CN100560342C - 转子叶片、其制造方法以及具有该转子叶片的风力设备 - Google Patents

转子叶片、其制造方法以及具有该转子叶片的风力设备 Download PDF

Info

Publication number
CN100560342C
CN100560342C CNB2004800220504A CN200480022050A CN100560342C CN 100560342 C CN100560342 C CN 100560342C CN B2004800220504 A CNB2004800220504 A CN B2004800220504A CN 200480022050 A CN200480022050 A CN 200480022050A CN 100560342 C CN100560342 C CN 100560342C
Authority
CN
China
Prior art keywords
supporting structure
rotor blade
flexural rigidity
fibre bundle
sclerosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800220504A
Other languages
English (en)
Other versions
CN1829596A (zh
Inventor
艾劳埃斯·乌本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34112051&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100560342(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CN1829596A publication Critical patent/CN1829596A/zh
Application granted granted Critical
Publication of CN100560342C publication Critical patent/CN100560342C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)
  • Reinforced Plastic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明涉及一种具有如权利要求1前序部分的特征的支承结构(14)。本发明还涉及一种纤维复合结构的成形体尤其是转子叶片的制造过程,其包括以下步骤:制造形成成形体的外部轮廓的壳体(11,12);制造由预定长度的纤维束构成的支承结构,所述纤维束浸渍有硬化复合材料,以及将支承结构引入到壳体内。将由强化复合纤维制成的预制复合部件(24)结合到支承结构中。本发明的目的是以上述方式进一步提出的一种方法,从而限制了放热反应并且减小了出现波纹的风险。

