] In the present invention, to form a copper - the gas medium is suspended damascene, supercritical carbon dioxide using the method of stress release. 由于超临界二氧化碳的物理特性介于其液体和气体之间,比纯液体更容易从表面溢出,并且有比液体更小的表面张应力,因此通过该方法进行应力的释放时,可同时进行干燥,形成悬空结构,避免了在干燥过程中造成的上层结构和下层结构的粘连。 Due to the physical properties of supercritical carbon dioxide between its liquid and gas, from the surface more easily than pure liquid overflow, and the liquid has a smaller surface than the tensile stress, so the stress to be released by the process, drying can be performed simultaneously forming floating structure, to avoid sticking superstructure and substructure caused during the drying process.

【附图说明】 BRIEF DESCRIPTION

[0018] 图1是本发明方法的流程图; [0018] FIG. 1 is a flowchart of a method of the present invention;

[0019] 图2是在大马士革结构底层上旋涂有机材料和淀积碳化硅的示意图; [0019] FIG. 2 is a bottom damascene structure and a schematic view of a spin coating an organic material deposited silicon carbide;

[0020] 图3是在碳化硅层及有机材料层中嵌入二氧化硅支柱的示意图; [0020] FIG. 3 is a schematic diagram of silica embedded in the silicon carbide layer and the strut organic material layer;

[0021] 图4是在二氧化硅支柱中刻蚀形成铜大马士革结构沟槽的示意图; [0021] FIG. 4 is a schematic view of a copper damascene structure formed by etching trenches in the silicon dioxide struts;

[0022] 图5是在二氧化硅支柱中嵌入铜大马士革结构的示意图; [0022] FIG. 5 is a schematic view of a copper damascene structure embedded in a silica struts;

[0023] 图6是在表层碳化硅中刻蚀去除牺牲层孔的示意图; [0023] FIG. 6 is a schematic view of a surface layer of silicon carbide etched sacrificial layer removing hole;

[0024] 图7是铜-气体介质悬空大马士革结构的示意图; [0024] FIG. 7 is a copper - Damascus schematic configuration of a floating gaseous medium;

[0025] 图8是用等离子氧化物(SiO2)封闭碳化硅层上的去牺牲层孔的示意图。 [0025] FIG. 8 is a schematic view of the sacrificial layer to the hole blocking layer of silicon carbide on the plasma oxide (SiO2).

【具体实施方式】 【Detailed ways】

[0026] 以下结合本发明的具体实施例和附图,对本发明作进一步说明。 [0026] The following detailed embodiments of the present invention and the accompanying drawings, the present invention will be further described.

[0027] 首先请参阅图1,图1是本发明方法的流程图,包括下列步骤:A.在结构的底层上涂一层碳化硅作为刻蚀阻挡层;B.在碳化硅层上旋涂一层有机材料作为牺牲层;C.在所述的有机材料层上淀积一层碳化硅作为刻蚀阻挡层;D.采用标准大马士革工艺形成铜_有机材料互连结构;E.在铜_有机材料互连结构上,沉积一层碳化硅刻蚀阻挡层;F.在有机材料上的碳化硅层上刻蚀去牺牲层孔;G.用有机溶液溶解牺牲层的有机材料, 并用去离子水清洗;H.用超临界二氧化碳法进一步清除牺牲层的有机材料,并释放应力,形成铜-气体介质悬空大马士革结构;I.封闭碳化硅层上的去牺牲层孔。 [0027] Referring first to FIG. 1, FIG. 1 is a flowchart of a method of the present invention, comprises the following steps:. A substructure coated on a silicon carbide layer as an etch barrier; B was spin-coated on the silicon carbide layer. one organic material as a sacrificial layer;. C is deposited on the organic material layer of the silicon carbide layer as an etch barrier; D _ organic material forming a copper interconnect structure using standard damascene process;. _ E copper. an interconnect structure on an organic material, depositing a layer of silicon carbide etch stop layer;. F. etched on the silicon carbide layer on the organic material to the sacrificial layer holes; G sacrificial layer is dissolved organic material with an organic solution and deionized. water cleaning; H further remove the sacrificial layer is an organic material with supercritical carbon dioxide method, and the release of stress, a copper - suspended damascene gaseous medium;. the I sacrificial layer hole closed to the silicon carbide layer. 从以上步骤可以得出本发明实质上是采用湿法刻蚀并结合超临界二氧化碳法去除牺牲层材料,实现铜_空气介质大马士革悬空结构。 Can be derived from the above step according to the present invention is substantially wet etching and removing the sacrificial layer material and supercritical carbon dioxide process, to achieve a copper damascene _ Suspended air medium.

