CN100584751C - 水平生长碳纳米管的方法及具有该碳纳米管的器件 - Google Patents

水平生长碳纳米管的方法及具有该碳纳米管的器件 Download PDF

Info

Publication number
CN100584751C
CN100584751C CN200510004590A CN200510004590A CN100584751C CN 100584751 C CN100584751 C CN 100584751C CN 200510004590 A CN200510004590 A CN 200510004590A CN 200510004590 A CN200510004590 A CN 200510004590A CN 100584751 C CN100584751 C CN 100584751C
Authority
CN
China
Prior art keywords
aluminium lamination
catalyst metal
substrate
metal layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510004590A
Other languages
English (en)
Other versions
CN1660696A (zh
Inventor
郑守桓
朴玩濬
柳寅儆
高朱惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1660696A publication Critical patent/CN1660696A/zh
Application granted granted Critical
Publication of CN100584751C publication Critical patent/CN100584751C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Abstract

本发明披露一种水平生长碳纳米管的方法,其包括:在基底上沉积铝层;在基底上形成隔绝层,以覆盖铝层;图案化基底上的隔绝层和铝层,以便暴露铝层的侧面;在铝层的暴露侧面上形成多个孔至预定的深度;在孔的底部沉积催化剂金属层;以及从催化剂金属层水平生长碳纳米管。