Description

转子叶片、其制造方法以及具有该转子叶片的风力设备
技术领域
本发明涉及一种支承结构。本发明进一步涉及一种制造纤维复合结构的成形体,尤其是转子叶片的过程,其包括以下步骤:
-制造形成该成形体的外部轮廓的壳体,
-制造预定长度的纤维束的支承结构,该纤维束浸渍有硬化复合材料,及
-将支承结构引入到壳体内。
本发明进一步涉及一种根据该过程而制造出的转子叶片以及一种具有这样一种转子叶片的风力设备。
背景技术
这种过程在风力设备领域中早已是公知的,使得可以在使用相同的材料的情况下,制造出在支承结构与形成转子叶片外壳的壳体之间具有可靠结合的转子叶片。
在这方面,制造诸如纤维复合材料的半壳体部,该纤维复合材料例如可以是玻璃纤维和环氧树脂,这些半壳体部确定了转子叶片的外部形状。由于这些转子叶片恰好达到大于50米的长度,产生了必须吸收和耗散掉的负载。这是通过设置在转子叶片中的支承结构来实现的。
这样一种公知的支承结构包括所谓的粗纺条(roving web)。这些粗纺条涉及诸如碳纤维或由于低成本而优选地为玻璃纤维的纤维束材料。这些纤维束部分连续地在支承结构或转子叶片的整个长度上延伸。条的数目也随着越来越接近转子叶片根部而增加,以便吸收和耗散由于较大的叶片厚度以及叶片深度而导致的较大负载。
为了实现足够的负载支承能力,使用了适当大数目的粗纺条。该粗纺条在装入预制转子叶片壳体内之前,其浸渍有诸如环氧树脂之类的聚合物。应当理解浸渍操作可通过将聚合物从外面供给的方法进行,同样地也可以通过注射过程来进行。然后将浸渍过的粗纺条装入转子叶片的壳体内的预定位置处。由于转子叶片由相同材料制成,壳体和粗纺条之间的结合极佳。
由于这些粗纺条是“湿”地置入壳体中,然而由于这些湿条不是弯曲刚性的,所以在该过程中易于发生变形。这些变形也称为“波纹”,而在硬化之后导致该位置上的回弹效应。这不利地影响了支承结构或转子叶片的刚度。
另外聚合物的硬化是放热过程,其中热量相应地散发到外部。对于由大量粗纺条构成的支承结构,也需要相应大量的环氧树脂,以便进行适当的结合。放热反应相应增强,并且发出的热量相应较高。
现有技术的大体状况可参照DE 4423115A1以及DE-AS No 1264266。
发明内容
因此本发明的目的是提供一种本说明书开始所提出的那种过程,其可限制放热反应以及降低出现波纹的风险。
根据本发明,通过一种支承结构以及一个制造成形体的过程而实现了该目的。
因此根据本发明,其提出了将预制的弯曲刚性部件结合到支承结构中。就此而言,本发明基于以下实现:纵然预制部件也由例如碳纤维或玻璃纤维条以及聚合物的纤维复合系统制成,预制部件已经硬化,因此允许进行湿处理的材料相应地减少了,因而导致放热反应减少。另外这些预制部件使湿的组成部分硬化,因此导致波纹,即纤维束不需要的变形减少了。
本发明提供一种风力设备的转子叶片,其中该转子叶片是具有纤维复合结构的成形体,并且该转子叶片具有支承结构,该支承结构包括粗纺条,该粗纺条是预定长度的纤维束,所述纤维束设置有硬化复合材料,作为所述支承结构的一部分的所述纤维束在所述支承结构的整个长度上延伸,其特征在于,由纤维束形成的支承结构还包括一体预制的、弯曲刚性的部件,并且所述一体预制的、弯曲刚性的部件包括设置有硬化复合材料的纤维束,所述一体预制的、弯曲刚性的部件在装入所述支承结构内时已处于完全硬化的状态,使得所述一体预制的、弯曲刚性的部件形成防止所述粗纺条变形的支撑结构。优选地,所述纤维束浸渍有该硬化复合材料。