[0028] 在本发明的一个实施例中,用本发明方法形成单层铜-气体介质悬空大马士革结构的具体方法依次包括如下步骤: [0028] In one embodiment of the present invention, a method of forming a single layer of copper of the present invention - particularly gas suspended damascene method are sequentially medium comprising the steps of:

[0029] 第一步,在大马士革结构底层上淀积一层碳化硅。 [0029] The first step, depositing a layer of silicon carbide on the structural bottom Damascus.

[0030] 第二步,请参阅图2,图2是在大马士革结构底层上旋涂有机材料和淀积碳化硅的示意图。 [0030] The second step, see FIG. 2, FIG. 2 is a bottom damascene structure and a schematic view of a spin coating an organic material deposited silicon carbide. 铜3和二氧化硅4组成底层,底层上淀积有一层碳化硅1,碳化硅层上旋涂有一层有机材料2作为牺牲层,有机材料层上再淀积一层碳化硅1作为刻蚀阻挡层。 3 composed of copper and silicon dioxide underlayer 4, a silicon carbide layer is deposited on the bottom layer, an organic material is spin-coated with a layer 2 as a sacrificial layer on the silicon carbide layer, then depositing a layer of silicon carbide on the organic material layer 1 as an etching barrier layer.

[0031] 第三步,请参阅图3,图3是在碳化硅层及有机材料层中嵌入二氧化硅支柱的示意图。 [0031] The third step, see FIG. 3, FIG. 3 is a schematic diagram of silica embedded in the silicon carbide layer and the strut organic material layer. 底层是铜3和二氧化硅4,底层上涂有一层碳化硅1,在表层碳化硅1和有机材料层2中刻蚀出用于支撑悬空结构的二氧化硅支柱窗口。 Copper and the underlying silicon dioxide 3 4, 1 coated with a layer of silicon carbide, silicon dioxide etched strut for supporting window suspended structure in the surface layer 1 and the silicon carbide layer 2 on the underlying organic material. 在大马士革结构周围的二氧化硅支柱窗口应大于铜结构的窗口。 Silica window pillar around damascene copper structures should be greater than the window. 在二氧化硅窗口中淀积二氧化硅,并用化学机械抛光(CMP)去除碳化硅层上多余的二氧化硅,形成二氧化硅支柱5。 Depositing silica in a silica window, removing excess silicon carbide layer on the silicon dioxide chemical mechanical polishing (the CMP), to form a silica pillar 5.

[0032] 第四步,请参阅图4,图4是在二氧化硅支柱中刻蚀形成铜大马士革结构沟槽的示意图。 [0032] The fourth step, see FIG. 4, FIG. 4 is a schematic view of a copper damascene trench formed in the silicon dioxide etch pillars. 底层是铜3和二氧化硅4,底层上涂有一层碳化硅1,在表层碳化硅1和有机材料层2中嵌入的二氧化硅支柱5中刻蚀大马士革结构沟槽。 Copper and the underlying silicon dioxide 3 4, 1 coated with a layer of silicon carbide, a surface layer is etched damascene trench in the silicon carbide and an organic material layer 2 is embedded in the silica pillar 5 on the underlayer.