Description

水平生长碳纳米管的方法及具有该碳纳米管的器件
技术领域
本发明涉及水平生长碳纳米管(CNTs)的方法及具有该碳纳米管的器件,以及更具体地涉及从铝模板的孔中水平生长具有均匀直径的CNTs的方法及具有该碳纳米管的器件。
背景技术
已经对CNTs的电子和机械性能进行了广泛的研究,以将其应用于器件中。CNTs可由垂直和水平生长方法形成。使用垂直生长方法形成的CNTs用作场发射显示器(FED)中的电子发射源。此外,这种CNTs可用作液晶显示器(LCD)的背光器件中的场发射源。
水平生长的CNTs可应用在转接器(inter-connector)、微电子机械系统(MEMS)传感器、水平场发射器喷嘴(horizontal field emitter tip)等。
在现有技术中,在中间插入有图案化的催化剂(pattern catalyst)的两个电极之间施加电场,以水平生长CNTs。在该水平生长方法中,并不能容易地准确控制催化剂的数量。因而,难以均匀控制CNTs的直径。此外,CNTs的产率低而且必须施加电场。
美国专利6515339公开了从催化剂水平生长CNTs的方法,该催化剂形成为纳米点(nanodot)、纳米线(nanowire)或条纹形状,催化剂之间形成有预定的间隔,以及在催化剂上布置有垂直生长的阻挡层。然而,在该方法中,难以均匀控制CNTs的直径。
发明内容
本发明提供利用铝纳米模板中形成的孔水平生长具有预定直径的CNTs的方法。
本发明提供CNT器件,其包括从铝纳米模板中形成的孔中水平生长的CNTs。
根据本发明的一个方面,提供了水平生长碳纳米管的方法,其包括:在基底上沉积铝层;在基底上形成隔绝层(insulating layer),以覆盖铝层;图案化基底上的隔绝层和铝层,以便暴露铝层的侧面;在铝层的暴露侧面中形成多个孔至预定的深度;在孔的底部上沉积催化剂金属层;以及从催化剂金属层水平生长碳纳米管。
使用溅射或电子束蒸发沉积铝层。
优选地,“形成多个孔”包括将图案化隔绝层和铝层的所得结构浸渍在催化剂中,以便被阳极氧化。
优选地,“在孔的底部上沉积催化剂金属层”包括:将电压施加至选自金属硫酸盐溶液、金属卤化物溶液和金属硝酸盐溶液中的溶液,以形成催化剂金属层。
优选地,催化剂金属层是由选自Ni、Fe和Co的金属制成的。
优选地,通过热化学气相沉积或等离子体增强化学气相沉积,利用含碳的气体从催化剂金属层中生长碳纳米管。
根据本发明的另一方面,提供了碳纳米管器件,其包括:基底;铝层,其形成在基底上,以及其至少一个侧面与基底的边缘隔开;隔绝层,其覆盖铝层的上表面;多个孔,其从铝层的侧面水平形成至预定深度,所述铝层通过基底上的隔绝层而暴露;催化剂金属层,其形成在孔的底部上;以及碳纳米管,其是从催化剂金属层水平生长的,以便从铝层的侧面突出。
附图说明
通过参考附图,详细描述本发明的示例性实施方案,本发明的上述和其它特征和益处将变得显而易见:
图1是解释CNT器件的透视示意图,其中CNT器件是使用本发明水平生长CNTs的方法制造的;
图2A-2D是根据本发明的实施方案解释水平生长CNTs的方法的截面图;
图3是扫描电子显微镜(SEM)观察到的相片,其显示了在基底和隔绝层之间的铝层上生长的CNTs;以及
图4是图3相片的局部放大图。
具体实施方式
以下,将参考附图详细描述本发明优选实施方案的水平生长CNTs的方法。相同附图标记表示相同的元件。
图1是解释CNT器件的透视示意图,其中CNT器件是使用本发明水平生长CNTs的方法制造的。参考图1,具有图案化的侧面的铝层102a和隔绝层104a依序层叠在基底100上。多个孔103布置在铝层102a的图案化的侧面中,以及CNTs 108突出经过孔103。催化剂金属层106形成在孔103的底部,以生长CNTs 108。
图2A-2D是根据本发明的实施方案解释水平生长CNTs的方法的截面图。
如图2A所示,将具有预定厚度的铝层102沉积在基底100上。基底100可由石英、玻璃、硅晶片、铟锡氧化物(ITO)电极等制成。可使用溅射或电子束蒸发沉积约1000-
Figure C20051000459000051
的铝层102。
隔绝层104沉积在铝层102上,并起到在下述的阳极氧化过程中防止孔103形成在除铝层(图2B中的102a)的暴露侧面之外的区域内。隔绝层104可由氧化铝、二氧化硅或氮化硅制成。
如图2B所示,图案化隔绝层104和铝层102,以形成铝层102a和隔绝层104a。图案化工艺包括半导体工艺中公知的现象和蚀刻,因此在此忽略。此处,使铝层102a的侧面暴露出来。
如图2C和图1所示,具有预定长度和数十纳米直径的多个孔103是从铝层102a的暴露侧面向其内形成的。可利用阳极氧化工艺形成孔103,阳极氧化工艺是电和化学蚀刻方法。更详细地,将其上形成有铝层102a的基底100浸入在电解液中,然后将预定的电压施加至铝层102a和电极(图中未显示)。然后,阳极氧化铝层102a的暴露侧面,因而孔103从铝层102a的暴露侧面水平生长。如图2C和图1所示,多个孔103布置成一行。然而,当铝层102a的厚度增加时,可将孔103排列成多行。换句话说,因为孔103之间的距离主要取决于施加的电压,孔103排列的行数可通过控制铝层102a的厚度和施加的电压来控制。此外,孔103的长度可通过控制施加电压的时间来控制。氧化铝层(图中未显示)围绕着孔103形成。
再次参考图2C,将其内形成有孔103的层叠结构(stack structure)浸入过渡金属硫酸盐、过渡金属氯化物或过渡金属硝酸盐中,然后施加直流(DC)电压、交流(AC)电压或脉冲电压,以在孔103的底部上电沉积和化学沉积过渡金属的纳米颗粒。过渡金属可为Fe、Ni、Co或Fe、Ni和Co的合金。沉积的过渡金属是催化剂金属层106,其用于生长CNTs 108。可形成厚约0.5-2纳米的催化剂金属层106。
如图2D所示,CNTs 108是从催化剂金属层106经由形成在铝层102a的侧面的孔103生长。CNTs 108可使用热化学气相沉积(CVD)或等离子体增强CVD(PECVD)来生长。更具体地,将生成的结构放置在温度保持为约500-900℃的反应室内,然后将含碳的气体注入反应室中,以从催化剂金属层106的侧面经由铝层102的侧面中孔103水平生长CNTs 108。含碳的气体可为CH4、C2H2、C2H4、C2H6、CO等。将CNTs 108的直径限制到孔103的直径,即约几纳米至数十纳米。
图3是扫描电子显微镜(SEM)观察到的相片,其显示了在基底和隔绝层之间的铝层上生长的CNTs;以及图4是图3相片的局部放大图。参考图3和4,CNTs水平生长至数十纳米。
在上述实施方案中,已经描述了在基底上铝层的图案侧面生长CNTs,但是并不限于此。换句话说,形成了孔,通过该孔从基底上暴露的铝层生长CNTs。因此,可根据铝层的图案水平生长CNTs。
如上所述,根据本发明,在水平生长CNTs的方法中,在铝模板内形成的孔的直径可根据阳极氧化的条件来控制。形成在孔底部的催化剂金属层取决于孔的直径。因此,可生长与孔直径相同的CNTs。因此,CNTS可通过控制孔的直径来控制。此外,因为CNTs是沿着孔的水平方向生长的,所以CNTs的水平生长可根据形成孔的工艺来控制。
尽管已经参考本发明的示例性实施方案具体显示和描述了本发明,但本领域的技术人员应当理解,在不背离权利要求所限定的精神和范围的情况下,可在本发明的形式和细节上作出各种变化。