本发明还提供一种风力设备的转子叶片的制造方法,该转子叶片是纤维复合结构的成形体,该方法包括以下步骤:制造形成该成形体外部轮廓的壳体,制造包括粗纺条的支承结构,所述粗纺条是浸渍有硬化复合材料的、预定长度的纤维束,并且将该支承结构引入到所述壳体内,其特征在于,将一体预制的、弯曲刚性的部件结合到所述支承结构中,其中,所述一体预制的、弯曲刚性的部件包括设置有硬化复合材料的纤维束,所述一体预制的、弯曲刚性的部件在装入所述支承结构内时已处于完全硬化的状态,使得所述一体预制的、弯曲刚性的部件形成防止所述粗纺条变形的支撑结构。在一个优选实施方式中,所述一体预制的、弯曲刚性的部件由纤维复合材料制成。
特别地,使用了预定长度的预制部件,其中该长度优选地取决于该部件在该成形体中的安装位置。
更加优选的是,使用在壳体中与负载成适当关系延伸的预制部件。
另外,本发明还提供一种具有上述转子叶片的风力设备。
应理解这些预制部件也可由任何其它适当材料制成。就此而言,使用预制部件的进一步优点在于其可独立制造并易于进行质量控制。
通过该方式确保的这些部件的质量以及较低的放热量,也使得支承结构的质量总体得以提高。
特别地,这些预制部件的长度优选地与欲形成的支承结构的长度大致相等。这实现了同样允许应力连续流动的连续结构。
附图说明
下面参照附图对本发明进行更加详细的描述,附图中:
图1示出了转子叶片的简化截面视图,
图2示出了转子叶片壳体的简化内视图,
图3示出了公知的支承结构的简化视图,
图4示出了根据本发明的支承结构的简化视图,
图5示出了根据本发明的预制部件的放大比例的截面视图,以及
图6示出了根据本发明的支承结构的一个可选实施例。
具体实施方式
参照图1,其中以截面图的形式简化示出的是一种风力设备的转子叶片10。所述转子叶片包括上壳体11和下壳体12。在这些壳体11和12中设置有支承结构14、16,其吸收和耗散作用在转子叶片10上的负载。
图2是所述壳体11、12的简化内视图。壳体11、12的预定位置上设置有支承结构14、16,其在壳体11、12的整个长度上延伸,并在由此形成的转子叶片的整个长度上延伸。
图3再次示出了已知支承结构14、16的简化形式的结构。支承结构由纤维束20——所谓的粗纺条构成,该纤维束由环氧树脂22环绕。应当理解纤维材料可以是碳纤维、玻璃纤维或其它适当的纤维。也应注意该图中所示出的粗纺条的圆形束20仅用于例示目的。事实上该束可以是任何期望的形状。
在该图中可清楚地看到条20和环氧树脂22的这样一种(湿)布置在相当大的长度上易于发生变形——所谓的波纹。
图4示出了根据本发明的支承结构14、16的一个实施例。该支承结构14、16也具有嵌入到环氧树脂22内的粗纺条20。然而应当注意可以清楚地看到插入到根据本发明的支承结构14、16中的预制部件24。预制部件24延伸通过整个长度,并形成可以支承和支撑粗纺条20的层。
由于预制部件24已呈现出其良好的弯曲刚度,其形成了阻止粗纺条20变形的支撑结构。因此,以此构造的支承结构14、16是高质量的。
图5示出了预制部件24的一个实施例的放大比例的截面视图。如从该图中可见,这个预制部件24也是由粗纺条20和环氧树脂22制成的。然而应注意预制部件24在装入支承结构14、16内时其已处于完全硬化的状态,但通过选择其所涉及的材料,可在根据本发明的支承结构14中形成紧密结合,因而确保了令人满意的应力流。
图6示出了根据本发明的支承结构14、16的第二实施例。该情况下,为了简化的目的,该图中未示出预制部件24之间的粗纺条20的布置。从该图中也可看出预制部件24在此处没有以一列在另一列的正下方的方式布置而是各行之间彼此成错位的关系布置。
这种布置导致根据本发明的支承结构14、16甚至具有更好的强度。
由于采用了预制部件,根据本发明的转子叶片具有相当高的稳定性。该情况下,比原先的转子叶片具有更高地吸收张力的能力。
以上借助于作为成形体的可选例子的转子叶片而描述了本发明的结构。除了转子叶片之外,本发明还可极有利地用于机翼、船只或者其它成形体,就这些成形体而言,其需要高强度、高动态负载承受能力。