[0033] 第五步,请参阅图5,图5是在二氧化硅支柱中嵌入铜大马士革结构的示意图。 [0033] The fifth step, see FIG. 5, FIG. 5 is a schematic view of a copper damascene structure embedded in a silica strut. 底层是铜3和二氧化硅4,底层上涂有一层碳化硅1,在表层碳化硅1和有机材料层2中有二氧化硅支柱5。 3 is a bottom layer of copper 4 and silica, silicon carbide coated on the underlying layer 1, silica strut 5 in a surface layer of silicon carbide and an organic material layer 2 1. 在图4所示的二氧化硅支柱5中的大马士革结构沟槽6中用物理气相沉积方法淀积扩散阻挡层和铜籽晶层,并在图4所示的铜大马士革沟槽6中用电镀法进行铜电镀,再通过化学机械抛光去除过填的铜,并打磨至与表层碳化硅1相同的高度。 Damascene trench silica pillar 5 shown in FIG. 6 by a physical vapor deposition method of depositing a diffusion barrier layer and a copper seed layer and the copper damascene plating 6 by the trenches 4 shown in FIG. for copper electroplating method, and then filled through the removal of the copper by chemical mechanical polishing, and polished to the same height as the surface layer 1 of silicon carbide.

[0034] 第六步,请参阅图6,图6是在图5的铜大马士革结构上加涂一层碳化硅刻蚀阻挡层,并在表层碳化硅中刻蚀去除牺牲层孔的示意图。 [0034] The sixth step, see FIG. 6, FIG. 6 is applied a layer of silicon carbide etch stop layer coating on the copper damascene structure of Figure 5, a schematic view of the sacrificial layer and etching the holes in the surface layer of silicon carbide is removed. 底层是铜3和二氧化硅4,底层上有一层碳化硅1,在表层碳化硅1和有机材料层2中有二氧化硅支柱5和铜3。 3 is a bottom layer of copper and silica 4, a layer of silicon carbide on an underlayer, silica and copper pillar 5 in the surface layer 3 of silicon carbide and an organic material layer 2 1. 在有机材料2上的碳化硅1中刻蚀去除有机材料2的孔7。 Silicon carbide on the organic material is etched holes 2 1 2 7 removal of the organic material.

[0035] 第七步,将图6所示的结构放入有机溶液中,有机溶液通过孔7进入有机材料层2,溶解有机材料。 [0035] In a seventh step, the structure shown in FIG 6 into the organic solution, the organic solution of the organic material layer 2 through the hole 7 into the dissolved organic material. 待有机材料充分溶解后,用去离子水通过孔7清去溶解的有机材料。 After the organic material is fully dissolved with deionized water to clear through aperture 7 dissolved organic material.

[0036] 第八步,将去离子水清洗过的图6所示的结构放入超临界二氧化碳中,其处理压力应为1070-3500psi,处理温度应为32-49°C,处理时间应为50 — 500秒,进行进一步的清洗,干燥,释放应力,形成铜-气体介质的悬空大马士革结构。 [0036] The eighth step, the structure shown in deionized water 6 cleaned into supercritical carbon dioxide, which process pressure should 1070-3500psi, the processing temperature should be 32-49 ° C, the treatment time should be 50--500 seconds, further washed, dried, the release of stress, a copper - suspended damascene gaseous medium. 请参阅图7,图7是铜-气体介质悬空大马士革结构的示意图。 Please refer to FIG. 7, FIG. 7 is a copper - a schematic configuration of a gaseous medium Damascus suspended. 底层由铜3和二氧化硅4组成,底层上有一层碳化硅1,在表层碳化硅1和底层碳化硅1之间是气体介质8和二氧化硅支柱5,部分二氧化硅支柱中有铜3。 3 underlayer of copper and silica composition 4, a layer of silicon carbide on the bottom layer 1, between the bottom surface of the silicon carbide and silicon carbide. 1 is a gas medium 8 post 5 and silica, the silica portion of the copper pillar 3.