Claims (8)

1.一种水平生长碳纳米管的方法,其包括:
在基底上沉积铝层;
在基底上形成隔绝层,以覆盖铝层;
图案化基底上的隔绝层和铝层,以便暴露铝层的侧面;
在铝层的暴露侧面中形成多个孔至预定的深度;
在孔的底部上沉积催化剂金属层;以及
从催化剂金属层水平生长碳纳米管。
2.权利要求1所述的方法,其中铝层是使用溅射或电子束蒸发沉积的。
3.权利要求1所述的方法,其中形成多个孔的步骤包括:
将图案化隔绝层和铝层的所得结构浸渍在催化剂中,以便被阳极氧化。
4.权利要求1所述的方法,其中在孔的底部上沉积催化剂金属层的步骤包括:
将电压施加至选自金属硫酸盐溶液、金属卤化物溶液和金属硝酸盐溶液中的溶液,以形成催化剂金属层。
5.权利要求1所述的方法,其中催化剂金属层是由选自Ni、Fe和Co中的金属制成的。
6.权利要求1所述的方法,其中碳纳米管是通过热化学气相沉积或等离子体增强化学气相沉积,使用含碳的气体从催化剂金属层中生长的。
7.一种碳纳米管器件,其包括:
基底;
铝层,其形成在基底上以及其至少一个侧面与基底的边缘隔开;
隔绝层,其覆盖铝层的上表面;
多个孔,其从铝层的侧面水平形成至预定深度,所述铝层通过基底上的隔绝层暴露出来;
催化剂金属层,其形成在孔的底部上;以及
碳纳米管,其是从催化剂金属层水平生长的,以便从铝层的侧面突出。
8.权利要求7所述的碳纳米管器件,其中催化剂金属层是由选自Ni、Fe和Co中的金属制成的。
CN200510004590A 2004-02-25 2005-01-18 水平生长碳纳米管的方法及具有该碳纳米管的器件 Expired - Fee Related CN100584751C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR12537/2004 2004-02-25
KR12537/04 2004-02-25
KR1020040012537A KR100695124B1 (ko) 2004-02-25 2004-02-25 카본나노튜브의 수평성장방법

Publications (2)

Publication Number Publication Date
CN1660696A CN1660696A (zh) 2005-08-31
CN100584751C true CN100584751C (zh) 2010-01-27

Family

ID=34858821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510004590A Expired - Fee Related CN100584751C (zh) 2004-02-25 2005-01-18 水平生长碳纳米管的方法及具有该碳纳米管的器件

Country Status (4)