Claims (7)

1.一种风力设备的转子叶片,其中该转子叶片是具有纤维复合结构的成形体,并且该转子叶片具有支承结构(14,16),该支承结构(14,16)包括粗纺条(20),该粗纺条(20)是预定长度的纤维束,所述纤维束设置有硬化复合材料,所述纤维束在所述支承结构(14,16)的整个长度上连续延伸,
其特征在于,由纤维束形成的支承结构(14,16)还包括一体预制的、弯曲刚性的部件(24),并且所述一体预制的、弯曲刚性的部件(24)包括设置有硬化复合材料的纤维束,所述一体预制的、弯曲刚性的部件(24)在装入所述支承结构(14、16)内时已处于完全硬化的状态,使得所述一体预制的、弯曲刚性的部件(24)形成防止所述粗纺条(20)变形的支撑结构。
2.如权利要求1所述的风力设备的转子叶片,其特征在于,所述纤维束浸渍有该硬化复合材料。
3.一种风力设备的转子叶片的制造方法,该转子叶片是纤维复合结构的成形体,该方法包括以下步骤:
制造形成该成形体外部轮廓的壳体(11,12),
制造包括粗纺条(20)的支承结构(14,16),所述粗纺条(20)是浸渍有硬化复合材料的、预定长度的纤维束,并且
将该支承结构(14,16)引入到所述壳体(11,12)内,
其特征在于,将一体预制的、弯曲刚性的部件(24)结合到所述支承结构(14,16)中,
其中,所述一体预制的、弯曲刚性的部件(24)包括设置有硬化复合材料的纤维束,所述一体预制的、弯曲刚性的部件(24)在装入所述支承结构(14、16)内时已处于完全硬化的状态,使得所述一体预制的、弯曲刚性的部件(24)形成防止所述粗纺条(20)变形的支撑结构。
4.如权利要求3所述的方法,其特征在于所述一体预制的、弯曲刚性的部件(24)由纤维复合材料制成。
5.如权利要求3和4中任一项所述的方法,其特征在于,所述一体预制的、弯曲刚性的部件(24)具有预定长度,其中所述长度取决于所述一体预制的、弯曲刚性的部件(24)在该成形体中的安装位置。
6.如权利要求5所述的方法,其特征在于,所述一体预制的、弯曲刚性的部件(24)在所述壳体(11,12)中与负载成适当关系延伸。
7.一种具有如权利要求1或2所述的转子叶片的风力设备。
CNB2004800220504A 2003-08-05 2004-08-05 转子叶片、其制造方法以及具有该转子叶片的风力设备 Expired - Fee Related CN100560342C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336461A DE10336461A1 (de) 2003-08-05 2003-08-05 Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage
DE10336461.7 2003-08-05