[0037] 第九步,请参阅图8,图8是用等离子氧化物(SiO2)封闭碳化硅层上的去牺牲层孔的示意图。 [0037] The ninth step, see Figure 8, a schematic view of the sacrificial layer to the hole on the silicon carbide layer 8 is plasma oxide (SiO2) is closed. 底层由铜3和二氧化硅4组成,底层上有一层碳化硅1,在表层碳化硅1和底层碳化硅1之间是气体介质8和二氧化硅支柱5,部分二氧化硅支柱中有铜3。 3 underlayer of copper and silica composition 4, a layer of silicon carbide on the bottom layer 1, between the bottom surface of the silicon carbide and silicon carbide. 1 is a gas medium 8 post 5 and silica, the silica portion of the copper pillar 3. 在表层碳化硅上涂一层等离子氧化物(PECVD),封闭表层碳化硅1上的孔。 Coating a layer of plasma oxide (PECVD) of silicon carbide on the surface layer, a surface layer of closed pores in the silicon carbide.

[0038] 在本发明的另一个实施例中,用本发明方法形成多层铜-气体介质悬空大马士革结构的具体方法如下: [0038] In another embodiment of the present invention, a method of forming a multilayer copper present invention - particularly damascene method vacant gaseous medium is as follows:

[0039] 先进行形成单层铜-气体介质悬空大马士革结构的方法中的第一步,然后按照多层大马士革结构的层数重复第二步至第六步(即,如大马士革结构为η层,则重复第二步至第六步η次,且η为自然数),形成多层铜-有机材料互连结构,接着进行单层铜-气体介质悬空大马士革结构的方法中的第七步至第九步,形成多层铜-气体介质悬空大马士革结构。 [0039] to be a single layer of copper - dangling first step of the gaseous medium in the damascene structure, and then repeat the second step to the sixth step (i.e., such as a damascene structure in accordance with the number of layers η layer of a multilayer damascene structure, repeat steps 2 through the sixth secondary η, and η is a natural number) to form a multilayer copper - interconnect structure of organic materials, followed by a single layer of copper - a seventh step gas damascene method suspended in a medium to ninth step to form a multilayer copper - suspended damascene gaseous medium.

[0040] 以上介绍的仅仅是基于本发明的几个较佳实施例,并不能以此来限定本发明的范围。 [0040] Described above are merely based on several preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. 任何对本发明的装置作本技术领域内熟知的部件的替换、组合、分立,以及对本发明实施步骤作本技术领域内熟知的等同改变或替换均不超出本发明的揭露以及保护范围。 Any replacement of parts for the apparatus of the present invention are well known in the art, combinations, discrete, and embodiments of the present invention, the step for changed or replaced equivalents well known in the art without departing the scope of the present disclosure and invention.

Claims (7)