Country Link
US (1) US7115306B2 (zh)
JP (1) JP4912600B2 (zh)
KR (1) KR100695124B1 (zh)
CN (1) CN100584751C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569622A (zh) * 2010-12-14 2012-07-11 鸿富锦精密工业(深圳)有限公司 半导体发光芯片及其制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611628B1 (en) * 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
KR100667652B1 (ko) * 2005-09-06 2007-01-12 삼성전자주식회사 탄소나노튜브를 이용한 배선 형성 방법
US7371677B2 (en) * 2005-09-30 2008-05-13 Freescale Semiconductor, Inc. Laterally grown nanotubes and method of formation
US7485024B2 (en) * 2005-10-12 2009-02-03 Chunghwa Picture Tubes, Ltd. Fabricating method of field emission triodes
KR100707212B1 (ko) * 2006-03-08 2007-04-13 삼성전자주식회사 나노 와이어 메모리 소자 및 그 제조 방법
US8679630B2 (en) * 2006-05-17 2014-03-25 Purdue Research Foundation Vertical carbon nanotube device in nanoporous templates
US7561760B2 (en) * 2006-07-19 2009-07-14 Northrop Grumman Systems Corporation System and method for optical beam steering using nanowires and method of fabricating same
KR100892366B1 (ko) * 2006-12-26 2009-04-10 한국과학기술원 탄소나노튜브 전계방출 에미터 및 그 제조방법
US7678672B2 (en) * 2007-01-16 2010-03-16 Northrop Grumman Space & Mission Systems Corp. Carbon nanotube fabrication from crystallography oriented catalyst
EP1973179B1 (en) * 2007-03-19 2010-08-25 Hitachi, Ltd. Guiding nanowire growth
KR101300570B1 (ko) * 2007-05-30 2013-08-27 삼성전자주식회사 전극, 전자 소자, 전계 효과 트랜지스터, 그 제조 방법 및탄소나노튜브 성장 방법
CN101465259B (zh) * 2007-12-19 2011-12-21 清华大学 场发射电子器件
WO2010065518A1 (en) * 2008-12-01 2010-06-10 The Trustees Of Columbia University In The City Of New York Methods for graphene-assisted fabrication of micro- and nanoscale structures and devices featuring the same
WO2010065517A1 (en) 2008-12-01 2010-06-10 The Trustees Of Columbia University In The City Of New York Electromechanical devices and methods for fabrication of the same
US8715981B2 (en) * 2009-01-27 2014-05-06 Purdue Research Foundation Electrochemical biosensor
US8872154B2 (en) * 2009-04-06 2014-10-28 Purdue Research Foundation Field effect transistor fabrication from carbon nanotubes
EP2402082A3 (en) 2010-06-29 2017-01-25 Imec Method for forming a catalyst suitable for growth of carbon nanotubes
CN102465327B (zh) * 2010-11-16 2016-01-06 富士康(昆山)电脑接插件有限公司 奈米碳管直立集束成型方法
DE102011000395A1 (de) * 2011-01-28 2012-08-02 Hydro Aluminium Rolled Products Gmbh Thermisch und elektrisch hochleitfähiges Aluminiumband
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
GB201321949D0 (en) * 2013-12-12 2014-01-29 Ibm Semiconductor nanowire fabrication
CN104401936B (zh) * 2014-12-19 2016-04-13 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法
CN104401935B (zh) * 2014-12-19 2016-04-27 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69623550T2 (de) * 1995-07-10 2003-01-09 Japan Res Dev Corp Verfahren zur Herstellung von Graphitfasern
JP3008852B2 (ja) * 1996-06-21 2000-02-14 日本電気株式会社 電子放出素子およびその製造方法
JP3740295B2 (ja) * 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
JP3902883B2 (ja) * 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
JP3497740B2 (ja) * 1998-09-09 2004-02-16 株式会社東芝 カーボンナノチューブの製造方法及び電界放出型冷陰極装置の製造方法
US6325909B1 (en) * 1999-09-24 2001-12-04 The Governing Council Of The University Of Toronto Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
KR20020003782A (ko) * 2000-07-04 2002-01-15 이정욱 탄소나노튜브의 제작 방법
KR100405974B1 (ko) * 2001-06-15 2003-11-14 엘지전자 주식회사 카본나노튜브의 수평 성장 방법
GB2364933B (en) 2000-07-18 2002-12-31 Lg Electronics Inc Method of horizontally growing carbon nanotubes
WO2002080361A1 (en) * 2001-03-30 2002-10-10 California Institute Of Technology Carbon nanotube array rf filter
WO2002080360A1 (en) * 2001-03-30 2002-10-10 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
DE10123876A1 (de) * 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
KR100434271B1 (ko) * 2001-06-07 2004-06-04 엘지전자 주식회사 탄소나노튜브 길이별 제조방법
KR100408871B1 (ko) * 2001-12-20 2003-12-11 삼성전자주식회사 바이오칩 상에서 탄소나노튜브를 이용한 시료의 분리 또는여과 방법
JP2005517537A (ja) * 2002-02-11 2005-06-16 レンセラー・ポリテクニック・インスティチュート 高度に組織化されたカーボン・ナノチューブ構造の指向性アセンブリ
KR100445419B1 (ko) * 2002-02-25 2004-08-25 삼성에스디아이 주식회사 냉음극 전자원
US20040043148A1 (en) * 2002-09-04 2004-03-04 Industrial Technology Research Institute Method for fabricating carbon nanotube device
TWI239071B (en) * 2003-08-20 2005-09-01 Ind Tech Res Inst Manufacturing method of carbon nano-tube transistor
US20050276743A1 (en) * 2004-01-13 2005-12-15 Jeff Lacombe Method for fabrication of porous metal templates and growth of carbon nanotubes and utilization thereof
EP1709213A4 (en) * 2004-01-15 2012-09-05 Nanocomp Technologies Inc SYSTEMS AND METHODS FOR SYNTHESIZING LONG LENGTH NANOSTRUCTURES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569622A (zh) * 2010-12-14 2012-07-11 鸿富锦精密工业(深圳)有限公司 半导体发光芯片及其制造方法