Publications (2)

Publication Number Publication Date
CN1829596A CN1829596A (zh) 2006-09-06
CN100560342C true CN100560342C (zh) 2009-11-18

Family

ID=34112051

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800220504A Expired - Fee Related CN100560342C (zh) 2003-08-05 2004-08-05 转子叶片、其制造方法以及具有该转子叶片的风力设备

Country Status (15)

Country Link
US (1) US7625185B2 (zh)
EP (1) EP1654110B8 (zh)
JP (2) JP4648315B2 (zh)
KR (1) KR100879753B1 (zh)
CN (1) CN100560342C (zh)
AR (3) AR045213A1 (zh)
AU (1) AU2004261415B2 (zh)
BR (1) BRPI0413134B1 (zh)
CA (1) CA2533722C (zh)
DE (1) DE10336461A1 (zh)
DK (1) DK1654110T3 (zh)
ES (1) ES2690301T3 (zh)
NZ (1) NZ545162A (zh)
PT (1) PT1654110T (zh)
WO (1) WO2005011964A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2595356A1 (en) 2005-02-03 2006-08-10 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member
DE102005047959B4 (de) * 2005-10-06 2008-01-31 Nordex Energy Gmbh Verfahren zur Herstellung einer Durchführung in einem Faserverbundwerkstoff sowie Rotorblatt für eine Windenergieanlage mit einer Durchführung
US7758313B2 (en) * 2006-02-13 2010-07-20 General Electric Company Carbon-glass-hybrid spar for wind turbine rotorblades
US20070251090A1 (en) 2006-04-28 2007-11-01 General Electric Company Methods and apparatus for fabricating blades
EP2094967B1 (en) 2006-12-15 2012-10-24 Bladena ApS Reinforced aerodynamic profile
ES2496167T3 (es) 2007-01-16 2014-09-18 Bladena Aps Pala reforzada para aerogenerador
ES2399158T3 (es) 2007-01-25 2013-03-26 Bladena Aps Pala reforzada para aerogenerador
WO2008092451A2 (en) * 2007-01-29 2008-08-07 Danmarks Tekniske Universitet Wind turbine blade
US7895745B2 (en) * 2007-03-09 2011-03-01 General Electric Company Method for fabricating elongated airfoils for wind turbines
DK1990178T3 (da) * 2007-05-07 2010-10-04 Siemens Ag Fremgangsmåde til at fremstille et rotorblad til en vindmølle
CN101855396B (zh) * 2007-11-09 2012-07-18 维斯塔斯风力系统有限公司 用于加强风力涡轮机叶片结构的结构垫、风力涡轮机叶片和制造风力涡轮机叶片的方法
US8337163B2 (en) 2007-12-05 2012-12-25 General Electric Company Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof
DE102008007304A1 (de) 2008-02-02 2009-08-06 Nordex Energy Gmbh Rotorblatt für Windenergieanlagen
DE102008013170A1 (de) * 2008-03-07 2009-09-10 Wobben, Aloys Verfahren zum Einstellen eines Mischungsverhältnisses von zwei oder mehr Komponenten
WO2009155921A1 (en) * 2008-06-23 2009-12-30 Danmarks Tekniske Universitet A wind turbine blade with angled girders
WO2009155920A1 (en) 2008-06-24 2009-12-30 Danmarks Tekniske Universitet A reinforced wind turbine blade
DE102008045601A1 (de) * 2008-06-27 2009-12-31 Repower Systems Ag Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung
DE102008049016A1 (de) * 2008-09-25 2010-04-15 Repower Systems Ag Rotorblatt mit einem Gurt mit einer in Längsrichtung abnehmenden Breite, Verfahren zur Herstellung des Rotorblattes und Verlegehilfe für Gelegebänder des Gurtes
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
GB2467745A (en) * 2009-02-11 2010-08-18 Vestas Wind Sys As Wind turbine blade with tension element(s) to increase edgewise stiffness
DE102009009272B4 (de) * 2009-02-17 2013-02-28 Siemens Aktiengesellschaft Qualitätsprüfung für Rotorblätter einer Windenergieanlage
DE102009002637A1 (de) * 2009-04-24 2010-10-28 Wobben, Aloys Rotorblatt für eine Windenergieanlage
US20110052404A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades with enhanced twist response
EP2330294B1 (en) 2009-12-02 2013-01-16 Bladena ApS Reinforced airfoil shaped body
US8066490B2 (en) * 2009-12-21 2011-11-29 General Electric Company Wind turbine rotor blade
JP2011137386A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd 風車回転翼および風車回転翼の製造方法
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
PL2524134T3 (pl) * 2010-01-14 2014-11-28 Neptco Inc Komponenty łopaty wirnika turbiny wiatrowej i sposoby ich wytwarzania
DE102010002720A1 (de) 2010-03-10 2011-09-15 Aloys Wobben Windenergieanlagen-Rotorblatt
GB201007336D0 (en) * 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
US8172539B2 (en) 2010-06-17 2012-05-08 General Electric Company Wind turbine rotor blade joint
US8986797B2 (en) 2010-08-04 2015-03-24 General Electric Company Fan case containment system and method of fabrication
WO2012161741A2 (en) * 2011-05-24 2012-11-29 Edwards Christopher M Wind blade spar caps
CN102918262A (zh) * 2011-12-09 2013-02-06 三菱重工业株式会社 风车叶片
GB2497578B (en) * 2011-12-16 2015-01-14 Vestas Wind Sys As Wind turbine blades
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
DE102012219224B3 (de) 2012-10-22 2014-03-27 Repower Systems Se System und Verfahren zum Herstellen eines Rotorblattgurtes
US9297357B2 (en) 2013-04-04 2016-03-29 General Electric Company Blade insert for a wind turbine rotor blade
DE102013215384A1 (de) * 2013-08-05 2015-02-26 Wobben Properties Gmbh Verfahren zur Herstellung eines Verbundformteils, Verbundformteil, Sandwichbauteil und Rotorblattelement und Windenergieanlage
