CN100549605C - 节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法 - Google Patents

节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法 Download PDF

Info

Publication number
CN100549605C
CN100549605C CNB2005800455010A CN200580045501A CN100549605C CN 100549605 C CN100549605 C CN 100549605C CN B2005800455010 A CNB2005800455010 A CN B2005800455010A CN 200580045501 A CN200580045501 A CN 200580045501A CN 100549605 C CN100549605 C CN 100549605C
Authority
CN
China
Prior art keywords
fluid
valve
drop
choke valve
exit passageway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800455010A
Other languages
English (en)
Other versions
CN101095024A (zh
Inventor
M·贝廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twister BV
Original Assignee
Twister BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34930193&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100549605(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Twister BV filed Critical Twister BV
Publication of CN101095024A publication Critical patent/CN101095024A/zh
Application granted granted Critical
Publication of CN100549605C publication Critical patent/CN100549605C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0217Separation of non-miscible liquids by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/16Vortex devices, i.e. devices in which use is made of the pressure drop associated with vortex motion in a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/005Pipe-line systems for a two-phase gas-liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2109By tangential input to axial output [e.g., vortex amplifier]
    • Y10T137/2115With means to vary input or output of device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/3367Larner-Johnson type valves; i.e., telescoping internal valve in expanded flow line section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • Y10T137/86791Piston
    • Y10T137/86799With internal flow passage

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Valves (AREA)
  • Nozzles (AREA)
  • Float Valves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Lift Valve (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种焦耳-汤普森或其它节流阀,其包括出口通道(7),在出口通道(7)中,漩涡赋予装置(10)把漩涡运动(14)强加给由该阀排出的被冷却流体流(10),从而诱导液滴朝流体出口通道(7)的外周打漩,并诱导液滴聚结成增大的液滴,增大的液滴可以很容易地从气态或其它载流流体中分离出来。