Also Published As

Publication number Publication date
US7115306B2 (en) 2006-10-03
KR100695124B1 (ko) 2007-03-14
JP2005239541A (ja) 2005-09-08
JP4912600B2 (ja) 2012-04-11
US20050188444A1 (en) 2005-08-25
KR20050086161A (ko) 2005-08-30
CN1660696A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
CN100584751C (zh) 水平生长碳纳米管的方法及具有该碳纳米管的器件
EP1511058B1 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
US6891319B2 (en) Field emission display and methods of forming a field emission display
US7070472B2 (en) Field emission display and methods of forming a field emission display
US6656339B2 (en) Method of forming a nano-supported catalyst on a substrate for nanotube growth
US6596187B2 (en) Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
JP4648807B2 (ja) カーボンナノチューブエミッタ及びその製造方法とそれを応用した電界放出素子及びその製造方法
US9177745B2 (en) Organic/inorganic composite comprising three-dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
EP1102299A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
JP4213680B2 (ja) 基板構造及びその製造方法、並びに半導体装置及びその製造方法
CN101189372B (zh) 纳米结构在基底上的可控生长以及基于此的电子发射器件
WO2004012932A1 (en) Method for synthesizing nanoscale structures in defined locations
EP1102298A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
CN101097826A (zh) 形成碳纳米管结构的方法及用其制造场发射器件的方法
CN103794552A (zh) 铜衬底上的碳纳米管生长
CN1532867A (zh) 碳纳米管场发射显示装置的制备方法
US8030833B2 (en) Electron emission device incorporating free standing monocrystalline nanowires
KR100376198B1 (ko) 수직 배향된 탄소 나노튜브를 이용한 전계방출 표시소자및 그 제조 방법
WO2009154379A2 (en) Organic/inorganic composite comprising three- dimensional carbon nanotube networks, method for preparing the organic/inorganic composite and electronic device using the organic/inorganic composite
US20070200478A1 (en) Field Emission Device
KR20070105022A (ko) 카본 나노튜브의 형성 방법
Shulitski et al. P‐120: High Efficiency Method of Selective CNT Arrays Growth on the Metal/Dielectric/Semiconductor Substrates for FEDs Application
JP4371976B2 (ja) 電界電子放出装置
KR20010049451A (ko) 수직 배향된 탄소 나노튜브를 이용한 전계방출 표시소자및 그 제조 방법
KR20090055205A (ko) 선택성장에 의한 탄소나노튜브의 수평성장방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100127

Termination date: 20150118

EXPY Termination of patent right or utility model