US9506452B2 (en) 2013-08-28 2016-11-29 General Electric Company Method for installing a shear web insert within a segmented rotor blade assembly
CN106103984A (zh) * 2014-03-19 2016-11-09 科尔卡伯恩有限责任公司 涡轮机叶片
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US9951750B2 (en) * 2015-07-30 2018-04-24 General Electric Company Rotor blade with interior shelf for a flat plate spar cap
US10422315B2 (en) 2015-09-01 2019-09-24 General Electric Company Pultruded components for a shear web of a wind turbine rotor blade
US10584678B2 (en) 2015-09-01 2020-03-10 General Electric Company Shear web for a wind turbine rotor blade
US10669984B2 (en) 2015-09-22 2020-06-02 General Electric Company Method for manufacturing blade components using pre-cured laminate materials
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10519965B2 (en) 2016-01-15 2019-12-31 General Electric Company Method and system for fiber reinforced composite panels
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness
DE102016014447A1 (de) * 2016-12-06 2018-06-07 Senvion Gmbh Hinterkantengurt eines Rotorblatts einer Windenergieanlage, Rotorblatt und Verfahren zum Herstellen eines Hinterkantengurts
US10738759B2 (en) 2017-02-09 2020-08-11 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10527023B2 (en) 2017-02-09 2020-01-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10987879B2 (en) * 2017-03-02 2021-04-27 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
DE102017112721A1 (de) 2017-06-09 2018-12-13 Wobben Properties Gmbh Verfahren zum Herstellen eines Windenergieanlagen-Rotorblattes
EP3536492A1 (en) * 2018-03-06 2019-09-11 Covestro Deutschland AG Composite wind turbine blade and manufacturing method and application thereof
WO2019072948A1 (en) * 2017-10-13 2019-04-18 Covestro Deutschland Ag WIND TURBINE COMPOSITE BLADE AND METHOD FOR MANUFACTURING SAME AND APPLICATION THEREOF
US10677216B2 (en) 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
DE102017126276A1 (de) 2017-11-09 2019-05-09 Nordex Energy Gmbh Verfahren zur Herstellung einer Steg-Gurt-Baugruppe für ein Windenergieanlagenrotorblatt und Steg-Gurt-Baugruppe
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
WO2019212532A1 (en) * 2018-05-01 2019-11-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
DE102018004540A1 (de) * 2018-06-08 2019-12-12 Senvion Gmbh Verfahren und Vorrichtung zur Herstellung eines Rotorblattes für eine Windenergieanlage sowie Windenergieanlage
DE102018009339A1 (de) * 2018-11-28 2020-05-28 Senvion Gmbh Verfahren zum Einbringen eines Rotorblattgurts in eine Rotorblattschale, Gurtform, Rotorblatt sowie Windenergieanlage
DE102019000052A1 (de) * 2019-01-08 2020-07-09 Senvion Gmbh Rotorblatt mit wenigstens einem Gurt mit einer Mehrzahl an Pultrudaten und ein Verfahren zu seiner Herstellung
EP3924177A1 (en) * 2019-02-15 2021-12-22 TPI Composites, Inc. Composite rods for stabilization of composite laminates
CN110836164B (zh) * 2019-11-22 2023-11-24 中材科技风电叶片股份有限公司 条状件、梁及其制作方法、叶片和风电机组
EP4084940B1 (en) 2020-01-02 2024-03-06 9T Labs AG Fiber-reinforced composite device and forming method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237697A (en) * 1963-02-11 1966-03-01 Boeing Co Helicopter rotor blade
DE1264266B (de) * 1963-03-29 1968-03-21 Boelkow Gmbh Verfahren zum Herstellen von Rotorblaettern aus glasfaserverstaerktem Kunststoff
US3391050A (en) 1964-04-03 1968-07-02 Douglas Aircraft Co Inc Glass filament tape
DE2109934C3 (de) 1971-03-02 1978-10-12 Klepper-Werke, 8200 Rosenheim Flosse, Verfahren und Vorrichtung zu deren Herstellung
FR2345600A1 (fr) 1975-06-09 1977-10-21 Bourquardez Gaston Eolienne a paliers fluides
NL8104019A (nl) 1981-08-28 1983-03-16 Jan Bos Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof.
JPS6155962A (ja) 1984-08-27 1986-03-20 Oki Electric Ind Co Ltd 電荷結合素子
FR2586966B1 (fr) * 1985-09-11 1988-02-26 France Etat Armement Structures multicanaux en materiaux composites, procedes et demi-produits pour la fabrication de celles-ci
US4798549A (en) * 1987-06-08 1989-01-17 Hirsch Mark D Surfboard and method of making same
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US5127802A (en) * 1990-12-24 1992-07-07 United Technologies Corporation Reinforced full-spar composite rotor blade
JPH06510714A (ja) 1991-09-13 1994-12-01 ベル ヘリコプター テクストロン,インコーポレイテッド 定方向性グラファイト引抜成形ロッドおよびその製造法
DE4423115A1 (de) * 1994-07-01 1996-01-04 Wolf Hirth Gmbh Propellerflügel aus Kunststoffmaterial und Verfahren zu seiner Herstellung
DK173460B2 (da) 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
US6824851B1 (en) * 1999-10-08 2004-11-30 Milwaukee Composites, Inc. Panels utilizing a precured reinforced core and method of manufacturing the same
DK1746284T4 (da) 2001-07-19 2021-10-18 Vestas Wind Sys As Vindmøllevinge
AUPR704601A0 (en) 2001-08-14 2001-09-06 Composite Fibre Technologies Pty Ltd A composite beam and a method of manufacture thereof
AUPR704501A0 (en) 2001-08-14 2001-09-06 University Of Southern Queensland, The A method of manufacturing structural units