1. 一种制备铜-气体介质悬空大马士革结构的方法,采用湿法刻蚀并结合超临界二氧化碳法去除牺牲层材料,实现铜-空气介质大马士革悬空结构,其特征在于,所述方法包括下列步骤:A.在结构的底层上涂一层碳化硅作为刻蚀阻挡层;B.在碳化硅层上旋涂一层有机材料作为牺牲层;C.在所述的有机材料层上淀积一层碳化硅作为刻蚀阻挡层;D.在所述的有机材料层及沉积于其上的碳化硅层中嵌入二氧化硅支柱;E.采用标准大马士革工艺在所述二氧化硅支柱中形成铜_有机材料互连结构;F.在铜-有机材料互连结构上,沉积一层碳化硅刻蚀阻挡层;G.在有机材料上的碳化硅层上刻蚀去牺牲层孔;H.用有机溶液溶解牺牲层的有机材料,并用去离子水清洗;I.用超临界二氧化碳法进一步清除牺牲层的有机材料,并释放应力,形成铜_气体介质悬空大马士革结构;J.封闭 1. A process for preparing a copper - Method damascene structure suspended gaseous medium, wet etching and removing the sacrificial layer material and supercritical carbon dioxide process, to achieve a copper - Damascus Suspended air medium, characterized in that the method comprises the steps of .: a structure on the underlying layer of silicon carbide coating as an etch barrier; B layer spin-coated on the silicon carbide layer of an organic material as a sacrificial layer; depositing a layer C on the organic material layer is. silicon carbide as an etch barrier;. D is embedded in said silica pillars and the organic material layer on the silicon carbide layer deposited thereon in;. E standard copper damascene process is formed on the silica struts _ organic material interconnect structure;. F. copper - on the interconnect structure of an organic material, depositing a layer of silicon carbide etch stop layer; G etching on the silicon carbide layer on the organic material to the sacrificial layer holes; H organic. was dissolved sacrificial layer is an organic material, and washed with deionized water;. further remove the I method with supercritical carbon dioxide sacrificial layer is an organic material, and the stress is released, forming a copper damascene structure suspended _ gaseous medium; J is closed. 碳化硅层上的去牺牲层孔。 Go sacrificial layer holes in the silicon carbide layer.
2.如权利要求1所述的制备铜-气体介质悬空大马士革结构的方法,其特征在于:在完成步骤A后,多次重复步骤B、C、D、E、F,再进行步骤G、H、I,可以形成多层铜_气体介质悬空大马士革结构。 After the completion of step A, step repeatedly B, C, D, E, F, and then proceeds to step G, H: suspended damascene method in a gaseous medium, characterized in that - the copper 2. Preparation according to claim 1 , I, may be formed multilayer copper damascene suspended _ gaseous medium.
3.如权利要求1或2所述的制备铜_气体介质悬空大马士革结构的方法,其特征在于:所述的二氧化硅支柱分布在铜-有机材料互连结构中的铜的周围及相隔特定距离的有机材料中。 3. The method of preparing a copper _ gas or claim 12 medium suspended damascene claim, wherein: said silica pillars distributed copper - copper around organic material in the interconnect structure and spaced apart a specific organic material in the distance.
4.如权利要求3所述的制备铜-气体介质悬空大马士革结构的方法,其特征在于:所述的二氧化硅支柱分布在铜-有机材料互连结构中的铜的周围时,二氧化硅支柱的宽度应大于铜-有机材料互连结构中的铜的宽度。 Method gaseous medium suspended damascene structure, characterized in that - the copper 4. Preparation of claim 3 wherein: the distribution of the copper pillar silica - the ambient copper interconnect structure of an organic material, silicon dioxide should be greater than the width of the copper pillars - the width of the copper interconnect structure of an organic material.
5.如权利要求1或2所述的制备铜_气体介质悬空大马士革结构的方法,其特征在于:在H步骤中,用超临界二氧化碳法清除牺牲层的有机材料时,其处理压力应为1070-3500psi,处理温度应为32-49°C,处理时间应为50-500秒。 5. The method of preparing a copper _ or gaseous medium of claim 12 suspended damascene claim, wherein: In step H, the sacrificial layer removing organic material with supercritical carbon dioxide method, the process pressure should be 1070 -3500psi, the processing temperature should be 32-49 ° C, the treatment time should be 50 to 500 seconds.
6.如权利要求1或2所述的铜制备_气体介质悬空大马士革结构的方法,其特征在于:在I步骤中,采用等离子氧化物,封闭碳化硅层上的去牺牲层孔。 _ The method of preparing a copper damascene structure suspended gaseous medium as claimed in claim 1 or 2, wherein: in step I, using plasma oxide hole blocking layer to the sacrificial layer of silicon carbide.
7.如权利要求6所述的铜制备-气体介质悬空大马士革结构的方法,其特征在于:所述的等离子氧化物为等离子二氧化硅。 7. The preparation according to claim 6 Copper - Method damascene floating gaseous medium, wherein: said plasma is a plasma oxide silica.
CN 200710037776 2007-03-02 2007-03-02 Method for producing copper-gas dielectric suspension Damscus structure CN101022088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710037776 CN101022088B (en) 2007-03-02 2007-03-02 Method for producing copper-gas dielectric suspension Damscus structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710037776 CN101022088B (en) 2007-03-02 2007-03-02 Method for producing copper-gas dielectric suspension Damscus structure