Description

节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法
技术领域
本发明涉及一种节流阀和一种用于在流过节流阀的流体流中增大液滴尺寸的方法。
背景技术
在油气工业中,控制阀用于控制压力、液位、温度和流量。在有些情况下,一旦在控制阀上建立充足的压降,这些控制阀就在阻流或节流状态下运行。在处理天然气时,阀上的这种压力减低会在没有从气体抽取热量或功的情况下导致温度下降。这种所谓的等焓膨胀过程也被称为焦耳-汤普森(JT)冷却。建立这种压力减低的阀被称为JT阀。JT阀的冷却效应用于冷凝一部分天然气流,以便可以在容器中分离出液化的部分。对于这样的大多数分离容器来说,驱动力是惯性或重力,或者换句话说,液滴的质量决定了分离的效率。放在JT阀之前的低温分离器通常被称为JT-LTS系统。
即使JT阀最初的功能是流速控制,也常常忘记第二功能是建立可分离的液相。在气体处理工业中,由JT阀的等焓膨胀引起的平均液滴尺寸是未知的,因此下游分离器的分离效率更是未知的。由于亚最佳的分离效率,气体品质问题不时地发生。在那些情况下,通常是烃露点保持太高,这表明,尤其是烃滴势必很小。
国际专利申请WO2004/001260和美国专利4,384,592和4,671,321公开了配备有漩涡赋予装置的节流阀,所述漩涡赋予装置在流过阀的流体通量中产生涡流。
美国专利4,383,592和4,671,321公开的阀设置有穿孔套筒,其中,穿孔相对于套筒的中心轴线具有不同的方向,这样,在流过阀的流体通量中产生多个涡流,所述多个涡流可以反转,可以充当噪音阻尼器。
国际专利申请WO2004/001260公开的阀设置有阀杆,所述阀杆限定了带有切向入口和非切向入口两种入口的流体涡流室。如果阀完全或几乎完全打开,流体仅仅流过切向入口,在流体通量中不会产生漩涡。如果阀差不多关闭,则流体仅仅流过非切向入口,从而产生涡流和流动阻力,并抑制阀机构的腐蚀性磨损和气蚀性磨损。
美国专利4,055,961和4,544,390和国际专利申请WO2004083691公开了节流阀,其中气态组分在焦耳汤姆逊效应的作用下冷凝。
已知的焦耳汤姆逊及其它节流阀存在的问题在于,冷凝出的液滴尺寸通常较小,以致形成雾状流,液体和气态相不容易从该雾状流中分离。
本发明的目的是解决这个问题,其提供了一种节流阀,其中与已知的节流阀相比,可以形成较大的液滴。
发明内容
依照本发明,提供了一种节流阀,具有:外壳;阀体,所述阀体可动地布置在外壳中,以控制从流体入口通道流入该阀的流体出口通道的流体流通量,以致膨胀和冷却流体流;和漩涡赋予装置,所述漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流;其特征在于,所述漩涡赋予装置定向成,如果该阀完全打开,流体流绕流体出口通道的纵向轴线打漩,从而诱导液滴朝流体出口通道的外周打漩和聚结,所述液滴是在沿着阀的流动路径膨胀过程中形成的。
节流阀任选包括大体上圆锥形的中心体,所述中心体布置在流体出口通道中,大体上与流体出口通道的中心轴线同轴,所述中心体形成具有沿下游方向逐渐增加的横截面面积的流体出口通道,从而产生带有促进被冷凝的液滴形成和聚结的涡流要素的涡流。
该阀还包括穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,流体经由该套筒从流体入口通道流入流体出口通道,漩涡赋予装置通过套筒的纵向和圆周间隔开的穿孔提供,穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,在使用时诱导流体流绕流体出口通道的纵向轴线打漩。
至少一些穿孔具有中心轴线,所述中心轴线在选定的距离D处以0到90度之间的选定锐角与套筒的纵向轴线相交,穿孔套筒的内表面位于离套筒的纵向轴线半径R处,使得距离D与半径R之比在0.2到1之间,优选在0.5到0.99之间。
该阀可以是具有大体上管状流体出口通道和阀体的焦耳汤普森阀,阀体包括沿流体出口通道的大体上纵向方向可动的活塞,穿孔套筒可以固定到活塞上,这样,流体入口通道的大体上环形的下游端至少部分地环绕穿孔套筒,并且当阀体处于完全打开位置时,至少一些流体被诱导从流体入口通道经由穿孔套筒上的非径向穿孔流入流体出口通道。
依照本发明,还提供了一种用于在流过节流阀出口段的多相流体流中增大液滴尺寸的方法,所述多相流体流包括液滴和载流流体,其中,漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流;其特征在于:在节流阀中可获得的释放压力用于等焓膨胀,以在流过阀的出口通道的流体流中建立漩涡流动,从而诱导液滴朝流体出口通道的外周打漩,并诱导液滴聚结成增大的液滴。
流体可以下列中的任一种:1)带有液相的气态主导载体;或者,2)带有不相溶液相和/或气相的液体主导载体。选项1)的例子是带有JT阀的低温分离(LTS)工艺,JT阀供给有带有冷凝物、水和乙二醇的液体部分的天然气流。选项2)的例子是带有节流阀的冷凝稳定工艺,节流阀供给有带有水和/或乙二醇的液体部分的冷凝物流。
依照本发明的节流阀和方法的这些及其它特征、目的和优点将从附带的权利要求书、摘要和依照本发明节流阀的实施例的详细说明并参照附带的视图变得显而易见。
附图说明
图1A是依照本发明节流阀的纵向剖视图;
图1B是图1A中节流阀的出口通道的放大剖视图;
图1C示出了图1A和1B中节流阀的出口通道中流体流的漩涡运动;
图1D示出了图1A和1B中节流阀的出口通道外周上液滴的聚结;
图2A是传统节流阀的纵向剖视图;
图2B是图2A中节流阀的出口通道的放大剖视图;
图2C示出了图2A和2B中传统阀的出口通道中流体流的不确定运动;和
图2D示出了图2A和2B中传统节流阀的出口通道中带有小液滴的均匀雾状流。
具体实施方式
如图1A-1D所示依照本发明的节流阀的实施例的阀几何结构能够增强在沿焦耳-汤姆逊或其它节流阀的流径膨胀期间增强液滴的聚结过程。这些较大的液滴比传统焦耳-汤姆逊或其它节流阀的情况能够更好地分离。
图1A所示的阀包括阀外壳1,活塞式阀体2和相联的穿孔套筒3可滑动地布置在阀外壳1中,这样,通过阀轴5上的齿轮4的转动,带齿的活塞杆6上下推动活塞式阀体进入流体出口通道7内,如箭头8所示。该阀具有流体入口通道9,流体入口通道9具有可以环绕活塞2和/或穿孔套筒3的环形下游段9A,被容许从流体入口通道9流入流体出口通道7的流体的通量由活塞式阀体2的轴向位置和相联的穿孔套筒3控制。该阀还包括圆锥形的中心体15,该中心体15大体上与流体出口通道7的中心轴线11同轴,中心体15产生具有沿下游方向逐渐增加的横截面面积的出口通道7,从而控制出口通道7中的流体通量的减低,并产生带有促进形成和聚结被冷凝的液滴的涡流要素的涡流。
如图1B所示,在依照本发明的节流阀中,穿孔套筒3包括倾斜或非径向穿孔10,所述穿孔10相对于流体出口通道7的中心轴线11沿选定的部分切向钻孔,使得每个穿孔10的纵向轴线12在距离D处横过中心轴线11,距离D为套筒3内半径R的0.2到1倍,优选为0.5到0.99倍。
倾斜穿孔10在流过流体出口通道7的流体流中产生漩涡流动,如箭头14所示。也可以通过阀内件和/或阀杆的特殊几何结构强加漩涡运动。在依照本发明的阀中,可获得的释放压力用于等焓膨胀,以在流体流中建立漩涡流动。动能主要通过涡流沿阀下游的延伸管道长度的阻尼而消散。
如图1C和1D所示,在阀的出口通道中建立漩涡流动的优点是双重的:
1.规则速度图案->较少界面剪切->较少液滴崩裂->较大的液滴
2.在流体出口通道7流动区域的外周7A中液滴的集中->大的数量密度->改善的聚结->大的液滴18。
虽然任何焦耳-汤姆逊或其它阻流和/或节流类型的阀都适用于建立漩涡流动,但是,优选使用Mokveld Valves B.V.提供的、在其国际专利申请WO2004083691中公开的阻流类型的节流阀。
图2A-2D示出了由Mokveld Valves B.V.提供的用于流量控制用途的传统笼式阀(cage-valve),其中流体通量在穿孔套筒23上被节流,穿孔套筒23连接于活塞式阀体22。
如图2A所示的传统Mokveld节流阀包括阀外壳21,活塞式阀体22和相联的穿孔套筒23可滑动地布置在阀外壳21中,这样,通过阀轴25上的齿轮24的转动,带齿的活塞杆26上下推动活塞式阀体进入流体出口通道27内,如箭头28所示。该阀具有流体入口通道29,流体入口通道29具有可以环绕活塞22和/或穿孔套筒23的环形下游段29A,被容许从流体入口通道29流入流体出口通道27的流体的通量由活塞式阀体22的轴向位置和相联的穿孔套筒23控制。
传统套筒23包括穿孔30——缝隙或孔——其具有径向定向,即正交于套筒23的圆柱形表面。通过沿轴向方向移动活塞22和套筒23,可以控制流动区域。
如图2C所示,带有径向开口的笼式阀的流型很紊乱,所以引起高剪切力,导致液滴崩裂成更小的液滴。
漩涡流动对液滴尺寸影响的计算
下面的计算示出了流体出口通道7中的雾状流的漩涡运动对液滴的聚结和成长的影响。
这些计算仅仅作为例子,这些计算不将依照本发明的方法和节流阀局限为任何科学理论的应用。
假定阀在阻流状态下运行,流体的平均切向进口速度(Utan)接近150m/s。对于直径(D)为80mm的典型笼,涡流强度Γ为:
Γ=πDUtan=38m2/s                                等式1
为确定在何径向位置直径(d=1μm)、密度(ρL=650kg/m3)的液滴将在密度(ρG=60kg/m3)、粘度(v=2.10-7m2/s)和汇集强度(sinkstrength)(Q=4m2/s)的气态流体的漩涡中旋转,使用下列表达式:
R eq = Γ Q 2 π · 2 9 · d 2 4 π 2 · v · ( ρ L ρ G - 1 ) = 25 mm 等式2
假设>>99%的全部液体质量由d≥1μm的液滴表示,那么该质量集中在半径Req=25mm之外的流动区域内。在笼中Req=25mm之外的流动区域表示总横截面流动区域的61%。与非漩涡流动相比,液滴数量密度(N)以因子1.67增加。
根据Chesters,相同尺寸的液滴之间的碰撞数量的基本公式为:
N col = - dN dt = k 1 2 u rel d 2 N 2 等式3
在等式3中:
Ncol=每秒、每m3发生的碰撞数量
N=每mY存在的液滴数量
urel=液滴之间的相对速度
d=液滴直径=2r(半径)
k1=大约为1的常数
由于在漩涡流动中,N以因子1.67增加,所以,液滴碰撞率以因子1.672=2.8增加。
液滴之间的相对速度(urel)按如下确定:
1.布朗运动
2.湍流运动
3.离心漂移运动
对于聚结,所关心的液滴尺寸范围是1≤d≤5μm。对于该尺寸范围,相对速度由湍流运动主导。布朗运动可以忽略不计,因为分子冲击不会影响1μm的液滴。虽然离心漂移运动增强了漩涡流动中的液滴相对运动,但是,仍然可以被忽略不计,因为湍流是更主导的驱动力。
聚结率可以由液滴尺寸倍增的时间来表示。d=1微米的液滴在标准重力或离心分离机中是不能被分离出来的。为变得可分离,最低需要液滴直径增加因子5。为了获得液滴直径增加因子5,不得不出现53=125的碰撞。所以,让一个液滴与其它液滴碰撞125次所需要的最低保持时间(t125)限定在如下的表格中。用于聚结时间标度(scales)的这些等式只是针对作为驱动力的湍流运动。
表1:用于漩涡和非漩涡流动的聚结时间标度
Figure C20058004550100111
漩涡流动对液滴聚结的影响的第一次序(order)概算(approximation)显示,由于流动湍流,较大地改善了聚结率。液滴以因子5增大——以便这些液滴在传统分离容器中变得可分离——对于漩涡流动,需要典型长度标度为2米,而对于非漩涡流动,为27米。
如图1D所示,在依照本发明的节流阀中,漩涡运动的存在使液滴18集中在流体出口通道7的外边界的减低流动区域7A(总体的61%)中,这样,液滴数量密度以大约1.67的因子增加。此外,由于高的切向速度,在无涡旋中心中的湍流消散率大。
应当理解,在依照本发明的节流阀的出口通道7中较大液滴的形成使得在流体分离组件中分离液相和气相更加容易,流体分离组件可以布置在节流阀的下游。这样的后置式流体分离组件可以包括一个或多个重力和/或气旋分离容器。
流体可以是下列中的任一种:1)带有液相的气态主导载体;或者,2)带有不相溶液相和/或气相的液体主导载体。选项1)的例子是带有JT阀的LTS工艺,JT阀供给有带有冷凝物、水和乙二醇的液体部分的天然气流。选项2)的例子是带有节流阀的冷凝稳定工艺,节流阀供给有带有水和/或乙二醇的液体部分的冷凝物流。

Claims (13)

1.一种节流阀,具有:外壳;阀体,所述阀体可动地布置在外壳中,以控制从流体入口通道流入该阀的流体出口通道的流体流通量,以致膨胀和冷却流体流;和漩涡赋予装置,所述漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流,其特征在于:所述漩涡赋予装置定向成,如果该阀完全打开,流体流绕流体出口通道的纵向轴线打漩,从而诱导液滴朝流体出口通道的外周打漩和聚结,所述液滴是在沿着所述阀的流动路径膨胀的过程中形成的。
2.如权利要求1所述的节流阀,其特征在于,大体上圆锥形的中心体布置在流体出口通道中,所述中心体大体上与流体出口通道的中心轴线同轴,所述中心体产生具有沿下游方向逐渐增加的横截面面积的出口通道,从而产生带有促进形成和聚结被冷凝的液滴体的涡流要素的涡流。
3.如权利要求1所述的节流阀,其特征在于,该阀还包括穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,流体经由所述穿孔套筒从流体入口通道流入流体出口通道,漩涡赋予装置通过套筒的纵向和圆周间隔开的穿孔提供,穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,在使用时诱导流体流绕流体出口通道的纵向轴线打漩。
4.如权利要求3所述的节流阀,其特征在于,至少一些穿孔具有中心轴线,该中心轴线在选定的距离D处以一选定锐角横过套筒的纵向轴线。
5.如权利要求4所述的节流阀,其特征在于,穿孔套筒的内表面位于离套筒的纵向轴线半径R处,距离D与半径R之比在0.2到1之间。
6.如权利要求5所述的节流阀,其特征在于,距离D与半径R之比在0.5到0.99之间。
7.如前述任一权利要求所述的节流阀,其特征在于,该阀是具有大体上管状流体出口通道和阀体的焦耳汤普森阀,所述阀体包括沿流体出口通道的大体上纵向方向可动的活塞,以及其中,穿孔套筒固定到活塞上,这样,流体入口通道的大体上环形的下游端至少部分地环绕穿孔套筒,并且当阀体处于完全打开位置时,至少一些流体被诱导从流体入口通道经由穿孔套筒上的非径向穿孔流入流体出口通道。
8.一种用于在流过节流阀出口段的多相流体流中增大液滴尺寸的方法,所述多相流体流包括液滴和载流流体,其中,漩涡赋予装置把漩涡运动强加给流过流体出口通道的所述多相流体流;
其特征在于:在节流阀中可获得的释放压力用于等焓膨胀,以在流过阀的出口通道的多相流体流中建立漩涡流动,从而诱导液滴朝流体出口通道的外周打漩和聚结。
9.如权利要求8所述的方法,其特征在于,所述节流阀包括:
外壳;
阀体,所述阀体可动地布置在外壳中,以便阀体控制从流体入口通道流入该阀的流体出口通道的多组分流体流;
穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,则所述多组分流体经由所述穿孔套筒从流体入口通道流入流体出口通道,以及
其中,套筒的至少一些穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,所述多组分流体膨胀且被转换成多相流体流,所述多相流体流被诱导在流体出口通道内部打漩,液滴被诱导朝流体出口通道的外周打漩并被诱导而聚结成增大的液滴。
10.如权利要求8或9所述的方法,其特征在于,一气-液分离组件连接到节流阀的出口通道上,在所述气-液分离组件中,由该阀排出的多相流体流的液相和气相至少部分地分离。
11.如权利要求8或9所述的方法,其特征在于,多相流体流包括烃和水状流体,以及其中,至少一小部分水状流体转变为液态水液滴,液态水液滴被诱导朝流体出口通道的外周打漩,并在流体出口通道的外周聚结成增大的水滴和/或环形水膜。
12.如权利要求8或9所述的方法,其特征在于,多相流体流包括气态载流流体,流体入口通道和/或流体出口通道和/或节流阀内部的其它部分提供具有喉部截面的流体通道,在喉部截面中,所述多相流体流加速,从而被诱导借助于焦耳-汤姆逊效应膨胀和冷却。
13.如权利要求12所述的方法,其特征在于,多相流体流在喉部截面膨胀,达到接近音速或超音速。
CNB2005800455010A 2004-12-30 2005-12-29 节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法 Expired - Fee Related CN100549605C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04107064 2004-12-30
EP04107064.0 2004-12-30

Publications (2)

Publication Number Publication Date
CN101095024A CN101095024A (zh) 2007-12-26
CN100549605C true CN100549605C (zh) 2009-10-14

Family

ID=34930193

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800455010A Expired - Fee Related CN100549605C (zh) 2004-12-30 2005-12-29 节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法

Country Status (15)

Country Link
US (1) US8800599B2 (zh)
EP (1) EP1831628B1 (zh)
JP (1) JP2008527253A (zh)
KR (1) KR20070102528A (zh)
CN (1) CN100549605C (zh)
AT (1) ATE511068T1 (zh)
AU (1) AU2005321255B2 (zh)
BR (1) BRPI0519309B1 (zh)
CA (1) CA2592600C (zh)
IL (1) IL183873A (zh)
NO (1) NO342664B1 (zh)
RU (1) RU2386911C2 (zh)
TW (1) TW200636198A (zh)
WO (1) WO2006070020A1 (zh)
ZA (1) ZA200704723B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964076A (zh) * 2015-05-19 2015-10-07 中国航天空气动力技术研究院 低噪声调压阀

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO334212B1 (no) 2005-08-23 2014-01-13 Typhonix As Anordning ved reguleringsventil
DK2385212T3 (en) * 2007-09-26 2018-02-19 Cameron Int Corp THROTTLE VALVE COLLECTION
EP2372077A3 (en) * 2007-09-26 2014-03-12 Cameron International Corporation Choke assembly
GB0801471D0 (en) * 2008-01-25 2008-03-05 Typhonix As Valve
WO2010020741A1 (en) * 2008-08-20 2010-02-25 Typhonix As Fluid flow control valve
US20100170250A1 (en) * 2009-01-06 2010-07-08 General Electric Company Fuel Plenum Vortex Breakers
US8136543B2 (en) 2009-01-27 2012-03-20 Fisher Controls International, Llc Axial flow control valves having an internal actuator
EP2416865B1 (en) * 2009-04-07 2013-10-02 Twister B.V. Separation system comprising a swirl valve
US8534323B2 (en) * 2009-04-10 2013-09-17 Flowserve Corporation Control valves and methods of flowing a material through a control valve
EP2459916B1 (en) * 2009-07-30 2013-05-29 Twister B.V. Throttling valve
RU2423168C1 (ru) * 2010-02-08 2011-07-10 Валерий Григорьевич Биндас Трехпоточная вихревая труба
ITPI20100040A1 (it) 2010-03-29 2011-09-30 Sime S R L Metodo e apparato per ricavare una frazione liquida da un gas in pressione mediante effetto joule-thomson, in particolare per recuperare allo stato liquido idrocarburi con due o più atomi di carbonio da un gas naturale o da un gas di raffineria, e va
ITPI20100041A1 (it) 2010-03-29 2011-09-30 Sime S R L Metodo e apparato per recuperare ngl da un gas combustibile, in particolare da gas naturale
GB201007196D0 (en) 2010-04-30 2010-06-16 Compactgtl Plc Gas-to-liquid technology
US8858680B2 (en) 2010-06-01 2014-10-14 Shell Oil Company Separation of oxygen containing gases
WO2011153147A1 (en) 2010-06-01 2011-12-08 Shell Oil Company Separation of helium and hydrogen in industrial gases
EP2576007A1 (en) 2010-06-01 2013-04-10 Shell Oil Company Separation of gases produced by combustion
CA2800823A1 (en) 2010-06-01 2011-12-08 Shell Internationale Research Maatschappij B.V. Low emission power plant
CN101975310B (zh) * 2010-10-11 2012-09-05 国核电力规划设计研究院 一种节流装置
US8869832B2 (en) * 2012-03-14 2014-10-28 Hans D Baumann Variable resistance device
CN102839027A (zh) * 2012-09-13 2012-12-26 中国石油集团工程设计有限责任公司 气田井口低温分离脱水装置及方法
SE542403C2 (en) 2012-12-27 2020-04-21 Yaovaphankul Luxnara Apparatus for creating a swirling flow of fluid
AU2014214604B2 (en) * 2013-02-11 2016-12-08 Fluid Equipment Development Company, Llc Anti-cavitation throttle valve and method of operating the same
NO20130583A1 (no) 2013-04-29 2014-10-30 Typhonix As Separasjonsvennlig trykkreduksjonsinnretning
RU2538992C1 (ru) * 2013-10-18 2015-01-10 3S Газ Текнолоджис Лимитед Устройство для сепарации многокомпонентной среды и сопловой канал для него
CN107076184B (zh) * 2014-09-29 2019-02-12 樂那拉·邀媧攀崑 用于产生流体的旋流的装置
EP3458723A4 (en) * 2016-05-20 2020-01-08 Braddell Limited BOOSTER ASSEMBLY AND APPARATUS
CN106439137A (zh) * 2016-10-14 2017-02-22 北京石油化工学院 一种石油开采集输用低剪切柱塞式节流阀
PL234454B1 (pl) * 2018-01-25 2020-02-28 Politechnika Poznanska Wirowy regulator przepływu cieczy
JP2019218755A (ja) * 2018-06-20 2019-12-26 株式会社ディスコ オーバーフロー管アダプタ
RU2702021C1 (ru) * 2018-12-28 2019-10-03 Закрытое акционерное общество "Научно-производственное объединение РЕГУЛЯТОР" ЗАО "НПО РЕГУЛЯТОР" Прямоточный регулирующий клапан
NL2022927B1 (en) * 2019-04-11 2020-10-20 Twister Bv Cyclonic fluid separator
US11492872B2 (en) * 2019-09-25 2022-11-08 Control Components, Inc. Low shear control valve
KR102150378B1 (ko) * 2020-01-30 2020-09-01 (주)대주기계 초음속 분리기
CN115264108B (zh) * 2022-09-28 2022-12-09 西安泵阀总厂有限公司 一种低剪切力控制方法
CN116412262A (zh) * 2023-04-04 2023-07-11 兰州理工大学 一种三级叶珊串联旋流套筒多级调流防气蚀阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384592A (en) * 1980-11-28 1983-05-24 International Telephone And Telegraph Corporation Low-noise valve trim
US4671321A (en) * 1985-06-07 1987-06-09 Dresser Industries, Inc. Control organ for gaseous and liquid media
CN1115999A (zh) * 1993-10-19 1996-01-31 罗伯特·弗赖曼 管道流体的转向或分流的方法和装置
CN1202231A (zh) * 1995-11-15 1998-12-16 费希尔控制国际公司 用于节流阀的流率稳定器
WO2003055575A1 (en) * 2001-12-31 2003-07-10 Shell Internationale Research Maatschappij B.V. Multistage fluid separation assembly and method
WO2004001260A1 (en) * 2002-06-25 2003-12-31 Accentus Plc Valve assembly

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1465916A (en) * 1919-05-02 1923-08-21 William Cramp & Sons Ship & En Valve
FR778928A (fr) * 1934-09-26 1935-03-26 Copes Regulators Ltd Perfectionnements apportés aux soupapes
NL7311471A (nl) * 1973-08-21 1975-02-25 Philips Nv Inrichting voor het vloeibaar maken van bij zeer lage temperatuur condenserende gassen.
DE2431322C3 (de) * 1974-06-29 1978-10-26 Honeywell Gmbh, 6000 Frankfurt Regelventil
US3990475A (en) * 1975-01-08 1976-11-09 Honeywell Inc. Low noise valve trim
JPS51113238A (en) * 1975-03-31 1976-10-06 Sumitomo Heavy Ind Ltd Control equipment of jule tomson valve
JPS5920062B2 (ja) * 1980-01-25 1984-05-10 株式会社クボタ スリ−ブ弁
US4383592A (en) 1981-03-25 1983-05-17 Hoffa Kenneth R Escape ladder
JPS57165852U (zh) * 1981-04-15 1982-10-19
JPS59140972A (ja) * 1983-01-31 1984-08-13 Yamatake Honeywell Co Ltd ケ−ジ弁
IN160585B (zh) * 1983-02-14 1987-07-18 Exxon Research Engineering Co
JPS61215866A (ja) * 1985-03-19 1986-09-25 Babcock Hitachi Kk 高差圧型調節弁
JPS62213819A (ja) * 1986-03-13 1987-09-19 Yoshito Nishioka ミスト除去装置
BE1004130A5 (fr) * 1990-12-07 1992-09-29 Lardinois Jean Paul Procede pour extraire une substance presente dans un fluide gazeux porteur, sous forme de particules solides ou de liquide et systeme pour la mise en oeuvre de ce procede.
JPH07113478A (ja) * 1993-10-15 1995-05-02 Ishikawajima Harima Heavy Ind Co Ltd ジュールトムソン弁
US5442924A (en) * 1994-02-16 1995-08-22 The Dow Chemical Company Liquid removal from natural gas
AU5238396A (en) * 1995-06-06 1996-12-19 Hughes Missile Systems Company Adaptive orifice Joule-Thomson cryostat with servo-control
GC0000091A (en) * 1998-12-31 2004-06-30 Shell Int Research Method for removing condensables from a natural gas stream.
JP3839629B2 (ja) * 1999-12-28 2006-11-01 アマノ株式会社 気液分離装置
US6587793B2 (en) * 2001-09-17 2003-07-01 Xerox Corporation Systems and methods for determining spectra using fuzzy inference algorithms with measurements from LED color sensor
US6730236B2 (en) * 2001-11-08 2004-05-04 Chevron U.S.A. Inc. Method for separating liquids in a separation system having a flow coalescing apparatus and separation apparatus
DE10312753A1 (de) * 2003-03-21 2004-10-07 Mokveld Valves B.V. Ringspaltdichtung für ein Ventil
JP4564341B2 (ja) * 2004-11-24 2010-10-20 本田技研工業株式会社 気液分離装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384592A (en) * 1980-11-28 1983-05-24 International Telephone And Telegraph Corporation Low-noise valve trim
US4671321A (en) * 1985-06-07 1987-06-09 Dresser Industries, Inc. Control organ for gaseous and liquid media
CN1115999A (zh) * 1993-10-19 1996-01-31 罗伯特·弗赖曼 管道流体的转向或分流的方法和装置
CN1202231A (zh) * 1995-11-15 1998-12-16 费希尔控制国际公司 用于节流阀的流率稳定器
WO2003055575A1 (en) * 2001-12-31 2003-07-10 Shell Internationale Research Maatschappij B.V. Multistage fluid separation assembly and method
WO2004001260A1 (en) * 2002-06-25 2003-12-31 Accentus Plc Valve assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964076A (zh) * 2015-05-19 2015-10-07 中国航天空气动力技术研究院 低噪声调压阀

Also Published As

Publication number Publication date
ATE511068T1 (de) 2011-06-15
EP1831628B1 (en) 2011-05-25
US20080173363A1 (en) 2008-07-24
NO20073952L (no) 2007-07-27
RU2386911C2 (ru) 2010-04-20
CN101095024A (zh) 2007-12-26
TW200636198A (en) 2006-10-16
AU2005321255B2 (en) 2008-12-04
NO342664B1 (no) 2018-06-25
AU2005321255A1 (en) 2006-07-06
IL183873A (en) 2010-11-30
WO2006070020A1 (en) 2006-07-06
ZA200704723B (en) 2009-06-24
IL183873A0 (en) 2007-10-31
CA2592600A1 (en) 2006-07-06
RU2007129020A (ru) 2009-02-10
KR20070102528A (ko) 2007-10-18
US8800599B2 (en) 2014-08-12
JP2008527253A (ja) 2008-07-24
EP1831628A1 (en) 2007-09-12
BRPI0519309A2 (pt) 2009-01-06
CA2592600C (en) 2014-02-11
BRPI0519309B1 (pt) 2018-07-17

Similar Documents

Publication Publication Date Title
CN100549605C (zh) 节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法
US9625055B2 (en) Tapered throttling valve
CA2654511C (en) Cyclonic liquid degassing separator and method for degassing a fluid mixture
CA2286509C (en) Method of and apparatus for the separation of components of gas mixtures and liquefaction of a gas
EP1438540B1 (en) Cyclonic fluid separator with vortex generator in inlet section
US8608840B2 (en) Choke assembly
EP1835995B1 (en) Cyclonic separation method for degassing a fluid mixture
JP2008527253A5 (zh)
US6494935B2 (en) Vortex generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014