Also Published As

Publication number Publication date
BRPI0413134A (pt) 2006-10-03
NZ545162A (en) 2009-01-31
KR20060037423A (ko) 2006-05-03
US20070140861A1 (en) 2007-06-21
DK1654110T3 (en) 2018-11-19
JP2007533883A (ja) 2007-11-22
CN1829596A (zh) 2006-09-06
DE10336461A1 (de) 2005-03-03
US7625185B2 (en) 2009-12-01
CA2533722A1 (en) 2005-02-10
BRPI0413134B1 (pt) 2016-02-16
JP4648315B2 (ja) 2011-03-09
EP1654110B8 (de) 2018-10-17
EP1654110A1 (de) 2006-05-10
KR100879753B1 (ko) 2009-01-21
WO2005011964A1 (de) 2005-02-10
AR074193A2 (es) 2010-12-29
AU2004261415B2 (en) 2008-10-30
AR074192A2 (es) 2010-12-29
JP2010031878A (ja) 2010-02-12
PT1654110T (pt) 2018-11-30
AR045213A1 (es) 2005-10-19
CA2533722C (en) 2009-01-13
AU2004261415A1 (en) 2005-02-10
ES2690301T3 (es) 2018-11-20
EP1654110B1 (de) 2018-08-29

Similar Documents

Publication Publication Date Title
CN100560342C (zh) 转子叶片、其制造方法以及具有该转子叶片的风力设备
CN102187091B (zh) 风轮机叶片
EP1798412B1 (en) Connection of wind turbine blade to rotor hub
CN100376790C (zh) 具有碳纤维尖部的风力涡轮机叶片
JP2007533883A5 (zh)
US7758313B2 (en) Carbon-glass-hybrid spar for wind turbine rotorblades
KR102181843B1 (ko) 인장 및 압축 하중에 대한 다른 섬유 보강부들을 구비한 비틀림 하중을 받는 로드형 구성 요소
US12064933B2 (en) Wind turbine blade
CN104769280A (zh) 风力涡轮机塔架
CN109676952A (zh) 具有集成眼衬套的由纤维增强塑料制成的板簧的制造方法,以及由纤维增强塑料制成的板簧
CN114630957A (zh) 风力涡轮机叶片
CN112012878A (zh) 腹板、叶片、成型方法以及风力发电机组
CN114286891B (zh) 用于风机叶片的主梁及其制造方法
CN114347576B (zh) 叶片的主梁及叶片
GB2484107A (en) Modular wind turbine blade for a vertical axis wind turbine
CN218934618U (zh) 塔筒及风力发电机组
CN102808830B (zh) 销轴、工程机械的臂架的连接结构和混凝土泵送设备
US20230193878A1 (en) Segment and system for a Scruton helix, Scruton helix, tower and method for mounting a Scruton helix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20210805