Publications (2)

Publication Number Publication Date
CN101022088A CN101022088A (en) 2007-08-22
CN101022088B true CN101022088B (en) 2011-04-20

Family

ID=38709799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710037776 CN101022088B (en) 2007-03-02 2007-03-02 Method for producing copper-gas dielectric suspension Damscus structure

Country Status (1)

Country Link
CN (1) CN101022088B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982879A (en) * 2010-10-15 2011-03-02 复旦大学 Low dielectric constant medium and copper interconnection structure and integration method thereof
CN103474388B (en) * 2012-06-08 2015-12-16 中芯国际集成电路制造(上海)有限公司 The method of forming an air gap between the groove
CN103474387B (en) * 2012-06-08 2016-04-20 中芯国际集成电路制造(上海)有限公司 The method of airspace is formed between groove

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413852B1 (en) 2000-08-31 2002-07-02 International Business Machines Corporation Method of forming multilevel interconnect structure containing air gaps including utilizing both sacrificial and placeholder material
CN1514478A (en) 2002-12-27 2004-07-21 国际商业机器公司 Solid super low k interlocking structure using first bridge then metal spray coating manufacturing sequence

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413852B1 (en) 2000-08-31 2002-07-02 International Business Machines Corporation Method of forming multilevel interconnect structure containing air gaps including utilizing both sacrificial and placeholder material
CN1514478A (en) 2002-12-27 2004-07-21 国际商业机器公司 Solid super low k interlocking structure using first bridge then metal spray coating manufacturing sequence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张小岗,Keith P.Johnston.超临界二氧化碳溶液体系集成处理新一代微电子器件研究进展.《科学通报》.2006,第51卷(第20期),2347-2352.

Also Published As

Publication number Publication date
CN101022088A (en) 2007-08-22

Similar Documents

Publication Publication Date Title
TWI358105B (en) Method for fabricating semiconductor device
US6753250B1 (en) Method of fabricating low dielectric constant dielectric films
US20080182403A1 (en) Uv curing of pecvd-deposited sacrificial polymer films for air-gap ild
US20050079706A1 (en) Dual damascene structure and method
US7754601B2 (en) Semiconductor interconnect air gap formation process
US20110210449A1 (en) Interconnect structures incorporating air-gap spacers
CN100514597C (en) Manufacturing method for IC with air interval
EP1521302B1 (en) Method for formation of airgaps around an interconnect
KR101018187B1 (en) Electropolishing metal layers on wafers having trenches or vias with dummy structures
TW201213225A (en) Planar cavity MEMS and related structures, methods of manufacture and design structures
US20090081862A1 (en) Air gap structure design for advanced integrated circuit technology
JP2002118170A (en) Semiconductor device and its fabricating method
US20090142934A1 (en) Method of forming semiconductor device having nanotube structures
US8476165B2 (en) Method for thinning a bonding wafer
KR20110051251A (en) Barrier layer removal method and apparatus
KR101031682B1 (en) Integrating metal with ultra low-k dielectrics
CN101111930A (en) A method of manufacturing a semiconductor device
JP2009544156A (en) Interconnect structure with dielectric voids
JP2005019721A (en) Method for manufacturing semiconductor device
US8901741B2 (en) Interconnect structures with engineered dielectrics with nanocolumnar porosity
US20070218677A1 (en) Method of Forming Self-Aligned Air-Gaps Using Self-Aligned Capping Layer over Interconnect Lines
TWI290356B (en) Semiconductor device and method for fabricating the same
CN1290173C (en) Manufacturing method of inlaid metal
DE10238024B4 (en) Method for integrating air as a dielectric in semiconductor devices
US20070020952A1 (en) Repairing method for low-k dielectric materials

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted